Statistics and Probability; Information Systems; Education; Computer Science Applications; Statistics, Probability and Uncertainty; Library and Information Sciences
Abstract :
[en] In the last years, more satellites with microwave imagers have been launched, making more observations available to obtain soil moisture estimates globally. China's endeavour has resulted in the launch of the FengYun (FY) passive microwave observations (FY-3B, C, D) capable of filling in global soil moisture data gaps. In this study, we develop a merged soil moisture dataset at a spatial resolution of 0.15° from the FY series which spans 2011 to present time (2020 in this study) by a merging technique that minimizes mean square error (MSE) using the signal-to-noise ratio of the input parent products. Here, we combine the ascending and descending observations from the three satellite observations to obtain sub-daily estimates. Finally, we averaged the merged sub-daily FY soil moisture into daily estimates and gap-fill it using a deep learning interpolation approach to reconstruct the missing days while preserving the characteristics of the Merged FY data. The results of this study aim to provide datasets that meet challenges in using global satellite soil moisture observations.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Hagan, Daniel F T ; Hydro-Climate Extremes Lab (H-CEL), Ghent University, Department of Environment, Ghent, 9000Gent, Belgium ; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing, 210044, China
Kim, Seokhyeon ; Kyung Hee University, 1732 Deogyeong-daero, Department of Civil Engineering, Giheung-gu, Yongin-si, 17104, Republic of Korea
Wang, Guojie; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing, 210044, China. gwang@nuist.edu.cn
Ma, Xiaowen; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing, 210044, China
Hu, Yifan; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing, 210044, China
Liu, Yi Y; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Barth, Alexander ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Liu, Haonan; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing, 210044, China
Ullah, Waheed; Faculty of Defense and Security, Rabdan Academy, Abu Dhabi, United Arab Emirates
Nooni, Isaac K; School of Atmospheric Science & Remote Sensing, Wuxi University, Wuxi, 214105, China
Bhatti, Samuel A; Bacha Khan University Charsadda, Department of Geology & Geophysics, Peshawar, Pakistan
Language :
English
Title :
Seamless finer-resolution soil moisture from the synergistic merging of the FengYun-3 satellite series.
This study is supported by the National Natural Science Foundation of China (U23A2006, 42275028), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_0935) and the European Research Council Consolidator Grant, HEAT(101088405). The authors also appreciate Dr. Robert Parinussa and Dr. Robin van der Schalie for all their work and contribution to the development of this dataset.
W. Dorigo et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions Remote Sensing of Environment 203 185 215 2017RSEnv.203.185D 10.1016/j.rse.2017.07.001
D.F.T. Hagan et al. Maximizing Temporal Correlations in Long-Term Global Satellite Soil Moisture Data-Merging Remote Sensing 12 13 2164 2020RemS..12.2164H 10.3390/rs12132164
L. Karthikeyan M. Pan N. Wanders D.N. Kumar E.F. Wood Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons Advances in Water Resources 109 236 252 2017AdWR.109.236K 10.1016/j.advwatres.2017.09.010
Y.Y. Liu et al. Trend-preserving blending of passive and active microwave soil moisture retrievals Remote Sensing of Environment 123 280 297 2012RSEnv.123.280L 10.1016/j.rse.2012.03.014
A. Gruber T. Scanlon R. van der Schalie W. Wagner W. Dorigo Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology Earth Syst. Sci. Data 11 2 717 739 2019ESSD..11.717G 10.5194/essd-11-717-2019
Y.H. Kerr et al. Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation Remote Sensing of Environment 180 40 63 2016RSEnv.180..40K 10.1016/j.rse.2016.02.042
Y.H. Kerr et al. The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle Proceedings of the IEEE 98 5 666 687 10.1109/JPROC.2010.2043032
D. Entekhabi et al. The Soil Moisture Active Passive (SMAP) Mission Proceedings of the IEEE 98 5 704 716 10.1109/JPROC.2010.2043918
J. Yang et al. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond International Journal of Digital Earth 5 3 251 265 2012IJDE..5.251Y 10.1080/17538947.2012.658666
G. Wang et al. Towards Consistent Soil Moisture Records from China’s FengYun-3 Microwave Observations Remote Sensing 14 5 1225 2022RemS..14.1225W 10.3390/rs14051225
S. Kim A. Sharma Y.Y. Liu S.I. Young Rethinking Satellite Data Merging: From Averaging to SNR Optimization IEEE Transactions on Geoscience and Remote Sensing 60 1 15 10.1109/TGRS.2021.3107028
R. van der Schalie et al. L-Band Soil Moisture Retrievals Using Microwave Based Temperature and Filtering. Towards Model-Independent Climate Data Records Remote Sensing 13 13 2480 2021RemS..13.2480V 10.3390/rs13132480
R.M. Parinussa M.T. Yilmaz M.C. Anderson C.R. Hain R.A.M. de Jeu An intercomparison of remotely sensed soil moisture products at various spatial scales over the Iberian Peninsula Hydrological Processes 28 18 4865 4876 2014HyPr..28.4865P 10.1002/hyp.9975
G. Wang D. Garcia Y. Liu R. de Jeu A. Johannes Dolman A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations Environmental Modelling & Software 30 139 142 10.1016/j.envsoft.2011.10.015
X. Meng et al. A fine-resolution soil moisture dataset for China in 2002-2018 Earth Syst. Sci. Data 13 7 3239 3261 2021ESSD..13.3239M 10.5194/essd-13-3239-2021
P. Rao et al. Daily soil moisture mapping at 1 km resolution based on SMAP data for desertification areas in northern China Earth Syst. Sci. Data 14 7 3053 3073 2022ESSD..14.3053R 10.5194/essd-14-3053-2022
A. Barth A. Alvera-Azcárate M. Licer J.M. Beckers DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations Geosci. Model Dev. 13 3 1609 1622 2020GMD..13.1609B 10.5194/gmd-13-1609-2020
R. van der Schalie et al. Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval Model International Journal of Applied Earth Observation and Geoinformation 45 125 134 2016IJAEO.45.125S 10.1016/j.jag.2015.08.005
H.E. Beck et al. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS Hydrol. Earth Syst. Sci. 23 1 207 224 2019HESS..23.207B 10.5194/hess-23-207-2019
C. Albergel et al. ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better? Hydrol. Earth Syst. Sci. 22 6 3515 3532 2018HESS..22.3515A 10.5194/hess-22-3515-2018
H.E. Beck et al. Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors Hydrol. Earth Syst. Sci. Discuss. 2020 1 35 10.5194/hess-2020-184
Hagan, D. F. T., and Parinussa, R. M, Wang, G., and Draper, Clara. An Evaluation of Soil Moisture Anomalies from Global Model-Based Datasets over the People’s Republic of China, Water12 (1), https://doi.org/10.3390/w12010117 (2020).
Li, Mingxing, Wu, Peili, Ma, Zhuguo, A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets, International Journal of Climatology n/a (n/a), https://doi.org/10.1002/joc.6549 (2020).
W.A. Dorigo et al. Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network Vadose Zone Journal 12 3 vzj2012.0097 1779340 10.2136/vzj2012.0097
R. Parinussa et al. The Evaluation of Single-Sensor Surface Soil Moisture Anomalies over the Mainland of the People’s Republic of China Remote Sensing 9 149 2017RemS..9.149P 10.3390/rs9020149
H.E. Beck et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution Scientific Data 5 1 10.1038/sdata.2018.214 30375988 6207062 180214
C. Funk Chris et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes Scientific Data 2 1 10.1038/sdata.2015.66 26646728 4672685 150066
W. Ullah et al. Comparing Multiple Precipitation Products against In-Situ Observations over Different Climate Regions of Pakistan Remote Sensing 11 6 628 2019RemS..11.628U 10.3390/rs11060628
Owe, M., de Jeu, R., Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture, Journal of Geophysical Research: Earth Surface113(F1), https://doi.org/10.1029/2007jf000769 (2008).
Holmes, T. R. H, De Jeu, R. A. M, Owe, M, Dolman, A. J, Land surface temperature from Ka band (37 GHz) passive microwave observations, Journal of Geophysical Research: Atmospheres114(D4), https://doi.org/10.1029/2008jd010257 (2009).
P. Song et al. An Improved Soil Moisture Retrieval Algorithm Based on the Land Parameter Retrieval Model for Water-Land Mixed Pixels Using AMSR-E Data IEEE Transactions on Geoscience and Remote Sensing 57 10 7643 7657 2019ITGRS.57.7643S 10.1109/TGRS.2019.2915346
R.A.M. de Jeu et al. Global Soil Moisture Patterns Observed by Space Borne Microwave Radiometers and Scatterometers Surveys in Geophysics 29 4 399 420 2008SGeo..29.399D 10.1007/s10712-008-9044-0
M. Owe R. Jeu Rde J. Walker A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index IEEE Transactions on Geoscience and Remote Sensing 39 8 1643 1654 2001ITGRS.39.1643O 10.1109/36.942542
R.M. Parinussa et al. Improved surface soil moisture anomalies from Fengyun-3B over the Jiangxi province of the People’s Republic of China International Journal of Remote Sensing 39 23 8950 8962 2018IJRS..39.8950P 10.1080/01431161.2018.1500729
R.M. Parinussa et al. Global surface soil moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite International Journal of Remote Sensing 35 19 7007 7029 2014IJRS..35.7007P 10.1080/01431161.2014.960622
R. van der Schalie et al. The merging of radiative transfer based surface soil moisture data from SMOS and AMSR-E Remote Sensing of Environment 189 180 193 2017RSEnv.193.180S 10.1016/j.rse.2016.11.026
A. Gruber W.A. Dorigo W. Crow W. Wagner Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals IEEE Transactions on Geoscience and Remote Sensing 55 12 6780 6792 2017ITGRS.55.6780G 10.1109/TGRS.2017.2734070
S. Kim R. Parinussa Y. Liu F. Johnson A. Sharma Merging Alternate Remotely-Sensed Soil Moisture Retrievals Using a Non-Static Model Combination Approach Remote Sensing 8 518 2016RemS..8.518K 10.3390/rs8060518
S. Kim R.M. Parinussa Y. Liu YiY F.M. Johnson A. Sharma Ashish A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation Geophysical Research Letters 42 16 6662 6670 2015GeoRL.42.6662K 10.1002/2015gl064981
Y. Zeng et al. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau Remote Sensing 8 3 268 2016RemS..8.268Z 10.3390/rs8030268
S. Kim Y.Y. Liu F.M. Johnson R.M. Parinussa A. Sharma Ashish A global comparison of alternate AMSR2 soil moisture products: Why do they differ? Remote Sensing of Environment 161 43 62 2015RSEnv.161..43K 10.1016/j.rse.2015.02.002
Z.K. Martin E.A. Barnes E. Maloney Using Simple, Explainable Neural Networks to Predict the Madden-Julian Oscillation Journal of Advances in Modeling Earth Systems 14 5 e2021MS002774 2022JAMES.1402774M 10.1029/2021MS002774
M. Reichstein et al. Deep learning and process understanding for data-driven Earth system science Nature 566 7743 195 204 2019Natur.566.195R 1:CAS:528:DC%2BC1MXnsVCjtrw%3D 10.1038/s41586-019-0912-1 30760912
J.K. Roundy E.F. Wood The Attribution of Land-Atmosphere Interactions on the Seasonal Predictability of Drought Journal of Hydrometeorology 16 2 793 810 2015JHyMe.16.793R 10.1175/jhm-d-14-0121.1
Hu, Y. et al. Reconstructing long-term global satellite-based soil moisture data using deep learning method, Frontiers in Earth Science11, https://doi.org/10.3389/feart.2023.1130853 (2023).
W.T. Crow D.G. Miralles M.H. Cosh A Quasi-Global Evaluation System for Satellite-Based Surface Soil Moisture Retrievals IEEE Transactions on Geoscience and Remote Sensing 48 6 2516 2527 2010ITGRS.48.2516C 10.1109/TGRS.2010.2040481
R.M. Parinussa et al. A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input Climate 4 4 50 10.3390/cli4040050
R. Van der Schalie et al. The Effect of Three Different Data Fusion Approaches on the Quality of Soil Moisture Retrievals from Multiple Passive Microwave Sensors Remote Sensing 10 1 107 2018RemS..10.107V 10.3390/rs10010107
R.M. Parinussa T.R.H. Holmes M.T. Yilmaz W.T. Crow The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations Hydrol. Earth Syst. Sci. 15 10 3135 3151 2011HESS..15.3135P 10.5194/hess-15-3135-2011
R.C. Ruscica et al. Spatio-Temporal Soil Drying in Southeastern South America: The Importance of Effective Sampling Frequency and Observational Errors on Drydown Time Scale Estimates International Journal of Remote Sensing 41 20 7958 92 2020IJRS..41.7958R 10.1080/01431161.2020.1767825
K.A. McColl et al. Global characterization of surface soil moisture drydowns Geophysical Research Letters 44 3682 3690 2017GeoRL.44.3682M 10.1002/2017GL072819
K.E. Taylor Summarizing multiple aspects of model performance in a single diagram Journal of Geophysical Research: Atmospheres 106 D7 7183 7192 10.1029/2000JD900719
Z. Hu X. Chen Q. Zhou D. Chen J. Li DISO: A rethink of Taylor diagram International Journal of Climatology 39 5 2825 2832 2019IJCli.39.2825H 10.1002/joc.5972
Q. Zhou D. Chen Z. Hu X. Chen Decompositions of Taylor diagram and DISO performance criteria International Journal of Climatology 41 12 5726 5732 2021IJCli.41.5726Z 10.1002/joc.7149
Hagan, D. F. T. et al. Seamless High-resolution Soil Moisture from the Synergistic Merging of the Fengyun-3 Satellite Observations Series. Zenodo, https://doi.org/10.5281/zenodo.11500736 (2024).
Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization, CoRR abs/1412.6980 (2014).
R.M. Parinussa et al. Error Estimates for Near-Real-Time Satellite Soil Moisture as Derived From the Land Parameter Retrieval Model IEEE Geoscience and Remote Sensing Letters 8 4 779 783 2011IGRSL..8.779P 10.1109/LGRS.2011.2114872