Personalized stimulation therapies for disorders of consciousness: a computational approach to inducing healthy-like brain activity based on neural field theory.
Polyakov, Daniel; Robinson, P A; MULLER, Elisaet al.
2025 • In Journal of Neural Engineering, 22 (3), p. 036033
EEG; brain stimulation; disorders of consciousness; neural field theory; Humans; Electroencephalography/methods; Computer Simulation; Consciousness Disorders/therapy; Consciousness Disorders/physiopathology; Precision Medicine/methods; Transcranial Magnetic Stimulation/methods; Brain/physiology; Brain/physiopathology; Deep Brain Stimulation/methods; Models, Neurological; Activity-based; Brain activity; Computational approach; Condition; Disorder of consciousness; Neural activity patterns; Neural field theories; Power-spectra; Stimulus signals; Brain; Consciousness Disorders; Deep Brain Stimulation; Electroencephalography; Precision Medicine; Transcranial Magnetic Stimulation; Biomedical Engineering; Cellular and Molecular Neuroscience
Abstract :
[en] Objective.Disorders of consciousness (DoC) remain a significant challenge in neurology, with traditional brain stimulation therapies showing limited and inconsistent efficacy across patients. This study presents a novel computational approach grounded in neural field theory for constructing personalized stimulus signals designed to induce healthy-like neural activity patterns in individuals with DoC.Approach.We employ a simplified brain model fitted to the electroencephalogram (EEG) power spectrum of a DoC patient, simulating the individual's neural dynamics. Using model equations and fitted parameters, we mathematically derive stimuli time series that cause the model to generate power spectra typical of healthy individuals. These stimuli are tailored for brain regions typically targeted by neuromodulation therapies, such as deep brain stimulation and repetitive transcranial magnetic stimulation.Main results.In silico simulations demonstrate that our method successfully induces healthy-like EEG power spectra in models fitted to DoC patients. Furthermore, when the model parameters were near a stability boundary, stimulation led to a bifurcation and lasting changes in the model's activity beyond the stimulation period.Significance.By inducing healthy-like neural activity, this approach may effectively activate plasticity mechanisms during long-term treatment, potentially leading to sustained improvements in a patient's condition. While further clinical adjustments and validation are needed, this method holds promise for improving therapeutic outcomes in DoC. Moreover, it offers potential extensions to other neurological conditions that could benefit from personalized brain stimulation therapies.
Disciplines :
Neurosciences & behavior
Author, co-author :
Polyakov, Daniel ; Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
Robinson, P A ; School of Physics, The University of Sydney, Sydney, NSW, Australia
MULLER, Elisa ; Centre Hospitalier Universitaire de Liège - CHU > > Service de parodontologie, chirurgie bucco-dentaire et chirurgie implantaire ; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
Nunez Novo, Pablo ; Université de Liège - ULiège > Département des sciences cliniques ; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
Annen, Jitka ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group ; Department of Data Analysis, University of Ghent, Ghent, Belgium
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Neurosciences - Coma Science Group
Shriki, Oren ; Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
Language :
English
Title :
Personalized stimulation therapies for disorders of consciousness: a computational approach to inducing healthy-like brain activity based on neural field theory.
CHIST-ERA FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen ULiège - University of Liège F.R.S.-FNRS - Fonds de la Recherche Scientifique CHU Liège - Central University Hospital of Liege
Funding text :
Funding for this work was provided by a grant from the EU CHIST-ERA program. Additionally, this work was supported by the University and University Hospital of Li\u00E8ge, the Belgian National Funds for Scientific Research (FRS-FNRS), the FNRS PDR Project (T.0134.21), the ERA-Net FLAG-ERA JTC2021 Project ModelDXConsciousness (the Human Brain Project Partnering Project), the DoC-Box project (HORIZON-MSCA-2022-SE-01-01-101131344), and the FNRS MIS Project (F.4521.23), JA is postdoctoral fellow funded (1265522N) by the Fund for Scientific Research-Flanders (FWO), OG is a research associate at FRS-FNRS.We would like to thank Avigail Makbili from the Computational Psychiatry Lab at Ben-Gurion University, who took part in the processing and cleaning of the experimental EEG data. Additionally, we want to thank Prof. Yaniv Zigel from the Department of Biomedical Engineering at Ben-Gurion University, who helped develop the mathematics of this method.
Bernat J L 2006 Chronic disorders of consciousness Lancet Neurol. 367 1181 92 1181-92 10.1016/S0140-6736(06)68508-5
Gosseries O Bruno M-A Chatelle C Vanhaudenhuyse A Schnakers C Soddu A Laureys S 2011 Disorders of consciousness: what’s in a name? NeuroRehabilitation 28 3 14 3-14 10.3233/NRE-2011-0625
Giacino J T Kalmar K Whyte J 2004 The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility Arch. Phys. Med. Rehabil. 85 2020 9 2020-9 10.1016/j.apmr.2004.02.033
Annen J et al 2019 Diagnostic accuracy of the CRS-R index in patients with disorders of consciousness Brain Inj. 33 1409 12 1409-12 10.1080/02699052.2019.1644376
Thibaut A Schiff N Giacino J Laureys S Gosseries O 2019 Therapeutic interventions in patients with prolonged disorders of consciousness Lancet Neurol. 18 600 14 600-14 10.1016/S1474-4422(19)30031-6
Shou Z Li Z Wang X Chen M Bai Y Di H 2021 Non-invasive brain intervention techniques used in patients with disorders of consciousness Int. J. Neurosci. 131 390 404 390-404 10.1080/00207454.2020.1744598
Edlow B L et al 2021 Therapies to restore consciousness in patients with severe brain injuries: a gap analysis and future directions Neurocritical Care 35 68 85 68-85 10.1007/s12028-021-01227-y
Mawase F Uehara S Bastian A J Celnik P 2017 Motor learning enhances use-dependent plasticity J. Neurosci. 37 2673 85 2673-85 10.1523/JNEUROSCI.3303-16.2017
Bourdillon P Hermann B Sitt J D Naccache L 2019 Electromagnetic brain stimulation in patients with disorders of consciousness Front. Neurosci. 13 1 14 1-14 10.3389/fnins.2019.00223
Kumar J et al 2023 Innovative approaches and therapies to enhance neuroplasticity and promote recovery in patients with neurological disorders: a narrative review Cureus 15 e41914 10.7759/cureus.41914
van der Lande G J M et al 2024 Brain state identification and neuromodulation to promote recovery of consciousness Brain Commun. 6 1 50 1-50 10.1093/braincomms/fcae362
Yamamoto T Katayama Y Kobayashi K Oshima H Fukaya C Tsubokawa T 2010 Deep brain stimulation for the treatment of vegetative state Eur. J. Neurosci. 32 1145 51 1145-51 10.1111/j.1460-9568.2010.07412.x
Magrassi L Maggioni G Pistarini C Di Perri C Bastianello S Zippo A G Iotti G A Biella G E M Imberti R 2016 Results of a prospective study (CATS) on the effects of thalamic stimulation in minimally conscious and vegetative state patients J. Neurosurg. 125 972 81 972-81 10.3171/2015.7.JNS15700
Chudy D Deletis V Almahariq F Marčinković P Škrlin J Physioth B 2018 Deep brain stimulation for the early treatment of the minimally conscious state and vegetative state: experience in 14 patients J. Neurosurg. 128 1189 98 1189-98 10.3171/2016.10.JNS161071
Cao T et al 2023 Clinical neuromodulatory effects of deep brain stimulation in disorder of consciousness: a literature review CNS Neurosci. Ther. 30 1 17 1-17 10.1111/cns.14559
Wu Y et al 2023 Spinal cord stimulation and deep brain stimulation for disorders of consciousness: a systematic review and individual patient data analysis of 608 cases Neurosurg. Rev. 46 1 13 1-13 10.1007/s10143-023-02105-1
Yuan H Silberstein S D 2016 Vagus nerve and vagus nerve stimulation, a comprehensive review: part II Headache 56 259 66 259-66 10.1111/head.12650
Xiang X J et al 2020 The clinical effect of vagus nerve stimulation in the treatment of patients with a minimally conscious state J. Neurorestoratol. 8 160 71 160-71 10.26599/JNR.2020.9040016
Rajan T S Ghilardi M F M Wang H-Y Mazzon E Bramanti P Restivo D Quartarone A 2017 Mechanism of action for rTMS: a working hypothesis based on animal studies Front. Physiol. 8 1 3 1-3 10.3389/fphys.2017.00457
Yang Z et al 2023 Behavioral effects of repetitive transcranial magnetic stimulation in disorders of consciousness: a systematic review and meta-analysis Brain Sci. 13 1362 10.3390/brainsci13101362
Naro A Bramanti P Leo A Russo M Calabrò R S 2016 Transcranial alternating current stimulation in patients with chronic disorder of consciousness: a possible way to cut the diagnostic gordian knot? Brain Topogr. 29 623 44 623-44 10.1007/s10548-016-0489-z
Xie Y Zhang T Chen A C N 2015 Repetitive transcranial magnetic stimulation for the recovery of stroke patients with disturbance of consciousness Brain Stimul. 8 674 5 674-5 10.1016/j.brs.2015.01.406
Sanz Leon P Knock S A Woodman M M Domide L Mersmann J McIntosh A R Jirsa V 2013 The virtual brain: a simulator of primate brain network dynamics Front. Neuroinform. 7 10 10.3389/fninf.2013.00010
Wang H E et al 2024 Virtual brain twins: from basic neuroscience to clinical use Natl Sci. Rev. 11 nwae079 10.1093/nsr/nwae079
Li G et al 2021 Multiscale neural modeling of resting-state fMRI reveals executive-limbic malfunction as a core mechanism in major depressive disorder NeuroImage: Clin. 31 102758 10.1016/j.nicl.2021.102758
Robinson P A Rennie C J Rowe D L O’Connor S C Gordon E 2005 Multiscale brain modelling Phil. Trans. R. Soc. B 360 1043 50 1043-50 10.1098/rstb.2005.1638
Breakspear M Roberts J A Terry J R Rodrigues S Mahant N Robinson P A 2006 A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis Cereb. Cortex 16 1296 313 1296-313 10.1093/cercor/bhj072
Abeysuriya R G Rennie C J Robinson P A 2015 Physiologically based arousal state estimation and dynamics J. Neurosci. Methods 253 55 69 55-69 10.1016/j.jneumeth.2015.06.002
Assadzadeh S Annen J Sanz L Barra A Bonin E Thibaut A Boly M Laureys S Gosseries O Robinson P A 2023 Method for quantifying arousal and consciousness in healthy states and severe brain injury via EEG-based measures of corticothalamic physiology J. Neurosci. Methods 398 109958 10.1016/j.jneumeth.2023.109958
Polyakov D Robinson P A Makbili A Gosseries O Shriki O 2024 Neural field theory as a framework for modeling and understanding consciousness states in the brain bioRxiv Preprint https://doi.org/10.1101/2024.10.27.619702 (posted online 28 October 2024, accessed 10 March 2025)
Sanz-Leon P Robinson P A Knock S A Drysdale P M Abeysuriya R G Fung F K Rennie C J Zhao X 2018 NFTsim: theory and simulation of multiscale neural field dynamics PLoS Comput. Biol. 14 1 37 1-37 10.1371/journal.pcbi.1006387
Wilson M T Fung P K Robinson P A Shemmell J Reynolds J N J 2016 Calcium dependent plasticity applied to repetitive transcranial magnetic stimulation with a neural field model J. Comput. Neurosci. 41 107 25 107-25 10.1007/s10827-016-0607-7
Wilson M T Fulcher B D Fung P K Robinson P A Fornito A Rogasch N C 2018 Biophysical modeling of neural plasticity induced by transcranial magnetic stimulation Clin. Neurophysiol. 129 1230 41 1230-41 10.1016/j.clinph.2018.03.018
Müller E J Robinson P A 2018 Quantitative theory of deep brain stimulation of the subthalamic nucleus for the suppression of pathological rhythms in Parkinson’s disease PLoS Comput. Biol. 14 1 20 1-20 10.1371/journal.pcbi.1006217
Müller E J Robinson P A 2018 Suppression of Parkinsonian beta oscillations by deep brain stimulation: determination of effective protocols Front. Comput. Neurosci. 12 1 16 1-16 10.3389/fncom.2018.00098
Müller E J Munn B R Redinbaugh M J Lizier J Breakspear M Saalmann Y B Shine J M 2023 The non-specific matrix thalamus facilitates the cortical information processing modes relevant for conscious awareness Cell Rep. 42 112844 10.1016/j.celrep.2023.112844
Xie Y Zhang T 2012 Repetitive transcranial magnetic stimulation improves consciousness disturbance in stroke patients: a quantitative electroencephalography spectral power analysis Neural Regen. Res. 7 2465 72 2465-72 10.3969/j..2012.31.008
Robinson P A Rennie C J Wright J J Bahramali H Gordon E Rowe D L 2001 Prediction of electroencephalographic spectra from neurophysiology Phys. Rev. E 63 0219031 02190318 0219031-02190318 10.1103/PhysRevE.63.021903
Robinson P A Rennie C J Rowe D L O’Connor C 2004 Estimation of multiscale neurophysiologic parameters by electroencephalographic means Hum. Brain Mapp. 23 53 72 53-72 10.1002/hbm.20032
O’Connor S C Robinson P A 2004 Spatially uniform and nonuniform analyses of electroencephalographic dynamics, with application to the topography of the alpha rhythm Phys. Rev. E 70 19 10.1103/PhysRevE.70.011911
Rennie C J Robinson P A Wright J J 2002 Unified neurophysical model of EEG spectra and evoked potentials Biol. Cybern. 86 457 71 457-71 10.1007/s00422-002-0310-9
Rowe D L Robinson P A Rennie C J 2004 Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics J. Theor. Biol. 231 413 33 413-33 10.1016/j.jtbi.2004.07.004
O’Connor S C Robinson P A 2005 Analysis of the electroencephalographic activity associated with thalamic tumors J. Theor. Biol. 233 271 86 271-86 10.1016/j.jtbi.2004.10.009
Fulcher B D Phillips A J K Robinson P A 2008 Modeling the impact of impulsive stimuli on sleep-wake dynamics Phys. Rev. E 78 1 14 1-14 10.1103/PhysRevE.78.051920
Kerr C C Rennie C J Robinson P A 2008 Physiology-based modeling of cortical auditory evoked potentials Biol. Cybern. 98 171 84 171-84 10.1007/s00422-007-0201-1
Nevado-Holgado A J Marten F Richardson M P Terry J R 2012 Characterising the dynamics of EEG waveforms as the path through parameter space of a neural mass model: application to epilepsy seizure evolution NeuroImage 59 2374 92 2374-92 10.1016/j.neuroimage.2011.08.111
Robinson P A Sarkar S Pandejee G M Henderson J A 2014 Determination of effective brain connectivity from functional connectivity with application to resting state connectivities Phys. Rev. E 90 1 6 1-6 10.1103/PhysRevE.90.012707
Penfield W Jasper H 1954 Epilepsy and the Functional Anatomy of the Human Brain Brown
Nunez P L 1995 Neocortical Dynamics and Human EEG Rhythms Oxford University Press
Braitenberg V Schüz A 1998 Cortex: Statistics and Geometry of Neuronal Connectivity 2nd edn Springer
Robinson P A Rennie C J Wright J J 1997 Propagation and stability of waves of electrical activity in the cerebral cortex Phys. Rev. E 56 826 40 826-40 10.1103/PhysRevE.56.826
Annen J et al 2023 Cerebral electrometabolic coupling in disordered and normal states of consciousness Cell Rep. 42 112854 10.1016/j.celrep.2023.112854
Polyakov D 2024 Personalized stimulation therapies for disorders of consciousness - Code and Data (PLoS) Zenodo 10.5281/zenodo.11212096
Pion-Tonachini L Kreutz-Delgado K Makeig S 2019 ICLabel: an automated electroencephalographic independent component classifier, dataset and website Neuroimage 198 181 97 181-97 10.1016/j.neuroimage.2019.05.026
Delorme A Makeig S 2004 EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis J. Neurosci. Methods 134 9 21 9-21 10.1016/j.jneumeth.2003.10.009
Robinson P A Rennie C J Rowe D L 2002 Dynamics of large-scale brain activity in normal arousal states and epileptic seizures Phys. Rev. E 65 9 10.1103/PhysRevE.65.041924
Abeysuriya R G Rennie C J Robinson P A 2014 Prediction and verification of nonlinear sleep spindle harmonic oscillations J. Theor. Biol. 344 70 77 70-77 10.1016/j.jtbi.2013.11.013
Robinson P A Phillips A J K Fulcher B D Puckeridge M Roberts J A 2011 Quantitative modelling of sleep dynamics Phil. Trans. R. Soc. A 369 3840 54 3840-54 10.1098/rsta.2011.0120
Bhattacharya B S Chowdhury F N 2015 Validating Neuro- Computational Models of Neurological and Psychiatric Disorders Springer
Crick F Koch C 1990 Towards a neurobiological theory of consciousness Semin. Neurosci. 2 263 75 263-75 (available at: http://resource.nlm.nih.gov/101584582X469)
Storm J F Boly M Casali A G Massimini M Olcese U Pennartz C M A Wilke M 2017 Consciousness regained: disentangling mechanisms, brain systems and behavioral responses J. Neurosci. 37 10882 93 10882-93 10.1523/JNEUROSCI.1838-17.2017
Boly M Massimini M Tsuchiya N Postle B R Koch C Tononi G 2017 Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence J. Neurosci. 37 9603 13 9603-13 10.1523/JNEUROSCI.3218-16.2017
Darracq M et al 2018 Evoked alpha power is reduced in disconnected consciousness during sleep and anesthesia Sci. Rep. 8 1 10 1-10 10.1038/s41598-018-34957-9
Stevner A B A et al 2019 Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep Nat. Commun. 10 1 14 1-14 10.1038/s41467-019-08934-3
Goldfine A M Victor J D Conte M M Bardin J C Schiff N D 2011 Determination of awareness in patients with severe brain injury using EEG power spectral analysis Clin. Neurophysiol. 122 2157 68 2157-68 10.1016/j.clinph.2011.03.022
Rosanova M et al 2012 Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients Brain 135 1308 20 1308-20 10.1093/brain/awr340
Schnakers C Laureys S 2017 Coma and Disorders of Consciousness 2nd edn Springer
Bai Y Lin Y Ziemann U 2021 Managing disorders of consciousness: the role of electroencephalography J. Neurol. 268 4033 65 4033-65 10.1007/s00415-020-10095-z
Mediano P A M Seth A K Barrett A B 2019 Measuring integrated information: comparison of candidate measures in theory and simulation Entropy 21 1 30 1-30 10.3390/e21010017
Demertzi A Schnakers C Soddu A Bruno M-A Gosseries O Vanhaudenhuyse A Laureys S 2011 Neural plasticity lessons from disorders of consciousness Front. Psychol. 1 1 7 1-7 10.3389/fpsyg.2010.00245
Bagnato S Boccagni C Sant’Angelo A Fingelkurts A A Fingelkurts A A Galardi G 2013 Emerging from an unresponsive wakefulness syndrome: brain plasticity has to cross a threshold level Neurosci. Biobehav. Rev. 37 2721 36 2721-36 10.1016/j.neubiorev.2013.09.007
Lynch M A 2004 Long-term potentiation and memory Physiol. Rev. 84 87 136 87-136 10.1152/physrev.00014.2003
Abraham W C Bliss T V P Collingridge G L Morris R G M 2024 Long-term potentiation: 50 years on: past, present and future Phil. Trans. R. Soc. B 379 1 7 1-7 10.1098/rstb.2023.0218
Schmalz J Kumar G 2019 Controlling synchronization of spiking neuronal networks by harnessing synaptic plasticity Front. Comput. Neurosci. 13 1 17 1-17 10.3389/fncom.2019.00061
Turrigiano G 2012 Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function Cold Spring Harb. Perspect. Biol. 4 1 18 1-18 10.1101/cshperspect.a005736
Assadzadeh S Robinson P A 2018 Necessity of the sleep-wake cycle for synaptic homeostasis: system-level analysis of plasticity in the corticothalamic system R. Soc. Open Sci. 5 171952 10.1098/rsos.171952
Shoob S et al 2023 Deep brain stimulation of thalamic nucleus reuniens promotes neuronal and cognitive resilience in an Alzheimer’s disease mouse model Nat. Commun. 14 7002 10.1038/s41467-023-42721-5 accessed 10 March 2025)
Tewarie P K B Abeysuriya R Laureys S Deco G Annen J 2024 Individual trajectories for recovery of neocortical activity in disorders of consciousness bioRxiv Preprint https://doi.org/10.1101/2024.03.11.584433 (posted online 13 March 2024)
Fung P K Robinson P A 2013 Neural field theory of calcium dependent plasticity with applications to transcranial magnetic stimulation J. Theor. Biol. 324 72 83 72-83 10.1016/j.jtbi.2013.01.013
Gervais C Boucher L-P Villar G M Lee U C Duclos C 2023 A scoping review for building a criticality-based conceptual framework of altered states of consciousness Front. Syst. Neurosci. 17 1085902 10.3389/fnsys.2023.1085902
Sanz-Leon P Robinson P A 2017 Multistability in the corticothalamic system J. Theor. Biol. 432 141 56 141-56 10.1016/j.jtbi.2017.07.015
Gosseries O et al 2015 On the cerebral origin of EEG responses to TMS: insights from severe cortical lesions Brain Stimul. 8 142 9 142-9 10.1016/j.brs.2014.10.008
Nasr K Haslacher D Dayan E Censor N Cohen L G Soekadar S R 2022 Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation Prog. Neurobiol. 216 102311 10.1016/j.pneurobio.2022.102311
Montgomery E B Gale J T 2008 Mechanisms of action of deep brain stimulation (DBS) Neurosci. Biobehav. Rev. 32 388 407 388-407 10.1016/j.neubiorev.2007.06.003
Antal A Paulus W 2013 Transcranial alternating current stimulation (tACS) Front. Hum. Neurosci. 7 1 4 1-4 10.3389/fnhum.2013.00317
Louise-Bender Pape T Rosenow J Lewis G Ahmed G Walker M Guernon A Roth H Patil V 2009 Repetitive transcranial magnetic stimulation-associated neurobehavioral gains during coma recovery Brain Stimul. 2 22 35 22-35 10.1016/j.brs.2008.09.004
Lemaire J J et al 2018 Deep brain stimulation in five patients with severe disorders of consciousness Ann. Clin. Transl. Neurol. 5 1372 84 1372-84 10.1002/acn3.648
Gogulski J et al 2023 Personalized repetitive transcranial magnetic stimulation for depression Biol. Psychiatry: Cogn. Neurosci. Neuroimaging 8 351 60 351-60 10.1016/j.bpsc.2022.10.006
Thiele C Zaehle T Haghikia A Ruhnau P 2021 Amplitude modulated transcranial alternating current stimulation (AM-TACS) efficacy evaluation via phosphene induction Sci. Rep. 11 1 10 1-10 10.1038/s41598-021-01482-1
Holt A B Wilson D Shinn M Moehlis J Netoff T I 2016 Phasic burst stimulation: a closed-loop approach to tuning deep brain stimulation parameters for Parkinson’s disease PLoS Comput. Biol. 12 1 14 1-14 10.1371/journal.pcbi.1005011
Guerrero Moreno J Biazoli C E Baptista A F Trambaiolli L R 2021 Closed-loop neurostimulation for affective symptoms and disorders: an overview Biol. Psychol. 161 108081 10.1016/j.biopsycho.2021.108081
Martens G et al 2021 A novel closed-loop EEG-tDCS approach to promote responsiveness of patients in minimally conscious state: a study protocol Behav. Brain Res. 409 113311 10.1016/j.bbr.2021.113311
Cuschieri A Borg N Zammit C 2022 Closed loop deep brain stimulation: a systematic scoping review Clin. Neurol. Neurosurg. 223 107516 10.1016/j.clineuro.2022.107516
Pan J Xiao J Wang J Wang F Li J Qiu L Di H Li Y 2022 Brain-computer interfaces for awareness detection, auxiliary diagnosis, prognosis and rehabilitation in patients with disorders of consciousness Semin. Neurol. 42 363 74 363-74 10.1055/a-1900-7261
Spataro R Xu Y Xu R Mandalà G Allison B Z Ortner R Heilinger A La Bella V Guger C 2022 How brain-computer interface technology may improve the diagnosis of the disorders of consciousness: a comparative study Front. Neurosci. 16 1 11 1-11 10.3389/fnins.2022.959339
Galiotta V et al 2022 EEG-based brain-computer interfaces for people with disorders of consciousness: features and applications. A systematic review Front. Hum. Neurosci. 16 1 17 1-17 10.3389/fnhum.2022.1040816
Pan J et al 2020 Prognosis for patients with cognitive motor dissociation identified by brain-computer interface Brain 143 1177 89 1177-89 10.1093/brain/awaa026
Sebastián-Romagosa M Cho W Ortner R Murovec N Von Oertzen T Kamada K Allison B Z Guger C 2020 Brain computer interface treatment for motor rehabilitation of upper extremity of stroke patients—a feasibility study Front. Neurosci. 14 591435 10.3389/fnins.2020.591435
Polyakov D Robinson P A Müller E J Shriki O 2024 Recruiting neural field theory for data augmentation in a motor imagery brain-computer interface Front. Robot. AI 11 1 15 1-15 10.3389/frobt.2024.1362735
Mayberg H S Lozano A M Voon V McNeely H E Seminowicz D Hamani C Schwalb J M Kennedy S H 2005 Deep brain stimulation for treatment-resistant depression Neuron 45 651 60 651-60 10.1016/j.neuron.2005.02.014
Morishita T Fayad S M Higuchi M-A Nestor K A Foote K D 2014 Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes Neurotherapeutics 11 475 84 475-84 10.1007/s13311-014-0282-1