[en] Landslides are a major geological hazard causing significant loss of life and infrastructure damage worldwide. Landslide susceptibility mapping is a crucial, though developing, tool for understanding the spatial distribution of landslide hazard. This study addresses the absence of a comprehensive landslide inventory, limited understanding of causative factors and the lack of regional-scale susceptibility maps for the Lesser Caucasus and Kura Basin (LC-KB). A landslide inventory was created for the Lesser Caucasus of Azerbaijan and compiled with other inventories, documenting 3,659 landslide polygons. Sixteen causative factors were analysed, and multicollinearity tests confirmed no significant correlations. Three Machine Learning (ML) models—Logistic Regression (LGR), Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost)—were fine-tuned to create landslide susceptibility maps. Slope is consistently the most influential factor across all models. Results suggest stronger influence of seismic factors than climatic ones. XGBoost achieves the highest accuracy (0.81) on the testing data set, followed by SVM (0.80) and LGR (0.73). The first two models show strong validation performance, with AUC values of 0.89 and 0.87, respectively, while LGR shows a lower AUC of 0.78. The results are vital for planning and disaster management, highlighting areas needing urgent mitigation.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Ullah, Israr ; Université de Liège - ULiège > Geology ; Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Aachen, Germany
Reicherter, Klaus; Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Aachen, Germany
Pánek, Tomáš; Department of Physical Geography and Geoecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
Tibaldi, Alessandro; Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
Al-Najjar, Husam; School of Computer Science, Faculty of Engineering and IT, University of Technology Sydney, Sydney, Australia
Kalantar, Bahareh ; RIKEN Center for Advanced Intelligence Project, Disaster Resilience Science Team, Tokyo, Japan
Ueda, Naonori; RIKEN Center for Advanced Intelligence Project, Disaster Resilience Science Team, Tokyo, Japan
Havenith, Hans-Balder ; Université de Liège - ULiège > Département de géologie > Géologie de l'environnement
Language :
English
Title :
Landslide susceptibility mapping based on data mining models in Lesser Caucasus and Kura foreland basin (Armenia and Azerbaijan)
Abdelkader MM, Csámer Á., 2025. Comparative assessment of machine learning models for landslide susceptibility mapping: a focus on validation and accuracy. Nat Hazards. 121(9):10299–10321. doi: 10.1007/s11069-025-07197-0.
Adamia S, Alania V, Chabukiani A, Chichua G, Enukidze O, Sadradze N., 2010. Evolution of the Late Cenozoic basins of Georgia (SW Caucasus): a review. SP. 340(1):239–259. doi: 10.1144/SP340.11.
Akgun A., 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides. 9(1):93–106. doi: 10.1007/s10346-011-0283-7.
Alcaraz Tarragüel A, Krol B, van Westen C., 2012. Analysing the possible impact of landslides and avalanches on cultural heritage in Upper Svaneti, Georgia. J Cult Herit. 13(4):453–461. doi: 10.1016/j.culher.2012.01.012.
Aslam B, Zafar A, Khalil U., 2021. Development of integrated deep learning and machine learning algorithm for the assessment of landslide hazard potential. Soft Computing. 25(21):13493–13512. doi: 10.1007/s00500-021-06105-5.
Avagyan A, Sosson M, Sahakyan L, Sheremet Y, Vardanyan S, Martirosyan M, Muller C., 2018. Tectonic evolution of the Northern margin of the Cenozoic Ararat basin, Lesser Caucasus, Armenia. Journal of Petroleum Geology. 41(4):495–511. doi: 10.1111/jpg.12718.
Avagyan A, Sosson M, Philip H, Karakhanian A, Rolland Y, Melkonyan R, Rebaï S, Davtyan V., 2005. Neogene to Quaternary stress field evolution in Lesser Caucasus and adjacent regions using fault kinematics analysis and volcanic cluster data. Geodinamica Acta. 18(6):401–416. doi: 10.3166/ga.18.401-416.
Bounab A, Agharroud K, El Kharim Y, El Hamdouni R, Faghloumi L., 2022. The importance of investigating causative factors and training data selection for accurate landslide susceptibility assessment: the case of Ain Lahcen commune (Tetouan, Northern Morocco). Geocarto International. 37(25):9967–9997. doi: 10.1080/10106049.2022.2028905.
Boynagryan V., 2009. Landslides in Armenia. Rev. Roum. Géogr.53(2):197–208.
Brock J, Schratz P, Petschko H, Muenchow J, Micu M, Brenning A., 2020. The performance of landslide susceptibility models critically depends on the quality of digital elevation models. Geomatics Nat Hazards Risk. 11(1):1075–1092. doi: 10.1080/19475705.2020.1776403.
Buchner J, Yin H, Frantz D, Kuemmerle T, Askerov E, Bakuradze T, Bleyhl B, Elizbarashvili N, Komarova A, Lewińska KE, et al.2020. Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites. Remote Sensing Environment. 248:111967. doi: 10.1016/j.rse.2020.111967.
Chen T, Guestrin C., 2016. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug 13–17; San Francisco, CA, USA. New York (NY): Association for Computing Machinery. p. 785–794. doi: 10.1145/2939672.2939785
Chen W, Chai H, Zhao Z, Wang Q, Hong H., 2016. Landslide susceptibility mapping based on GIS and support vector machine models for the Qianyang County, China. Environmental Earth Sciences. 75(6):1–13. doi: 10.1007/s12665-015-5093-0.
Chen W, Pourghasemi HR, Panahi M, Kornejady A, Wang J, Xie X, Cao S., 2017. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology. 297:69–85. doi: 10.1016/j.geomorph.2017.09.007.
Conforti M, Robustelli G, Muto F, Critelli S., 2012. Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy). Natural Hazards. 61(1):127–141. doi: 10.1007/s11069-011-9781-0.
Dahim M, Alqadhi S, Mallick J., 2023. Enhancing landslide management with hyper-tuned machine learning and deep learning models: predicting susceptibility and analyzing sensitivity and uncertainty. Frontiers in Ecology and Evolution. 11:1–22. doi: 10.3389/fevo.2023.1108924.
Fang Z, Wang Y, Peng L, Hong H., 2020. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Computers & Geosciences. 139:104470. doi: 10.1016/j.cageo.2020.104470.
Fomenko IK, Zerkal OV, Strom A, Shubina D, Musaeva L., 2021. The Krasnogorsk Landslide (Northern Caucasus): its evolution and modern activity. In: understanding and reducing landslide disaster risk: volume 5 catastrophic landslides and frontiers of landslide science. Cham (Switzerland): Springer Int Publ. p. 49–56.
Forte AM, Cowgill E, Bernardin T, Kreylos O, Hamann B., 2010. Late Cenozoic deformation of the Kura fold-thrust belt, southern Greater Caucasus. Bull Geol Soc Am. 122(3-4):465–486. doi: 10.1130/B26464.1.
Forte AM, Cowgill E, Murtuzayev I, Kangarli T, Stoica M., 2013. Structural geometries and magnitude of shortening in the eastern Kura fold‐thrust belt, Azerbaijan: implications for the development of the Greater Caucasus Mountains. Tectonics. 32(3):688–717. doi: 10.1002/tect.20032.
Forte AM, Sumner DY, Cowgill E, Stoica M, Murtuzayev I, Kangarli T, Elashvili M, Godoladze T, Javakhishvili Z., 2015. Late Miocene to Pliocene stratigraphy of the Kura Basin, a subbasin of the South Caspian Basin: implications for the diachroneity of stage boundaries. Basin Research. 27(3):247–271.
Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, et al.2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Science Data. 2(1):150066. doi: 10.1038/sdata.2015.66.
Gaprindashvili G, Van Westen CJ., 2016. Generation of a national landslide hazard and risk map for the country of Georgia. Natural Hazards. 80(1):69–101. doi: 10.1007/s11069-015-1958-5.
Gleeson T, Smith L, Moosdorf N, Hartmann J, Dürr HH, Manning AH, van Beek LPH, Jellinek AM., 2011. Mapping permeability over the surface of the Earth. Geophysical Research Letters. 38(2):n/a–n/a. doi: 10.1029/2010GL045565.
Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M., 2006. Estimating the quality of landslide susceptibility models. Geomorphology. 81(1-2):166–184. doi: 10.1016/j.geomorph.2006.04.007.
Hassangavyar MB, Samani AN, Rashidi S, Tiefenbacher JP. 2020. Catchment-scale soil conservation: using climate, vegetation, and topo-hydrological parameters to support decision making and implementation. Sci Total Environ. 712:136124. Amsterdam (Netherlands): Elsevier. doi: 10.1016/j.scitotenv.2019.136124.
Hastie T, Tibshirani R, Friedman J. 2009. Boosting and additive trees. In: The elements of statistical learning: data mining, inference, and prediction. New York (NY): Springer. p. 337–387.
Havenith HB, Guerrier K, Schlögel R, Braun A, Ulysse S, Mreyen AS, Victor KH, Saint-Fleur N, Cauchie L, Boisson D, et al.2022. Earthquake-induced landslides in Haiti: analysis of seismotectonic and possible climatic influences. Natural Hazards and Earth System Sciences. 22(10):3361–3384. doi: 10.5194/nhess-22-3361-2022.
Hoogendoorn RM, Boels JF, Kroonenberg SB, Simmons MD, Aliyeva E, Babazadeh AD, Huseynov D., 2005. Development of the Kura delta, Azerbaijan; a record of Holocene Caspian sea-level changes. Marine Geology. 222-223:359–380. doi: 10.1016/j.margeo.2005.06.007.
Huang Y, Zhao L., 2018. Review on landslide susceptibility mapping using support vector machines. Catena. 165:520–529. doi: 10.1016/j.catena.2018.03.003.
Huang F, Xiong H, Jiang SH, Yao C, Fan X, Catani F, Chang Z, Zhou X, Huang J, Liu K., 2024. Modelling landslide susceptibility prediction: a review and construction of semi-supervised imbalanced theory. Earth-Science Review. 250:104700. doi: 10.1016/j.earscirev.2024.104700.
Ismail-Zadeh A, Adamia S, Chabukiani A, Chelidze T, Cloetingh S, Floyd M, Gorshkov A, Gvishiani A, Ismail-Zadeh T, Kaban MK, et al.2020. Geodynamics, seismicity, and seismic hazards of the Caucasus. Earth-Science Review. 207:103222. doi: 10.1016/j.earscirev.2020.103222.
Jansen N, Hartmann J, Lauerwald R, Dürr HH, Kempe S, Loos S, Middelkoop H., 2010. Dissolved silica mobilization in the conterminous USA. Chemical Geology. 270(1-4):90–109. doi: 10.1016/j.chemgeo.2009.11.008.
Japan International Cooperation Agency (JICA), Georisk CJSC (Armenia). 2006. Joint project: the study on landslide disaster management in the Republic of Armenia; inventory database creation. Yerevan (Armenia): JICA. 68 p. [accessed 2024 Mar 8]. Available from: http://open_jicareport.jica.go.jp/pdf/11834660.pdf.
Justice TE., 2021. Evaluation of manual and semi-automated deep-seated landslide inventory processes: willapa Hills, Washington [dissertation]. Portland (OR): Portland State University. doi: 10.15760/etd.7555.
Kab A, Djerbal L, Bahar R., 2023. Implementation of PCA multicollinearity method to landslide susceptibility assessment: the study case of Kabylia region. Arabian Journal of Geoscience. 16(4):291. doi: 10.1007/s12517-023-11374-5.
Karakhanian AS, Djrbashian RT, Trifonov VG, Philip H, Ritz JF, Giardini D, Balassanian S., 1997. Active faults and strong earthquakes of the Armenian upland. In: Giardini D, Balassanian S, editors. Historical and prehistorical earthquakes in the Caucasus. Dordrecht (Netherlands): Kluwer Academic Publishing. p. 181–187.
Kavzoglu T, Colkesen I, Sahin EK., 2019. Machine learning techniques in landslide susceptibility mapping: a survey and a case study. In: Landslides: theory, Practice and Modelling. Cham (Switzerland): Springer International Publishing. p. 283–301.
Kavzoglu T, Teke A., 2022. Advanced hyperparameter optimization for improved spatial prediction of shallow landslides using extreme gradient boosting (XGBoost). Bulletin of Engineering Geology and the Environment. 81(5):201. doi: 10.1007/s10064-022-02708-w.
Khalil U, Iqra I, Aslam B, Ullah I, Tariq A, Qin S., 2022. Comparative analysis of machine learning and multi-criteria decision making techniques for landslide susceptibility mapping of Muzaffarabad district. Frontiers in Environmental Science. 10:1–19. doi: 10.3389/fenvs.2022.1028373.
Koçyİğİt A, Ünay E, Saraç G., 2000. Episodic graben formation and extensional neotectonic regime in west Central Anatolia and the Isparta Angle: a case study in the Aksehir-Afyon Graben, Turkey. SP. 173(1):405–421. doi: 10.1144/GSL.SP.2000.173.01.19.
Kothyari GC, Malik K, Dumka RK, Naik SP, Biswas R, Taloor AK, Luirei K, Joshi N, Kandregula RS., 2022. Identification of active deformation zone associated with the 28th April 2021 Assam earthquake (Mw 6.4) using the PSInSAR time series. Journal of Applied Geophysics. 206:104811. doi: 10.1016/j.jappgeo.2022.104811.
Kumar V, Cauchie L, Mreyen A-S, Micu M, Havenith H-B., 2021. Evaluating landslide response in a seismic and rainfall regime: a case study from the SE Carpathians, Romania. Natural Hazards and Earth System Sciences. 21(12):3767–3788. doi: 10.5194/nhess-21-3767-2021.
Ledworowska A, Braun A, Hovius H-B, Fuchs TM., 2020. 2020. Landslide susceptibility mapping on the country scale with data mining techniques in Armenia. GeoUtrecht. doi: 10.48380/dggv-j9h5-t469. https://www.dggv.de/e-publikationen/landslide-susceptibility-mapping-on-the-country-scale-with-data-mining-techniques-in-armenia/#pll_switcher
Matossian AO, Baghdasaryan H, Avagyan A, Igityan H, Gevorgyan M, Havenith H-B., 2020. A new landslide inventory for the Armenian Lesser Caucasus: slope failure morphologies and seismotectonic influences on large landslides. Geosciences. 10(3):111. doi: 10.3390/geosciences10030111.
McKenzie D., 1972. Active tectonics of the Mediterranean region. Geophysical Journal International. 30(2):109–185. doi: 10.1111/j.1365-246X.1972.tb02351.x.
Micheletti N, Foresti L, Robert S, Leuenberger M, Pedrazzini A, Jaboyedoff M, Kanevski M., 2014. Machine learning feature selection methods for landslide susceptibility mapping. Math Geoscience. 46(1):33–57. doi: 10.1007/s11004-013-9511-0.
Mohan A, Dwivedi R, Kumar B., 2022. Image restoration of landslide photographs using SRCNN. In: Dhawan A, Tripathi VS, Arya KV, Naik K, editors. Recent trends in electronics and communication. VCAS 2020. Lecture Notes in Electrical Engineering. Vol. 777. Singapore: Springer. doi: 10.1007/978-981-16-2761-3_108
Naikoo, Mohd Waseem, Rihan, Mohd, Peer, Arshid Hussain, Talukdar, Swapan, Mallick, Javed, Ishtiaq, Mohammad, Rahman, Atiqur, Shahfahad,. 2023. Analysis of peri-urban land use/land cover change and its drivers using geospatial techniques and geographically weighted regression. Environmental Science and Pollution Research International. 30(55):116421–116439. doi: 10.1007/s11356-022-18853-4.
Nakhutsrishvili G, Abdaladze O., 2017. Vegetation of the Central Great Caucasus along WE and NS transects. In: Nakhutsrishvili G, Abdaladze O, Batsatsashvili K, Spehn E, Körner C, editors. Plant diversity in the Central Great Caucasus: a quantitative assessment. Geobotany Studies. Cham (Switzerland): Springer. doi: 10.1007/978-3-319-55777-9_2.
Nalivkin VD., 1976. Dynamics of the development of the Russian platform structures. In Developments in geotectonics. Vol. 12. Amsterdam (Netherlands): Elsevier. p. 247–262.
Noble WS., 2006. What is a support vector machine?Nature Biotechnology. 24(12):1565–1567. doi: 10.1038/nbt1206-1565.
Pánek T, Břežný M, Havenith H-B, Tibaldi A., 2024. Landslides and growing folds: a lesson from the Kura fold-and-thrust belt (Azerbaijan, Georgia). Geomorphology. 449:109059. doi: 10.1016/j.geomorph.2024.109059.
Pearson K., 1895. Correlation coefficient. R Soc Proc. 58:214.
Philip H, Cisternas A, Gvishiani A, Gorshkov A., 1989. The Caucasus: an actual example of the initial stages of continental collision. Tectonophysics. 161(1-2):1–21. doi: 10.1016/0040-1951(89)90297-7.
Pourghasemi HR, Moradi HR, Fatemi Aghda SM., 2013. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural Hazards. 69(1):749–779. doi: 10.1007/s11069-013-0728-5.
Pourghasemi HR, Kornejady A, Kerle N, Shabani F., 2020. Investigating the effects of different landslide positioning techniques, landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping. CATENA. 187:104364. doi: 10.1016/j.catena.2019.104364.
Rai DK, Xiong D, Zhao W, Zhao D, Zhang B, Dahal NM, Wu Y, Baig MA., 2022. An investigation of landslide susceptibility using logistic regression and statistical index methods in Dailekh District, Nepal. Chin Geogr Sci. 32(5):834–851. doi: 10.1007/s11769-022-1304-2.
Saha S, Saha A, Roy B, Sarkar R, Bhardwaj D, Kundu B., 2022. Integrating the Particle Swarm Optimization (PSO) with machine learning methods for improving the accuracy of the landslide susceptibility model. Earth Science Informatics. 15(4):2637–2662. doi: 10.1007/s12145-022-00878-5.
Samia J, Temme A, Bregt A, Wallinga J, Guzzetti F, Ardizzone F, Rossi M., 2017. Do landslides follow landslides? Insights in path dependency from a multi-temporal landslide inventory. Landslides. 14(2):547–558. doi: 10.1007/s10346-016-0739-x.
Santangelo M, Marchesini I, Bucci F, Cardinali M, Fiorucci F, Guzzetti F., 2015. An approach to reduce mapping errors in the production of landslide inventory maps. Natural Hazards and Earth System Science. 15(9):2111–2126. doi: 10.5194/nhess-15-2111-2015.
Shebalin NV, Tatevossian RE., 1997. Catalogue of strong earthquakes (M ≥ 6.0) for the Global Seismic Hazard Assessment Program test area ‘CAUCASUS. In: Historical and Prehistorical Earthquakes in the Caucasus. NATO Meeting; 1997. p. 1–21.
Shen-Tu B, Klein E, Mahdyiar M, Karakhanyan A, Pagani M, Weatherill G, Gee R., 2018. Seismic hazard analysis for Armenia and its surrounding areas. In: Proceedings of the 16th European Conference on Earthquake Engineering; 2018 Jun 18–21; Thessaloniki, Greece. A collaboration between AIR Worldwide, GEM, and Georisk.
Sim KB, Lee ML, Wong SY., 2022. A review of landslide acceptable risk and tolerable risk. Geoenvironment Disasters. 9(1):3. doi: 10.1186/s40677-022-00205-6.
Sun D, Xu J, Wen H, Wang D., 2021. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest. Engineering Geology. 281:105972. doi: 10.1016/j.enggeo.2020.105972.
Taloor AK, Abraham A, Parsad G., 2024. Landslide susceptibility modelling in the Doda Kishtwar Ramban (DKR) region of Jammu and Kashmir using Remote Sensing and Geographic Information System. Quaternary Science Advances. 14:100189. doi: 10.1016/j.qsa.2024.100189.
Telesca L, Chelidze T., 2018. Visibility graph analysis of seismicity around Enguri high arch dam, Caucasus. Bulletin of the Seismological Society of America. 108(5B):3141–3147. doi: 10.1785/0120170370.
Tibaldi A, Bonali FL, Mariotto FP, Oppizzi P, Tsereteli N, Havenith H, Babayev G, Pánek T., 2024. Structural expression of the frontal thrust of an active fold-and-thrust belt: the Holocene 123-km-long Kur fault, Greater Caucasus, Azerbaijan. Journal of Structural Geology. 180:105085. doi: 10.1016/j.jsg.2024.105085.
Tsereteli E, Gaprindashvili G, Gaprindashvili M, Bolashvili N, Gongadze M., 2019. 2018. Hazard risk of debris/mud flow events in Georgia and methodological approaches for management. In: Shakoor A, Cato K, editors. IAEG/AEG Annu Meet Proc, Vol 5, p. 153–160. San Francisco, California: Springer International Publishing.
Urushadze TF, Ghambashidze G., 2013. Soils of Georgia. In Soil resources of mediterranean and Caucasus countries. Luxembourg: Publications Office of the European Union. p. 78.
Velayudham J, Kannaujiya S, Sarkar T, Champati Ray PK, Taloor AK, Bisht MPS, Chawla S, Pal SK., 2021. Comprehensive study on evaluation of Kaliasaur landslide attributes in Garhwal Himalaya by the execution of geospatial, geotechnical and geophysical methods. Quaternary Science Advances. 3:100025. doi: 10.1016/j.qsa.2021.100025.
Wallemacq P, Below R, McClean D., 2018. Economic losses, poverty & disasters: 1998–2017. Geneva (CH): United Nations Office for Disaster Risk Reduction. p. 29.
Wang Q, Wang Y, Niu R, Peng L., 2017. Integration of information theory, K-means cluster analysis and the logistic regression model for landslide susceptibility mapping in the Three Gorges Area, China. Remote Sensing. 9(9):938. doi: 10.3390/rs9090938.
Wang Y, Feng L, Li S, Ren F, Du Q., 2020. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China. Catena. 188:104425. doi: 10.1016/j.catena.2019.104425.
Xu Z, Che A, Zhou H., 2024. Seismic landslide susceptibility assessment using principal component analysis and support vector machine. Scientific Reports. 14(1):3734. doi: 10.1038/s41598-023-48196-0.
Yetirmishli GJ, Islamova SK, Kazimova SE, Ismailova SS., 2018. Seismic geodynamics of Mingachevir water reservoir. Byulleten Orenburgskogo Nauch Nauk Tsentra URO RAN. 4:12.
Yu X, Zhang K, Song Y, Jiang W, Zhou J., 2021. Study on landslide susceptibility mapping based on rock–soil characteristic factors. Sci Rep. 11(1):15476. doi: 10.1038/s41598-021-9496-5.
Zelenin E, Bachmanov D, Garipova S, Trifonov V, Kozhurin A., 2022. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset. Earth System Science Data. 14(10):4489–4503. doi: 10.5194/essd-14-4489-2022.
Zhang J, Ma X, Zhang J, Sun D, Zhou X, Mi C, Wen H., 2023. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. Journal of Environment Management. 332:117357. doi: 10.1016/j.jenvman.2023.117357.
Zhao X, Chen W., 2020. Optimization of computational intelligence models for landslide susceptibility evaluation. Remote Sensing. 12(14):2180. doi: 10.3390/rs12142180.
Zhou S, Bondell H, Tordesillas A, Rubinstein BIP, Bailey J., 2020. Early identification of an impending rockslide location via a spatially-aided gaussian mixture model. The Annals of Applied Statistics. 14(2):977–992. doi: 10.1214/20-AOAS1326.