[en] Whiteleg shrimp (Litopenaeus vannamei) farming has expanded rapidly on sandy coastal soils in Vietnam's South Central region. These permeable soils, combined with high feed input and limited waste treatment, raise concerns about nutrient pollution and environmental degradation. This study assessed nutrient dynamics and environmental impacts in a typical intensive shrimp pond system in Ninh Thuan province over a 66-day culture cycle. Physical, chemical, and biological parameters were monitored, including temperature, salinity, total suspended solids, chemical and biological oxygen demand, total nitrogen, total phosphorus, ammonium, microalgae composition, and bacterial counts. A nutrient mass balance showed that commercial feed contributed 81.9 % of total nitrogen and 87.8 % of total phosphorus inputs. However, nutrient utilization was low: only 13.8 % of nitrogen and 11.4 % of phosphorus were retained in shrimp biomass. The remaining nutrients were lost through multiple pathways: 23.2 % of nitrogen and 1.8 % of phosphorus in effluent, 10.3 % of nitrogen and 2.5 % of phosphorus in pond sludge, and over 50 % of nitrogen and 84 % of phosphorus unaccounted for due to volatilization, denitrification, and sedimentation. 1000 kg of shrimp harvested discharged approximately 263.6 kg of nitrogen, 5.02 kg of phosphorus, and 12,175 liters of nutrient-rich wastewater. Although sludge represented only 5 % of total discharged water, it carried a disproportionately high nutrient load, posing risks to soil, groundwater, and nearby coastal ecosystems. These results highlight critical inefficiencies in nutrient use and significant environmental risks. Effective strategies, including lower feed conversion ratio, improved feed management, and dedicated sludge and wastewater treatment systems, are essential for sustainable shrimp aquaculture on sandy soils.
Disciplines :
Chemistry
Author, co-author :
Cao Thu Thuy ✱; Université de Liège - ULiège > Molecular Systems (MolSys)
Anh Le, Hung; Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh, Viet Nam
Eppe, Gauthier ✱; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
✱ These authors have contributed equally to this work.
Language :
English
Title :
Nutrient dynamics, environmental impacts, and feed efficiency in intensive whiteleg shrimp (Litopenaeus vannamei) farming on sandy soils in Ninh Thuan, Vietnam
ARES - Académie de Recherche et d'Enseignement Supérieur
Funding text :
The authors wish to thank the Acad\u00E9mie de Recherche et d'Enseignement Sup\u00E9rieur (ARES-CCD, Brussels, Belgium) for their \uFB01nancial support in the frame of the RENEWABLE project (REmoval of NutriEnts in Wastewater treatments via microAlgae and BiofueL/biomass production for Environmental sustainability in Vietnam, PRD 2016\u20132022). The authors would also like to thank Prof. Jean-Luc Vasel from the University of Liege, Belgium, for the initial ideas and supervision of this manuscript.
Ahmed, A.A., Jahan, S.S., Hussein, A.H., Hasan, M.M., Raihan, J., Ali, M.S., Islam, M.S., Comparative evaluation of feed forms for Antibiotic-Free sustainable broiler production in Bangladesh. Livest. Res. 2 (2024), 1–9, 10.25163/livestock.2110106.
Ambasankar, K., Dayal, J.S., Vasagam, K.K., Sivaramakrishnan, T., Feeds and feeding strategies toward a sustainable shrimp crop. Shrimp Culture Technology: Farming, Health Management and Quality Assurance, 2025, Springer, 341–354.
Arbour, A.J., Bhatt, P., Simsek, H., Brown, P.B., Huang, J.-Y., Life cycle assessment on environmental feasibility of microalgae-based wastewater treatment for shrimp recirculating aquaculture systems. Bioresour. Technol., 399, 2024, 130578, 10.1016/j.biortech.2024.130578.
Ariadi, H., Musa, M., Mahmudi, M., Hertika, A.M.S., The waste load and carrying capacity on intensive shrimp farming: a mini review. Ecol. Eng. Environ. Technol., 26, 2025, 10.12912/27197050/201144.
Avnimelech, Y., Bruner, M., Ezrony, I., Sela, R., Kochba, M., Stability indexes for municipal solid waste compost. Compost Sci. Util. 4 (1996), 13–20, 10.1080/1065657X.1996.10701825.
Bajracharya, S., Roy, L.A., García, J.C., Davis, D.A., Stocking density and growth of pacific White shrimp litopenaeus vannamei in intensive recirculating (indoor biofloc and outdoor mixotrophic) systems. North Am. J. Aquac. 87 (2025), 28–36, 10.1093/naaqua/vrae004.
Barraza-Guardado, R.H., Arreola-Lizárraga, J.A., Miranda-Baeza, A., Juárez-García, M., Juvera-Hoyos, A., Casillas-Hernández, R., Enhancing ecoefficiency in shrimp farming through interconnected ponds. BioMed. Res. Int., 2015, 2015, 10.1155/2015/873748.
Barua, P., Zamal, H., Chowdhury, Nutrient mass balance for improved traditional coastal shrimp ponds of Bangladesh. Mesop. J. Mar. Sci. 26 (2011), 98–113, 10.58629/mjms.v26i2.174.
Briggs, M., Fvnge-Smith, A nutrient budget of some intensive marine shrimp ponds in Thailand. Aquac. Res. 25 (1994), 789–811, 10.1111/j.1365-2109.1994.tb00744.x.
Burford, M.A., Thompson, P.J., McIntosh, R.P., Bauman, R.H., Pearson, D.C., Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture 219 (2003), 393–411, 10.1016/S0044-8486(02)00575-6.
Burford, M.A., Williams, K.C., The fate of nitrogenous waste from shrimp feeding. Aquaculture 198 (2001), 79–93, 10.1016/S0044-8486(00)00589-5.
Cahyani, D., Khonsa, K., Aziz, A., Biodiversity study of phytoplankton capable of producing omega-3 in the coastal area of subang, Indonesia. Agric. Biotechnol. J. 17 (2025), 197–216, 10.22103/jab.2025.24805.1662.
Casillas-Hernández, R., Magallón-Barajas, F., Portillo-Clarck, G., Páez-Osuna, F., Nutrient mass balances in semi-intensive shrimp ponds from sonora, Mexico using two feeding strategies: trays and mechanical dispersal. Aquaculture 258 (2006), 289–298, 10.1016/j.aquaculture.2006.03.027.
Craeye, B., 2019. Analysis of the aquaculture sector in Ninh Thuan Province, Vietnam, Université de Liège, Liège, Belgique. 〈https://matheo.uliege.be/handle/2268.2/7969〉.
Cremen, M., Martinez-Goss, M., Corre, V., Azanza, R., Phytoplankton bloom in commercial shrimp ponds using Green-water technology. J. Appl. Phycol. 19 (2007), 615–624, 10.1007/s10811-007-9210-7.
Eggink, K.M., Gonçalves, R., Skov, P.V., Shrimp processing waste in aquaculture feed: nutritional value, applications, challenges, and prospects. Rev. Aquac., 17, 2025, e12975, 10.1111/raq.12975.
Emerenciano, M.G., Rombenso, A.N., Vieira, Fd.N., Martins, M.A., Coman, G.J., Truong, H.H., Noble, T.H., Simon, C.J., Intensification of penaeid shrimp culture: an applied review of advances in production systems, nutrition and breeding. Animals, 12, 2022, 236, 10.3390/ani12030236.
Espinoza-Ortega, M., Molina-Poveda, C., Jover-Cerdá, M., Civera-Cerecedo, R., Feeding frequency effect on water quality and growth of litopenaeus vannamei fed extruded and pelleted diets. Aquac. Int. 32 (2024), 413–429, 10.1007/s10499-023-01166-9.
Funge-Smith, S.J., Briggs, M.R., Nutrient budgets in intensive shrimp ponds: implications for sustainability. Aquaculture 164 (1998), 117–133, 10.1016/S0044-8486(98)00181-1.
Goda, A.M.-S., Aboseif, A.M., Taha, M.K., Mohammady, E.Y., Aboushabana, N.M., Nazmi, H.M., Zaher, M.M., Aly, H.A., El-Okaby, M.A., Otazua, N.I., Optimizing nutrient utilization, hydraulic loading rate, and feed conversion ratios through freshwater IMTA-aquaponic and hydroponic systems as an environmentally sustainable aquaculture concept. Sci. Rep., 14, 2024, 14878, 10.1038/s41598-024-63919-7.
Haque, I.M., Akther Lima, R., Rahman Washim, M., Karim, E., Rashid, H.M., Effect of stocking density on growth performance of black tiger shrimp (Penaeus monodon) in organic aquaculture system. Aquac. Fish., 9(2), 2025, 10.24966/AAF-5523/1000105.
Ho, T.Q., Do, H.-L., Eggert, H., Shrimp farming industry in Vietnam: an aquaculture performance indicators approach. Aquac. Econ. Manag., 2025, 1–24, 10.1080/13657305.
Hopkins, J.S., Sandifer, P.A., Browdy, C., Sludge management in intensive pond culture of shrimp: effect of management regime on water quality, sludge characteristics, nitrogen extinction, and shrimp production. Aquac. Eng. 13 (1994), 11–30, 10.1016/0144-8609(94)90022-1.
Huong, H.K., Nam, T.N.H., Sirikwa, L.N., Vu, L.H., Khoa, T.N.D., Ngan, P.T.T., Anh, N.T.N., Integrated multi-trophic aquaculture (IMTA) of seaweed and shrimp, litopenaeus vannamei, with partial reduction in feed rate for improved water quality and nutrient efficiency of the culture system. Aquac. Int., 33, 2025, 259, 10.1007/s10499-025-01944-7.
Islam, M.S., Sarker, M.J., Yamamoto, T., Wahab, M.A., Tanaka, M., Water and sediment quality, partial mass budget and effluent n loading in coastal brackishwater shrimp farms in Bangladesh. Mar. Pollut. Bull. 48 (2004), 471–485, 10.1016/j.marpolbul.2003.08.025.
Jasmin, M., Isa, N.M., Kamarudin, M., Lim, K., Karim, M., Evaluating bacillus flexus as bioremediators for ammonia removal in shrimp culture water and wastewater and characterizing microbial communities in shrimp pond sludge. Braz. J. Microbiol. 55 (2024), 529–536, 10.1007/s42770-024-01246-9.
Jones, A., O'donohue, M., Udy, J., Dennison, W., Assessing ecological impacts of shrimp and sewage effluent: biological indicators with standard water quality analyses. Estuar. Coast. shelf Sci. 52 (2001), 91–109, 10.1006/ecss.2000.0729.
Kalle, M., Expanding shrimp aquaculture on sandy land in Vietnam: challenges and opportunities. 2003, HAKI, Hanoi.
Khanjani, M.H., Zahedi, S., Sharifinia, M., Hajirezaee, S., Singh, S.K., Biological removal of nitrogenous waste compounds in the biofloc aquaculture System–A review. Ann. Anim. Sci. 25 (2025), 3–21, 10.2478/aoas-2024-0060.
Khatun, R., Alam, M.H., Jobayer, S.N., Shahid, R.B., Kabir, M.S., Karim, M., Rahman, S.M., Sarower, M.G., Plankton abundance and primary productivity in an industrial scale in pond raceway system. Khulna Univ. Stud., 2024, 53–62, 10.53808/KUS.SI.2023.ISFMRT.1171-ls.
Li, F., 2019. Effects of Rice-fish Co-cultures on Nitrogen Balance, Sediment and Nutrient Resuspension and Oxygen Consumption in Intensive Aquaculture Ponds, ULiège - Université de Liège. 〈https://hdl.handle.net/2268/237216〉.
Li, L., Lollar, B.S., Li, H., Wortmann, U., Ammonium stability and nitrogen isotope fractionations for NH4+–NH3 (aq)–NH3 (gas) systems at 20–70 0C and ph of 2–13: applications to habitability and nitrogen cycling in low-temperature hydrothermal systems. Geochim. Et. Cosmochim. Acta 84 (2012), 280–296, 10.1016/j.gca.2012.01.040.
Mardyani, Y., Nirmala, K., Bidayani, E., Syarif, A.F., Nugraha, M.A., Setiawan, F., Riskiana, R., Febrianto, A., Overview of the carrying capacity for shrimp farming sustainability: the case of bangka island, Indonesia. Aquac. Int., 2025, 10.21203/rs.3.rs-5779710/v1.
Martínez-Antonio, E.M., Salgado-García, R.L., Peña-Rodríguez, A., Ruvalcaba-Márquez, J.C., Kraffe, E., Racotta, I.S., Magallón-Barajas, F., Implications of dietary phosphorus sources on zootechnical performance and stress response of the pacific White shrimp litopenaeus vannamei. Anim. Feed Sci. Technol., 309, 2024, 115889.
Ministry of Agriculture & Rural Development. QCVN 02-19:2014/BNNPTNT – National Technical Regulation on Brackish Water Shrimp Farms: Conditions for Veterinary Hygiene, Environment Protection and Food Safety. Ministry of Agriculture & Rural Development: Ha Noi, Vietnam, 2014.
Miranda, A., Voltolina, D., Frías-Espericueta, M.G., Izaguirre-Fierro, G., Rivas-Vega, M.E., Budget and discharges of nutrients to the Gulf of California of a semi-intensive shrimp farm (NW Mexico). Hidrobiológica 19:1 (2009), 43–48.
Mustafa, A., Syah, R., Paena, M., Samad, W., Ratnawati, E., Athirah, A., Asaf, R., Syaichudin, M., Taukhid, I., Evaluating the performance of the wastewater treatment plant in intensive whiteleg shrimp (Litopenaeus vannamei) brackishwater pond aquaculture. Environ. Sci. Pollut. Res., 2025, 1–27, 10.1007/s11356-025-36521-1.
Nguyen, T.T.T., Estimating nitrogen discharge in water exchange regimes for Super-Intensive shrimp farming systems using nitrogen dynamics model. J. Tech. Educ. Sci. 20 (2025), 11–19, 10.54644/jte.2025.1577.
Páez-Osuna, F., Guerrero-Galván, S.R., Ruiz-Fernández, A.C.J.M.P.B., Discharge of nutrients from shrimp farming to coastal waters of the Gulf of California. Mar. Pollut. Bull. 38 (1999), 585–592, 10.1016/S0025-326X(98)00116-7.
Páez-Osuna, F., Guerrero-Galván, S., Ruiz-Fernández, A., Espinoza-Angulo, R., Fluxes and mass balances of nutrients in a semi-intensive shrimp farm in north-Western Mexico. Mar. Pollut. Bull. 34 (1997), 290–297, 10.1016/S0025-326X(96)00133-6.
Páez-Osuna, F., Ruiz-Fernández, A., Environmental load of nitrogen and phosphorus from extensive, semiintensive, and intensive shrimp farms in the Gulf of California ecoregion. Bull. Environ. Contam. Toxicol., 74, 2005, 10.1007/s00128-005-0637-8.
Páez-Osuna, F., Valencia-Castañeda, G., Bernot-Simon, D., Arreguin-Rebolledo, U., A critical review of microplastics in the shrimp farming environment: incidence, characteristics, effects, and a first mass balance model. Sci. Total Environ., 955, 2024, 176976, 10.1016/j.scitotenv.2024.176976.
Pazmiño, M.L., Chico-Santamarta, L., Boero, A., Ramirez, A.D., Environmental life cycle assessment and potential improvement measures in the shrimp and prawn aquaculture sector: a literature review. Aquac. Fish., 2024, 10.1016/j.aaf.2024.06.003.
Prasetiyono, E., Nirmala, K., Supriyono, E., Sukenda, S., Hastuti, Y.P.J.JotM.B.AotU.K., 2024. Evaluation of phytoplankton abundance and wastewater quality in intensive vannamei shrimp ponds in the northern coastal area of Bangka Island. 104, e86.
Rajan, R., Lin, J.-G., Ray, B.T., Low-level chemical pretreatment for enhanced sludge solubilization. Res. J. Water Pollut. Control Fed., 1989, 1678–1683 〈https://www.jstor.org/stable/41480390〉.
Said, M.M., Abo-Al-Ela, H.G., El-Barbary, Y.A., Ahmed, O.M., Dighiesh, H.S., Influence of stocking density on the growth, immune and physiological responses, and cultivation environment of White-leg shrimp (Litopenaeus vannamei) in biofloc systems. Sci. Rep., 14, 2024, 11147, 10.1038/s41598-024-61328-4.
Sampath, H., Veerasamy, G., Mukkalil, R., Harnessing bacillus probiotics: an approach for vibrio pathogen control and organic sludge management in shrimp aquaculture. Aquac. Res., 2025, 2025, 2767593, 10.1155/are/2767593.
Shaari, A.L., Surif, M., Abd Latiff, F., Omar, W.M.W., Ahmad, M.N., Monitoring of water quality and microalgae species composition of penaeus monodon ponds in pulau pinang, Malaysia. Trop. life Sci. Res., 22, 2011, 51.
Smith, D., Burford, M., Tabrett, S., Irvin, S., Ward, L., The effect of feeding frequency on water quality and growth of the black tiger shrimp (Penaeus monodon). Aquaculture 207 (2002), 125–136, 10.1016/S0044-8486(01)00757-8.
Soeprapto, H., Ariadi, H., Badrudin, U., The dynamics of chlorella spp. Abundance and its relationship with water quality parameters in intensive shrimp ponds. Biodiversitas J. Biol. Divers., 24, 2023, 10.13057/biodiv/d240547.
Sohi, S.P., Mahieu, N., Arah, J.R., Powlson, D.S., Madari, B., Gaunt, J.L., A procedure for isolating soil organic matter fractions suitable for modeling. Soil Sci. Soc. Am. J. 65 (2001), 1121–1128, 10.2136/sssaj2001.6541121x.
Sri Bala, G., Nagaraju, T., Krishnam Raju, G., Srinivasa Rao, G., Integrating technology and sustainability in inland aquaculture water management. Inland Aquaculture Sustainability and Effective Water Management Strategies, 2025, Springer, 33–48.
Sullivan, B.K., Ritacco, P., Ammonia toxicity to larval copepods in eutrophic marine ecosystems: a comparison of results from bioassays and enclosed experimental ecosystems. Aquat. Toxicol. 7 (1985), 205–217, 10.1016/S0166-445X(85)80006-0.
Tang, C.-C., Hu, Y.-R., He, Z.-W., Li, Z.-H., Tian, Y., Wang, X.C., Promoting symbiotic relationship between microalgae and bacteria in wastewater treatment processes: technic comparison, microbial analysis, and future perspectives. Chem. Eng. J., 2024, 155703, 10.1016/j.cej.2024.155703.
Thakur, D.P., Lin, C.K., Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquac. Eng. 27 (2003), 159–176, 10.1016/S0144-8609(02)00055-9.
Thamrin, N.M., Ilmi, R.M., Hasizah, A., Potential and trends processing of shrimp industry by-Products in food: a review. BIO Web Conf. EDP Sci., 2024, 10.1051/bioconf/20249601008.
Thao, N.T.P., Van Tung, T., Tri, N.L.M., Thang, N.V., Thao, N.T.T., An, N.Q., Evaluating environmental and economic efficiency of a super-intensive vannamei shrimp farm for nutrient flow circulation. IOP Conference Series: Earth and Environmental Science, 2024, IOP Publishing, 10.1088/1755-1315/1383/1/012004.
Thuy, C.T., Eppe, G., The integrating impacts of extreme weather events and shrimp farming practices on coastal water resource quality in ninh thuan province, Vietnam. Sustainability, 16, 2024, 10.3390/su16135701.
Tien Nguyen, N., Tran-Nguyen, P.L., Vo, T.T.B.C., Advances in aeration and wastewater treatment in shrimp farming: emerging trends, current challenges, and future perspectives. Water Infrastruct. Ecosyst. Soc. 73 (2024), 902–916, 10.2166/aqua.2024.328.
Trott, L., Alongi, D., The impact of shrimp pond effluent on water quality and phytoplankton biomass in a tropical mangrove estuary. Mar. Pollut. Bull. 40 (2000), 947–951, 10.1016/S0025-326X(00)00035-7.
Van, N.T.B., Tu, N.P.C., Nhan, D.T., Hoa, N.P., Survey on farming techniques and accumulation of organic carbon, nitrogen, and phosphorus in intensive whiteleg shrimp (Litopenaeus vannamei) ponds in Bac Lieu. Vietnam J. Sci. Technol., Part B, 60(5), 2018 Retrieved from https://b.vjst.vn/index.php/ban_b/article/view/483.
Van Nguyen, H., Maeda, M., Nutrient mass balances in intensive shrimp ponds with a sludge removal regime: a case study in the tam giang lagoon, central Vietnam. J. Agric. Sci. Technol. A B Hue Univ. J. Sci. 5 (2015), 539–548, 10.17265/2161-6256/2015.12.013.
Vietnamnews. (2024). “Vietshrimp 2024: Aiming to elevate the Vietnamese shrimp industry.” 〈https://vietnamnews.vn/economy/1652380/vietshrimp-2024-aiming-to-elevate-the-vietnamese-shrimp-industry.html〉.
Wahab, M.A., Bergheim, A., Braaten, B., Water quality and partial mass budget in extensive shrimp ponds in Bangladesh. Aquaculture 218 (2003), 413–423, 10.1016/S0044-8486(03)00009-7.
Wang, Y., Chen, Z., Wang, J., Chang, Z., Zhang, S., Meng, G., Li, J., Neoclassical economic analysis of water exchange and recirculating aquaculture systems in shrimp farming. Aquac. Rep., 42, 2025, 102800, 10.1016/j.aqrep.2025.102800.
Xia, L., Yang, L., Yan, M., Nitrogen and phosphorus cycling in shrimp ponds and the measures for sustainable management. Environ. Geochem. 26 (2004), 245–251, 10.1023/B:EGAH.0000039587.64830.43.
Yang, Y., Li, Z., Zhou, N., Lin, Y., Sheng, Q., Thiri, M., Wang, Y., Analysis of the causes of N/P imbalance in mangrove water caused by high elevation shrimp ponds. Sci. Rep. 15 (2025), 1–10, 10.1038/s41598-025-02440-x.
Zhang, S., Fang, Z., Zhao, C., Luo, Y., Bao, G., Wang, D., Xu, S., Tang, D., An experimental study on the budget of nitrogen and phosphorus in shrimp-razor clam tandem culture system with different stocking densities and feeding rates. Aquaculture, 2025, 742224, 10.1016/j.aquaculture.2025.742224.