[en] Mussels and tubeworms have evolved similar adhesive systems to cope with the hydrodynamics of intertidal environments. Both secrete adhesive proteins rich in DOPA, a post-translationally modified amino acid playing essential roles in their permanent adhesion. DOPA is produced by the hydroxylation of tyrosine residues by tyrosinase enzymes, which can also oxidize it further into dopaquinone. We have compiled a catalog of the tyrosinases potentially involved in the adhesive systems of Mytilus edulis and Sabellaria alveolata. Some were shown to be expressed in the adhesive glands, with a high gland specificity in mussels but not in tubeworms. The diversity of tyrosinases identified in the two species suggests the coexistence of different enzymatic activities and substrate specificities. However, the exact role of the different enzymes needs to be further investigated. Phylogenetic analyses support the hypothesis of independent expansions and parallel evolution of tyrosinases involved in DOPA-based adhesion in both lineages.
Duthoo, Emilie; Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
Delroisse, Jérôme ; Université de Liège - ULiège > Département des sciences fonctionnelles (DSF) > Biochimie et biologie moléculaire ; Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
Maldonado, Barbara; Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium ; Molecular Biomimetic and Protein Engineering Laboratory, GIGA, University of Liège, 11 avenue de l'hôpital, 4000 Liège, Belgium
Sinot, Fabien; Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
Mascolo, Cyril; Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
Wattiez, Ruddy; Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
Lopez, Pascal Jean; UMR Biologie des Organismes et des Ecosystèmes Aquatiques, MNHN/CNRS-7208 Sorbonne Université/IRD-207/UCN /UA, 43 rue Cuvier, 75005 Paris, France
Van de Weerdt, Cécile; Molecular Biomimetic and Protein Engineering Laboratory, GIGA, University of Liège, 11 avenue de l'hôpital, 4000 Liège, Belgium
Harrington, Matthew J; Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
Flammang, Patrick ; Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
Language :
English
Title :
Diversity and evolution of tyrosinase enzymes involved in the adhesive systems of mussels and tubeworms.
FRIA - Fund for Research Training in Industry and Agriculture ANR - French National Research Agency F.R.S.-FNRS - Fund for Scientific Research
Funding text :
We thank Dominique Baiwir from the GIGA Proteomics Facility (ULi\u00E8ge, Belgium) for the mass spectrometry-based analyses conducted on mussel feet, as well as Antoine Flandroit, Nathan Puozzo, and Paolo Rosa for their help with microphotography and figures. We also acknowledge the support of the Research Institute for Biosciences of UMONS. This work was supported by the Fund for Scientific Research of Belgium (F.R.S.-FNRS) through (1) a FRIA doctoral fellowship to E.D., (2) a CR postdoctoral fellowship to B.M., and (3) a research project (PDR T.0088.20). P.J.L. would also like to thank the Labex DRIIHM, the French program \u201CInvestissements d'Avenir\u201D (ANR-11-LABX-0010), which is managed by the French National Research Agency (ANR). J.D. is financially supported by a F.R.S.-FNRS research project (PDR T.0169.20) granted to UMONS and ULi\u00E8ge. P.F. is Research Director of the F.R.S.-FNRS.We thank Dominique Baiwir from the GIGA Proteomics Facility (ULi\u00E8ge, Belgium) for the mass spectrometry-based analyses conducted on mussel feet, as well as Antoine Flandroit, Nathan Puozzo, and Paolo Rosa for their help with microphotography and figures. This work was supported by the fund for Scientific Research of Belgium (F.R.S.-FNRS) through an FRIA doctoral grant to E.D., a CR postdoctoral fellowship to B.M., and a \u201C Projet de Recherche \u201D ( T.0088.20 ). P.J.L. would also like to thank the Labex DRIIHM, the French program \u201CInvestissements d\u2019Avenir\u201D (ANR-11-LABX-0010), which is managed by the ANR. P.F. is Research Director of the F.R.S.-FNRS.
Delroisse, J., Kang, V., Gouveneaux, A., Santos, R., Flammang, P., Convergent evolution of attachment mechanisms in aquatic animals. Bels, V.L., Russell, A.P., (eds.) Convergent Evolution. Fascinating Life Sciences, 2023, Springer, 10.1007/978-3-031-11441-0_16.
Almeida, M., Reis, R.L., Silva, T.H., Marine invertebrates are a source of bioadhesives with biomimetic interest. Mater. Sci. Eng. C Mater. Biol. Appl., 108, 2020, 110467, 10.1016/j.msec.2019.110467.
Li, X., Li, S., Huang, X., Chen, Y., Cheng, J., Zhan, A., Protein-mediated bioadhesion in marine organisms : A review. Mar. Environ. Res., 170, 2021, 105409, 10.1016/j.marenvres.2021.105409.
Hofman, A.H., van Hees, I.A., Yang, J., Kamperman, M., Bioinspired underwater adhesives by using the supramolecular toolbox. Adv. Mater., 30, 2018, 1704640, 10.1002/adma.201704640.
Priemel, T., Degtyar, E., Dean, M.N., Harrington, M.J., Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication. Nat. Commun., 8, 2017, 14539, 10.1038/ncomms14539.
Vovelle, J., Le tube de Sabellaria alveolata (L.) : Annélide polychète Hermellidae et son ciment. Etude écologique, expérimentale, histologique et histochimique. Arch. Zool. Exp. Gen. 106 (1965), 1–187.
Stewart, R.J., Weaver, J.C., Morse, D.E., Waite, J.H., The tube cement of Phragmatopoma californica: a solid foam. J. Exp. Biol. 207 (2004), 4727–4734, 10.1242/jeb.01330.
Becker, P.T., Lambert, A., Lejeune, A., Lanterbecq, D., Flammang, P., Identification, characterization, and expression levels of putative adhesive proteins from the tube-dwelling polychaete Sabellaria alveolata. Biol. Bull. 223 (2012), 217–225, 10.1086/BBLv223n2p217.
Wang, C.S., Stewart, R.J., Localization of the bioadhesive precursors of the sandcastle worm, Phragmatopoma californica (Fewkes). J. Exp. Biol. 215 (2012), 351–361, 10.1242/jeb.065011.
Stewart, R.J., Ransom, T.C., Hlady, V., Natural underwater adhesives. J. Polym. Sci. B Polym. Phys. 49 (2011), 757–771, 10.1002/polb.22256.
Davey, P.A., Power, A.M., Santos, R., Bertemes, P., Ladurner, P., Palmowski, P., Clarke, J., Flammang, P., Lengerer, B., Hennebert, E., et al. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol. Rev. 96 (2021), 1051–1075, 10.1111/brv.12691.
Sagert, J., Sun, C., waite, J.H., Chemical subtleties of mussel and polychaete holdfasts. Biological adhesives, 2006, Springer Berlin Heidelberg, 125–143.
Priemel, T., Palia, R., Babych, M., Thibodeaux, C.J., Bourgault, S., Harrington, M.J., Compartmentalized processing of catechols during mussel byssus fabrication determines the destiny of DOPA. Proc. Natl. Acad. Sci. USA 117 (2020), 7613–7621, 10.1073/pnas.1919712117.
Laumer, C.E., Bekkouche, N., Kerbl, A., Goetz, F., Neves, R.C., Sørensen, M.V., Kristensen, R.M., Hejnol, A., Dunn, C.W., Giribet, G., Worsaae, K., Spiralian phylogeny informs the evolution of microscopic lineages. Curr. Biol. 25 (2015), 2000–2006, 10.1016/j.cub.2015.06.068.
Olivares, C., Solano, F., New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res. 22 (2009), 750–760, 10.1111/j.1755-148X.2009.00636.x.
Aguilera, F., McDougall, C., Degnan, B.M., Origin, evolution and classification of type-3 copper proteins: Lineage-specific gene expansions and losses across the Metazoa. BMC Evol. Biol., 13, 2013, 96, 10.1186/1471-2148-13-96.
Ullrich, R., Hofrichter, M., Enzymatic hydroxylation of aromatic compounds. Cellular and Molecular Life Sciences. Cell. Mol. Life Sci. 64 (2007), 271–293, 10.1007/s00018-007-6362-1.
Ramsden, C.A., Riley, P.A., Tyrosinase : The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg. Med. Chem. 22 (2014), 2388–2395, 10.1016/j.bmc.2014.02.048.
Del Marmol, V., Beermann, F., Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381 (1996), 165–168, 10.1016/0014-5793(96)00109-3.
Huan, P., Liu, G., Wang, H., Liu, B., Identification of a tyrosinase gene potentially involved in early larval shell biogenesis of the Pacific oyster Crassostrea gigas. Dev. Genes Evol. 223 (2013), 389–394, 10.1007/s00427-013-0450-z.
Sugumaran, M., Soderhall, K., Iwanaga, S., Vastha, G., Role of insect cuticle in immunity. New Directions in Invertebrate Immunology, 1996, SOS Publications, 355–374.
Theopold, U., Schmidt, O., Söderhäll, K., Dushay, M.S., Coagulation in arthropods : Defence, wound closure and healing. Trends Immunol. 25 (2004), 289–294, 10.1016/j.it.2004.03.004.
González-Santoyo, I., Córdoba-Aguilar, A., Phenoloxidase : A key component of the insect immune system: Biochemical and evolutionary ecology of PO. Entomol. Exp. Appl. 142 (2012), 1–16, 10.1111/j.1570-7458.2011.01187.x.
Dennell, R., The hardening of insect cuticles. Biol. Rev. 33 (1958), 178–196, 10.1111/j.1469-185X.1958.tb01306.x.
Esposito, R., D'Aniello, S., Squarzoni, P., Pezzotti, M.R., Ristoratore, F., Spagnuolo, A., New insights into the evolution of metazoan tyrosinase gene family. PLoS One, 7, 2012, e35731, 10.1371/journal.pone.0035731.
Waite, J.H., Catechol oxidase in the byssus of the common mussel, Mytilus Edulis L. J. Mar. Biol. Assoc. U. K. 65 (1985), 359–371, 10.1017/S0025315400050487.
Hellio, C., Bourgougnon, N., Gal, Y.L., Phenoloxidase (E.C. 1.14.18.1) from the byssus gland of Mytilus edulis: Purification, partial characterization and application for screening products with potential antifouling activities. Biofouling 16 (2000), 235–244, 10.1080/08927010009378448.
Guerette, P.A., Hoon, S., Seow, Y., Raida, M., Masic, A., Wong, F.T., Ho, V.H.B., Kong, K.W., Demirel, M.C., Pena-Francesch, A., et al. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science. Nat. Biotechnol. 31 (2013), 908–915, 10.1038/nbt.2671.
Qin, C.L., Pan, Q.D., Qi, Q., Fan, M.H., Sun, J.J., Li, N.N., Liao, Z., In-depth proteomic analysis of the byssus from marine mussel Mytilus coruscus. Journal of Proteomics. J. Proteomics 144 (2016), 87–98, 10.1016/j.jprot.2016.06.014.
Wang, C.S., Stewart, R.J., Multipart copolyelectrolyte adhesive of the sandcastle worm, Phragmatopoma californica (Fewkes) : Catechol oxidase catalyzed curing through peptidyl-DOPA. Biomacromolecules 14 (2013), 1607–1617, 10.1021/bm400251k.
Buffet, J.-P., Corre, E., Duvernois-Berthet, E., Fournier, J., Lopez, P.J., Adhesive gland transcriptomics uncovers a diversity of genes involved in glue formation in marine tube-building polychaetes. Acta Biomater. 72 (2018), 316–328, 10.1016/j.actbio.2018.03.037.
Endrizzi, B.J., Stewart, R.J., Glueomics : An expression survey of the adhesive gland of the sandcastle worm. J. Adhes. 85 (2009), 546–559, 10.1080/00218460902996457.
Flammang, P., Lambert, A., Bailly, P., Hennebert, E., Polyphosphoprotein-containing marine adhesives. J. Adhes. 85 (2009), 447–464, 10.1080/00218460902996358.
Kamino, K., Molecular design of barnacle cement in comparison with those of mussel and tubeworm. J. Adhes. 86 (2010), 96–110, 10.1080/00218460903418139.
Frickey, T., Lupas, A., CLANS: A Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20 (2004), 3702–3704, 10.1093/bioinformatics/bth444.
Pearson, W.R., An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinformatics Chapter 3 (2013), 3.1.1–3.1.8, 10.1002/0471250953.bi0301s42.
Van Holde, K.E., Miller, K.I., Hemocyanins. Adv. Protein Chem. 47 (1995), 1–81, 10.1016/S0065-3233(08)60545-8.
Drexel, R., Siegmund, S., Schneider, H.-J., Linzen, B., Gielens, C., Préaux, G., Lontie, R., Kellermann, J., Lottspeich, F., Complete amino-acid sequence of a functional unit from a molluscan hemocyanin (Helix pomatia). Biol. Chem. Hoppe Seyler 368 (1987), 617–635, 10.1515/bchm3.1987.368.1.617.
Burmester, T., Scheller, K., Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor. J. Mol. Evol. 42 (1996), 713–728, 10.1007/BF02338804.
Aguilera, F., McDougall, C., Degnan, B.M., Evolution of the tyrosinase gene family in bivalve molluscs: Independent expansion of the mantle gene repertoire. Acta Biomater. 10 (2014), 3855–3865, 10.1016/j.actbio.2014.03.031.
Waite, J.H., The phylogeny and chemical diversity of quinone-tanned glues and varnishes. Comp. Biochem. Physiol. B 97 (1990), 19–29, 10.1016/0305-0491(90)90172-P.
DeMartini, D.G., Errico, J.M., Sjoestroem, S., Fenster, A., Waite, J.H., A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands. J. R. Soc. Interface, 14, 2017, 20170151, 10.1098/rsif.2017.0151.
Papov, V.V., Diamond, T.V., Biemann, K., Waite, J.H., Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. J. Biol. Chem. 270 (1995), 20183–20192, 10.1074/jbc.270.34.20183.
Waite, J.H., Qin, X., Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40 (2001), 2887–2893, 10.1021/bi002718x.
Pretzler, M., Rompel, A., What causes the different functionality in type-III-copper enzymes? A state of the art perspective. Inorg. Chim. Acta. 481 (2018), 25–31, 10.1016/j.ica.2017.04.041.
Jaenicke, E., Decker, H., Tyrosinases from crustaceans form hexamers. Biochem. J. 371 (2003), 515–523, 10.1042/bj20021058.
Schmitt, C.N.Z., Winter, A., Bertinetti, L., Masic, A., Strauch, P., Harrington, M.J., Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation. J. R. Soc. Interface, 12, 2015, 20150466, 10.1098/rsif.2015.0466.
Yu, J., Wei, W., Danner, E., Ashley, R.K., Israelachvili, J.N., Waite, J.H., Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat. Chem. Biol. 7 (2011), 588–590, 10.1038/nchembio.630.
Wang, J., Suhre, M.H., Scheibel, T., A mussel polyphenol oxidase-like protein shows thiol-mediated antioxidant activity. Eur. Polym. J. 113 (2019), 305–312, 10.1016/j.eurpolymj.2019.01.069.
Zhao, H., Sun, C., Stewart, R.J., Waite, J.H., Cement proteins of the tube-building polychaete Phragmatopoma californica. J. Biol. Chem. 280 (2005), 42938–42944, 10.1074/jbc.M508457200.
Lutz, T.M., Kimna, C., Casini, A., Lieleg, O., Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater. Today. Bio, 13, 2022, 100203, 10.1016/j.mtbio.2022.100203.
Wang, J., Scheibel, T., Recombinant production of mussel byssus inspired proteins. Biotechnol. J., 13, 2018, 1800146, 10.1002/biot.201800146.
Harrington, M.J., Jehle, F., Priemel, T., Mussel byssus structure-function and fabrication as inspiration for biotechnological production of advanced materials. Biotechnol. J., 13, 2018, 1800133, 10.1002/biot.201800133.
Kitamura, M., Kawakami, K., Nakamura, N., Tsumoto, K., Uchiyama, H., Ueda, Y., Kumagai, I., Nakaya, T., Expression of a model peptide of a marine mussel adhesive protein in Escherichia coli and characterization of its structural and functional properties. J. Polym. Sci. A. Polym. Chem. 37 (1999), 729–736, 10.1002/(SICI)1099-0518(19990315)37:6<729::AID-POLA8>3.0.CO;2-3.
Hwang, D.S., Yoo, H.J., Jun, J.H., Moon, W.K., Cha, H.J., Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli. Appl. Environ. Microbiol. 70 (2004), 3352–3359, 10.1128/AEM.70.6.3352-3359.2004.
Choi, Y.S., Yang, Y.J., Yang, B., Cha, H.J., In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli. Microb. Cell Fact., 11, 2012, 139, 10.1186/1475-2859-11-139.
Yao, L., Wang, X., Xue, R., Xu, H., Wang, R., Zhang, L., Li, S., Comparative analysis of mussel foot protein 3B co-expressed with tyrosinases provides a potential adhesive biomaterial. Int. J. Biol. Macromol. 195 (2022), 229–236, 10.1016/j.ijbiomac.2021.11.208.
Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29 (2011), 644–652, 10.1038/nbt.1883.
Waterhouse, R.M., Seppey, M., Simão, F.A., Manni, M., Ioannidis, P., Klioutchnikov, G., Kriventseva, E.V., Zdobnov, E.M., BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35 (2018), 543–548, 10.1093/molbev/msx319.
Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B.L., Salazar, G.A., Bileschi, M.L., Bork, P., Bridge, A., Colwell, L., et al. InterPro in 2022. Nucleic Acids Res. 51 (2023), D418–D427, 10.1093/nar/gkac993.
Teufel, F., Almagro Armenteros, J.J., Johansen, A.R., Gíslason, M.H., Pihl, S.I., Tsirigos, K.D., Winther, O., Brunak, S., Von Heijne, G., Nielsen, H., SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40 (2022), 1023–1025, 10.1038/s41587-021-01156-3.
Katoh, K., Rozewicki, J., Yamada, K.D., MAFFT online service : Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20 (2019), 1160–1166, 10.1093/bib/bbx108.
Capella-Gutierrez, S., Silla-Martinez, J.M., Gabaldon, T., trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 (2009), 1972–1973, 10.1093/bioinformatics/btp348.
Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q., Vinh, L.S., UFBoot2 : Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35 (2018), 518–522, 10.1093/molbev/msx281.
Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., Minh, B.Q., W-IQ-TREE : A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44 (2016), W232–W235, 10.1093/nar/gkw256.
Letunic, I., Bork, P., Interactive Tree Of Life (iTOL) v5 : An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 (2021), W293–W296, 10.1093/nar/gkab301.
Tamarin, A., Lewis, P., Askey, J., The structure and formation of the byssus attachment plaque in Mytilus. J. Morphol. 149 (1976), 199–221, 10.1002/jmor.1051490205.
Rzepecki, L.M., Hansen, K.M., Waite, J.H., Characterization of a cystine-rich polyphenolic protein family from the blue mussel Mytilus edulis L. Biol. Bull. 183 (1992), 123–137, 10.2307/1542413.
Jensen, R.A., Morse, D.E., The bioadhesive of Phragmatopoma californica tubes: a silk-like cement containing L-DOPA. J. Comp. Physiol. B 158 (1988), 317–324, 10.1007/BF00695330.
Hennebert, E., Leroy, B., Wattiez, R., Ladurner, P., An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion. J. Proteomics 128 (2015), 83–91, 10.1016/j.jprot.2015.07.002.
Lengerer, B., Wunderer, J., Pjeta, R., Carta, G., Kao, D., Aboobaker, A., Beisel, C., Berezikov, E., Salvenmoser, W., Ladurner, P., Organ specific gene expression in the regenerating tail of Macrostomum lignano. Dev. Biol. 433 (2018), 448–460, 10.1016/j.ydbio.2017.07.021.
Pfister, D., De Mulder, K., Philipp, I., Kuales, G., Hrouda, M., Eichberger, P., Borgonie, G., Hartenstein, V., Ladurner, P., The exceptional stem cell system of Macrostomum lignano : Screening for gene expression and studying cell proliferation by hydroxyurea treatment and irradiation. Front. Zool., 4, 2007, 9, 10.1186/1742-9994-4-9.