Urban hydrology; Resilience; Smart technology; Governance; urban flooding; Contaminant transport
Abstract :
[en] In this perspective paper, we analyse the challenges and opportunities of hydrology in the urban context and propose solutions for innovation and sustainability by leveraging advancements across technology, society, and governance for resilient cities. Technological breakthroughs, such as smart sensors and artificial intelligence, can enhance the efficiency and resilience of real-time water monitoring and predictions. Public awareness and community engagement can foster behavioural change and empower residents to actively participate in urban water governance through initiatives like rainwater harvesting and participatory planning. Additionally, big data and remote sensing provide cities with the insights needed for adaptive, data-driven decision-making. Together, these developments represent a paradigm shift from reactive problem-solving to proactive, integrated solutions that prioritise equity, environmental health, and urban resilience. Finally, the paper highlights the differences in progress between the Global North and the Global South and proposes research priorities for the future of urban hydrology.
Research Center/Unit :
UEE - Urban and Environmental Engineering - ULiège
Disciplines :
Civil engineering
Author, co-author :
Nlend, Bertil ; University of Douala
Reimuth, Andrea ; Ludwig-Maximilian-Universität München (LMU) ; Technical University of Munich (TUM)
Yang, Liang Emlyn; Ludwig-Maximilian-Universität München (LMU)
Jampani, Mahesh; International Water Management Institute (IWMI)
Cristiano, Elena ; Università degli Studi di Cagliari
Dewals, Benjamin ; Université de Liège - ULiège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Abdellatif, M., Atherton, W., and Alkhaddar, R., 2014. Assessing combined sewer overflows with long lead time for better surface water management. Environmental Technology (United Kingdom), 35 (5), 568–580. doi:10.1080/09593330.2013.837938.
Adjovu, G.E., et al., 2023. Overview of the application of remote sensing in effective monitoring of water quality parameters. Remote Sensing, 15 (7), 1938. doi:10.3390/rs15071938.
Agonafir, C., et al., 2023. A review of recent advances in urban flood research. Water Security, 19, 100141. doi:10.1016/j.wasec.2023.100141
Ahmed, F., et al., 2018. Tipping points in adaptation to urban flooding under climate change and urban growth: the case of the Dhaka megacity. Land Use Policy, 79, 496–506. doi:10.1016/j.landusepol.2018.05.051
Alamanos, A., et al., 2022. Water for tomorrow: a living lab on the creation of the science-policy-stakeholder interface. Water (Switzerland), 14 (18), 2879. doi:10.3390/w14182879.
Anderson, J.R., et al., 1976. Land Use and Land Cover Classification System for Use With Remote Sensor Data. USA: US Geol Surv, Prof Pap Professional Paper. doi:10.3133/pp964.
Arheimer, B., et al., 2024. The IAHS science for solutions decade, with Hydrology Engaging Local People IN one Global world (HELPING). Hydrological Sciences Journal, 69 (11), 1417–1435. doi:10.1080/02626667.2024.2355202.
Auerswald, K., et al., 2024. HESS Opinion : floods and droughts - Land use, soil management, and landscape hydrology are more significant drivers than increasing temperatures. EGUsphere, June13, doi:10.5194/egusphere-2024-1702.
Balha, A., et al., 2023. Assessing the Impact of Land-Use Dynamics to Predict the Changes in Hydrological Variables Using Effective Impervious Area (EIA). Water Resources Management, 37 (10), 3999–4014. doi:10.1007/s11269-023-03536-7.
Banerjee, S., and Sikdar, P.K., 2022. Hydrochemical fingerprinting and effects of urbanisation on the water quality dynamics of the Quaternary aquifer of south Bengal Basin, India. Environmental Earth Sciences, 81 (4), 134. doi:10.1007/s12665-022-10258-3.
Barron, O., et al., 2014. Projected risks to groundwater-dependent terrestrial vegetation caused by changing climate and groundwater abstraction in the Central Perth Basin, Western Australia. Hydrological Processes, 28 (22), 5513–5529. doi:10.1002/hyp.10014.
Behnisch, M., Krüger, T., and Jaeger, J.A.G., 2022. Rapid rise in urban sprawl: global hotspots and trends since 1990. (A. Bharat, Ed.). PLOS Sustainability and Transformation, 1 (11), e0000034. doi:10.1371/journal.pstr.0000034.
Bergen, K.J., et al., 2019. Machine learning for data-driven discovery in solid Earth geoscience. Science, 363 (6433), 1652–1665. doi:10.1126/science.aau0323.
Bhaskar, A.S., et al., 2016. Will it rise or will it fall? Managing the complex effects of urbanization on base flow. Freshwater Science, 35 (1), 293–310. doi:10.1086/685084.
Blöschl, G., et al., 2019. Twenty-three unsolved problems in hydrology (UPH)–a community perspective. Hydrological Sciences Journal, 64 (10), 1141–1158. doi:10.1080/02626667.2019.1620507.
Buškulić, P., et al., 2025. Tracing nitrate contamination sources and dynamics in an unconfined alluvial aquifer system (Velika Gorica well field, Croatia). Environmental Science: Processes Impacts, 27, 154–171. doi:10.1039/D4EM00527A
Büyüközkan, G., Ilıcak, Ö., and Feyzioğlu, O., 2022. A review of urban resilience literature. Sustainable Cities and Society, 77, 103579. doi:10.1016/j.scs.2021.103579
Castellar, J.A.C., et al., 2021. Nature-based solutions in the urban context: terminology, classification and scoring for urban challenges and ecosystem services. Science of the Total Environment, 779, 146237. doi:10.1016/j.scitotenv.2021.146237.
Chan, F.K.S., et al., 2022. Comparison of sustainable flood risk management by four countries - the United Kingdom, the Netherlands, the United States, and Japan - and the implications for Asian coastal megacities. Natural Hazards and Earth System Sciences, 22 (8), 2567–2588. doi:10.5194/nhess-22-2567-2022.
Chathuranika, I.M., et al., 2023. Assessing the water quality and status of water resources in urban and rural areas of Bhutan. Journal of Hazardous Materials Advances, 12, 100377. doi:10.1016/j.hazadv.2023.100377.
Chen, J., et al., 2024. Multidimensional water level and water quality response to severe drought in Xingyun Lake. Heliyon, 10 (11), e32213. doi:10.1016/j.heliyon.2024.e32213.
Cheval, S., et al., 2024. A systematic review of urban heat island and heat waves research (1991–2022). Climate Risk Management, 44, 100603. doi:10.1016/j.crm.2024.100603.
Cristiano, E., Deidda, R., and Viola, F., 2021. The role of green roofs in urban Water-Energy-Food-Ecosystem nexus: a review. Science of the Total Environment, 756, 143876. doi:10.1016/j.scitotenv.2020.143876
Cristiano, E., Deidda, R., and Viola, F., 2023. Awareness and willingness to pay for green roofs in Mediterranean areas. Journal of Environmental Management, 344, 118419. doi:10.1016/j.jenvman.2023.118419
Dada, A., et al., 2021. Water sensitive cities: an integrated approach to enhance urban flood resilience in Parma (Northern Italy). Climate, 9 (10), 152. doi:10.3390/cli9100152.
Dadashpoor, H., Azizi, P., and Moghadasi, M., 2019. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of the Total Environment, 655 (2019), 707–719. doi:10.1016/j.scitotenv.2018.11.267.
Devi, N.N., Sridharan, B., and Kuiry, S.N., 2019. Impact of urban sprawl on future flooding in Chennai city, India. J. Hydrol, 574, 486–496. doi:10.1016/j.jhydrol.2019.04.041
Djieugoue, B., et al., 2024. Emerging organic compounds in surface and groundwater reflect the urban dynamics in sub-Saharan cities. Science of the Total Environment, 956 (2024), 177217. doi:10.1016/j.scitotenv.2024.177217.
Dong, Y., et al., 2023. Wastewater-influenced estuaries are characterized by disproportionately high nitrous oxide emissions but overestimated IPCC emission factor. Communications Earth & Environment, 4 (1), 395. doi:10.1038/s43247-023-01051-6.
Dovonou, F., et al., 2015. Pollution des eaux souterraines par les metaux lourds et leur impact sur l’environnement: cas de l’aquifere superficiel du champ de captage intensif de Godomey au sud-Benin.
Elga, S., Jan, B., and Okke, B., 2015. Hydrological modelling of urbanized catchments: a review and future directions. Journal of Hydrology, 529 (P1), 62–81. doi:10.1016/j.jhydrol.2015.06.028.
Elias, P., et al., 2023. Mapping the landscape of citizen science in Africa: assessing their potential contributions to SDGs 6 & 11 on access to clean water and sanitation and on sustainable cities. Citi Sci Theory & Practice, 8 (1), 1–13. doi:10.5334/cstp.601.
Ellis, J.B., and Mitchell, G., 2006. Urban diffuse pollution: key data information approaches for the water framework directive. Water Environ J, 20 (2006), 19–26. doi:10.1111/j.1747-6593.2006.00025.x.
Ferrario, F., et al., 2024. Evaluating Nature-based Solutions as urban resilience and climate adaptation tools: a meta-analysis of their benefits on heatwaves and floods. Science of the Total Environment, 950, 175179. doi:10.1016/j.scitotenv.2024.175179
Ferreira, C.S.S., et al., 2023. Wetlands as nature-based solutions for water management in different environments. Current Opinion in Environmental Sciences & Health, 33, 100476. doi:10.1016/j.coesh.2023.100476
Fletcher, T.D., et al., 2013. SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12 (7), 525–542. doi:10.1080/1573062X.2014.916314.
Gillefalk, M., et al., 2021. Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model. Hydrology and Earth System Sciences, 25 (6), 3635–3652. doi:10.5194/hess-25-3635-2021.
Gironás, J., et al., 2010. A new applications manual for the Storm Water Management Model (SWMM). Environmental Modelling & Software, 25 (6), 813–814. doi:10.1016/j.envsoft.2009.11.009.
Greve, P., Gudmundsson, L., and Seneviratne, S.I., 2018. Regional scaling of annual mean precipitation and water availability with global temperature change. Earth System Dynamics, 9 (1), 227–240. doi:10.5194/esd-9-227-2018.
Hanford, J.K., Webb, C.E., and Hochuli, D.F., 2020. Management of urban wetlands for conservation can reduce aquatic biodiversity and increase mosquito risk. J Appl Ecol, 00, 1–12. doi:10.1111/1365-2664.1357
He, C., et al., 2021. Future global urban water scarcity and potential solutions. Nat Commun, 12 (1), 4667. doi:10.1038/s41467-021-25026-3.
Hibbs, B.J., and Sharp, J.M., 2012. Hydrogeological impacts of urbanization. Environmental and Engineering Geoscience, 18 (1), 3–24. doi:10.2113/gseegeosci.18.1.3.
Hill, M.J., et al., 2017. Urban ponds as an aquatic biodiversity resource in modified landscapes. Global Change Biology, 23 (3), 986–999. doi:10.1111/gcb.13401.
Horner, -W.-W., 1933. Rainfall, runoff, and evaporation in relation to urban areas. In: M.M., Leroy, K., Sherman, and R.E., Horton, eds. Rainfall, Runoff and Evaporation,:53–56.
Huang, S., et al., 2022. A novel fusion method for generating surface soil moisture data with high accuracy, high spatial resolution, and high spatio‐temporal continuity. Water Resources Research, 58 (5), e2021WR030827. doi:10.1029/2021WR030827.
Huang, X., et al., 2021. The synergistic effect of urban heat and moisture islands in a compact high-rise city. Building and Environment, 205, 108274. doi:10.1016/j.buildenv.2021.108274
Huang, Y., et al., 2020. Nature-based solutions for urban pluvial flood risk management. Wiley Interdisciplinary Reviews: Water, 7 (3). doi:10.1002/wat2.1421.
Hülsmann, S., and Jampani, M., 2021. The Nexus Approach as a Tool for Resources Management in Resilient Cities and Multifunctional Land-Use Systems. In: S., Hülsmann and M., Jampani, eds. A Nexus Approach for Sustainable Development. Cham: Springer, 1–14. doi:10.1007/978-3-030-57530-4_1.
IAH, 2017. Water security & Groundwater. Strategic Overview Series. Available from:www.iah.org [Accessed Nov 2024].
Jampani, M., et al., 2018. Spatio-temporal distribution and chemical characterization of groundwater quality of a wastewater irrigated system: a case study. Science of the Total Environment, 636, 1089–1098. doi:10.1016/j.scitotenv.2018.04.347
Jampani, M., et al., 2020. Multi-functionality and land use dynamics in a peri-urban environment influenced by wastewater irrigation. Sustainable Cities and Society, 62 (2020), 102305. doi:10.1016/j.scs.2020.102305.
Jongen, H.J., et al., 2024. The water balance representation in urban‐PLUMBER land surface models. Journal of Advances in Modeling Earth Systems, 16 (10), e2024MS004231. doi:10.1029/2024MS004231.
Krueger, E.H., et al., 2019. Resilience dynamics of urban water supply security and potential of tipping points. Earth’s Future, 7, 1167–1191.
Kuhlemann, L.M., Tetzlaff, D., and Soulsby, C., 2021. Spatio-temporal variations in stable isotopes in peri-urban catchments: a preliminary assessment of potential and challenges in assessing streamflow sources. Journal of Hydrology, 600 (2021), 126685. doi:10.1016/j.jhydrol.2021.126685.
Lapworth, D.J., et al., 2012. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environmental Pollution, 163 (2012), 287–303. doi:10.1016/j.envpol.2011.12.034.
Lapworth, D.J., et al., 2017. Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health. Hydrol. J, 25, 1093–1116. doi:10.1007/s10040-016-1516-6
Larsen, T.A., et al., 2016. Emerging solutions to the water challenges of an urbanizing world. Science, 352 (6288), 928–933. doi:10.1126/science.aad8641.
Li, P., Wang, Z.H., and Wang, C., 2024. The potential of urban irrigation for counteracting carbon-climate feedback. Nature Communications, 15 (1), 2437. doi:10.1038/s41467-024-46826-3.
Lipson, M.J., et al., 2024. Evaluation of 30 urban land surface models in the Urban‐PLUMBER project: phase 1 results. Quarterly Journal of the Royal Meteorological Society, 150 (758), 126–169. doi:10.1002/qj.4589.
Liu, Z., et al., 2023. Remote sensing and geostatistics in urban water-resource monitoring: a review. Marine and Freshwater Research, 74 (10), 747–765. doi:10.1071/MF22167.
Lu, M., et al., 2024. Worldwide scaling of waste generation in urban systems. Nature Cities, 1 (2), 126–135. doi:10.1038/s44284-023-00021-5.
Mabrouk, M., et al., 2023. Assessing the effectiveness of nature-based solutions-strengthened urban planning mechanisms in forming flood-resilient cities. Journal of Environmental Management, 344, 118260. doi:10.1016/j.jenvman.2023.118260
Marx, C., et al., 2021. Isotope hydrology and water sources in a heavily urbanized stream. Hydrological Processes, 35 (10), e14377. doi:10.1002/hyp.14377.
Marx, C., et al., 2023. Effects of 66 years of water management and hydroclimatic change on the urban hydrology and water quality of the Panke catchment. Berlin, Germany: Science of the Total Environment. doi:10.1016/j.scitotenv.2023.165764.
McGrane, S.J., 2016. Impacts of Urbanisation on Hydrological and Water Quality Dynamics, and Urban Water Management: a Review. Hydrological Sciences Journal, 61 (13), 2295–2311. doi:10.1080/02626667.2015.1128084.
Miller, J.D., and Hutchins, M., 2017. The impacts of urbanisation and climate change on urban flooding and urban water quality: a review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 12 (2017), 345–362. doi:10.1016/j.ejrh.2017.06.006.
Mohtar, W., et al., 2020. Urban flash flood index based on historical rainfall events. Sustainable Cities and Society, 56, 102088. doi:10.1016/j.scs.2020.102088
Mokarram, M., Saber, A., and Sheykhi, V., 2020. Effects of heavy metal contamination on river water quality due to release of industrial effluents. Journal of Cleaner Production, 277, 123380. doi:10.1016/j.jclepro.2020.123380
Mosley, L.M., 2015. Drought impacts on the water quality of freshwater systems; review and integration. Earth-Science Reviews, 140 (2015), 203–214. doi:10.1016/j.earscirev.2014.11.010.
Nardi, F., et al., 2022. Citizens AND HYdrology (CANDHY): conceptualizing a transdisciplinary framework for citizen science addressing hydrological challenges. Hydrological Sciences Journal, 67 (16), 2534–2551. doi:10.1080/02626667.2020.1849707.
Nazemi, A., and Madani, K., 2017. Urban water security: emerging discussion and remaining challenges. Sustainable Cities and Society. doi:10.1016/J.SCS.2017.09.011.
Netusil, N.R., et al., 2022. Valuing the public benefits of green roofs. Landscape and Urban Planning, 224, 104426. doi:10.1016/j.landurbplan.2022.104426
Nguyen, M.T., et al., 2021. Understanding and assessing flood risk in Vietnam: current status, persisting gaps, and future directions. Journal of Flood Risk Management, 14 (2), e12689. doi:10.1111/jfr3.12689.
Niu, P.H., Feng, Y.F., and Wang, F., 2021. Suitable distribution area for rare and endangered animals in Guangdong-Hong Kong-Macao Greater Bay Area. Chinese J. Ecol, 40, 2467–2477.
Nlend, B., et al., 2018. The impact of urban development on aquifers in large coastal cities of West Africa: present status and future challenges. Land Use Policy, 75, 352–363. doi:10.1016/j.landusepol.2018.03.007
Nlend, B., et al., 2021. Shallow urban aquifers under hyper-recharge equatorial conditions and strong anthropogenic constrains. Implications in terms of groundwater resources potential and integrated water resources management strategies. Sci. Total Environ, 757, 143887. doi:10.1016/j.scitotenv.2020.1438
NRC, 2001. Basic Research Opportunities in the Earth Sciences. Washington, DC: National Academies Press.
O’Driscoll, M., et al., 2010. Urbanization Effects on Watershed Hydrology and In-Stream Processes in the Southern United States. Water, 2 (3), 605–648. doi:10.3390/w2030605.
OECD, 2023. Germany’s sponge cities to tackle heat and flooding. Paris: OECD Publishing.
Olmstead, S., and Zheng, J., 2019. Policy Instruments for Water Pollution Control in Developing Countries. Washington, DC: World Bank.
Oral, H.V., et al., 2021. Management of Urban Waters with Nature-Based Solutions in Circular Cities—Exemplified through Seven Urban Circularity Challenges. Water, 13 (23), 3334. doi:10.3390/w13233334.
Oswald, C., et al., 2023. Integrating urban water fluxes and moving beyond impervious surface cover: a review. Journal of Hydrology. doi:10.1016/j.jhydrol.2023.129188.
Patra, J., 2016. Review of Current and Planned Adaptation Action in India. CARIAA Working Paper no. 10. Ottawa, Canada and UK Aid, London, United Kingdom: International Development Research Centre. Available from:www.idrc.ca/cariaa.
Pavesi, F.C., and Pezzagno, M., 2022. From Sponge Cities to Sponge Landscapes with Nature-Based Solutions: a Multidimensional Approach to Map Suitable Rural Areas for Flood Mitigation and Landscaping. Nature-Based Solutions for Flood Mitigation, Springer International Publishing.
Pricope, N.G., and Shivers, G., 2022. Wetland vulnerability metrics as a rapid indicator in identifying nature-based solutions to mitigate coastal flooding. Hydrology, 9 (12), 218. doi:10.3390/hydrology9120218.
Qi, Y., et al., 2020. Addressing challenges of urban water management in chinese sponge cities via nature-based solutions. Water, 12 (10), 2788. doi:10.3390/w12102788.
Reimuth, A., et al., 2023. Urban growth modeling for the assessment of future climate and disaster risks: approaches, gaps and needs. Environmental Research Letters, 19 (1), 013002. doi:10.1088/1748-9326/ad1082.
Reinert, A., et al., 2023. Communication strategies in urban hydrology modeling. In: L.K. Wang, C.T. Yang, and M.H.S. Wang, eds. Advances in Urban Water Management. Cham: Springer. https://link.springer.com/book/10.1007/978-3-319-22924-9.
Richardson, S.D., and Ternes, T.A., 2018. Water Analysis: emerging Contaminants and Current Issues. Analytical Chemistry, 90 (1), 398–428. doi:10.1021/acs.analchem.7b04577.
Ring, A.-M., et al., 2024. Assessing the impact of drought on water cycling in urban trees via in-situ isotopic monitoring of plant xylem water. Journal of Hydrology, 633 (2024), 131020. doi:10.1016/j.jhydrol.2024.131020.
Rosenzweig, B.R., et al., 2018. Pluvial flood risk and opportunities for resilience. Wiley Interdisciplinary Reviews: Water, 5 (6), e1302. doi:10.1002/wat2.1302.
Scheller, M., van Meerveld, I., and Seibert, J., 2024. How well can people observe the flow state of temporary streams?Frontiers in Environmental Science, 12, 1352697. doi:10.3389/fenvs.2024.1352697
Seibert, J., et al., 2019. Virtual staff gauges for crowd-based stream level observations. Frontiers in Earth Science, 7, 70. doi:10.3389/feart.2019.00070
Singh, N., et al., 2022. Chapter 9 - Challenges of water contamination in urban areas. In: A.L., Srivastav, et al., eds. Current Directions in Water Scarcity Research. Vol. 6. Elsevier, 173–202. doi:10.1016/B978-0-323-91838-1.00008-7.
Sonkamble, S., et al., 2019. Hydro-geophysical characterization and performance evaluation of natural wetlands in a semi-arid wastewater irrigated landscape. Water Research, 148, 176–187. doi:10.1016/j.watres.2018.10.040
Stevenson, J.L., et al., 2022. Assessing land use influences on isotopic variability and stream water ages in urbanising rural catchments. Isot. Environ. Health Stud, 58 (3), 277–300. doi:10.1080/10256016.2022.2070615.
Szeles, B., et al., 2024. Comparison of two isotopic hydrograph separation methods in the Hydrological Open Air Laboratory, Austria. Hydrological Processes, 38 (7), e15222. doi:10.1002/hyp.15222.
Tague, C., and Frew, J., 2021. Visualization and ecohydrologic models: opening the box. Hydrol Processes, 35 (1), e13991. doi:10.1002/hyp.13991.
Tam, V.T., and Nga, T.T.V., 2018. Assessment of urbanization impact on groundwater resources in Hanoi. Vietnam. Journal of Environmental Management, 227, 107–116.
Tetzlaff, D., et al., 2015. Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: a review. Hydrological Processes, 29 (16), 3475–3490. doi:10.1002/hyp.10412.
Tu, J., et al., 2023. Assessment of building damage and risk under extreme flood scenarios in Shanghai. Natural Hazards and Earth System Sciences, 23 (10), 3247–3260. doi:10.5194/nhess-23-3247-2023.
Uchida, K., et al., 2021. Urban Biodiversity and the Importance of Scale.Trends in. Ecology and Evolution, 36 (2), 123–131. doi:10.1016/j.tree.2020.10.011.
UN-HABITAT, 2010. Solid Waste Management in the World’s Cities. London, UK: Gutenberg Press.
UN-Habitat, 2022. World Cities Report 2022: envisaging the Future of Cities. Available from:https://unhabitat.org/wcr/.
UNICEF/WHO, 2023. Progress on household drinking water, sanitation and hygiene 2000–2022: special focus on gender. New York, USA: UNICEF.
United Nations, 2022. UN Statistical Commission 2022–progress on implementation of the global urban and rural definitions. Share Your Green Design. Available from:www.shareyourgreendesign.com/events/un-statistical-commission-2022-progress-on-implementation-of-the-global-urban-and-rural-definitions.
United Nations, Department of Economic and Social Affairs, Population Division, 2019. World Urbanization Prospects: the 2018 Revision (ST/ESA/SER.A/420). New York: United Nations.
Vaidya, R., et al., 2024. Assessing wastewater management challenges in developing countries: a case study of India, current status and future scope. Environ Dev Sustain, 26 (8), 19369–19396. doi:10.1007/s10668-023-03540-2.
van Hateren, T.C., et al., 2023. Where should hydrology go? An early-career perspective on the next IAHS Scientific Decade: 2023–2032. Hydrological Sciences Journal, 68 (4), 529–541. doi:10.1080/02626667.2023.2170754.
van Rees, C.B., et al., 2023. The potential for nature-based solutions to combat the freshwater biodiversity crisis. PLOS Water, 2 (6), e0000126. doi:10.1371/journal.pwat.0000126.
Vörösmarty, C., et al., 2010. Global threats to human water security and river biodiversity. Nature, 467 (7315), 555–561. doi:10.1038/nature09440.
Wagner, I., and Breil, P., 2013. The role of ecohydrology in creating more resilient cities. Ecohydrology & Hydrobiology, 13 (2), 113–134. doi:10.1016/j.ecohyd.2013.06.002.
Wang, C., et al., 2021. Cool pavements for urban heat island mitigation: a synthetic review. Renewable and Sustainable Energy Reviews, 146, 111–171. doi:10.1016/j.rser.2021.111171
Wang, C., 2020. Landscape phenology and soil moisture dynamics influenced by irrigation in a desert urban environment. In: A., Ghaffarianhoseini, A., Ghaffarianhoseini, and N., Nasmith, eds. Imaginable Futures: design Thinking, and the Scientific Method, 670–679.
Wang, C., Wang, Z.H., and Yang, J., 2019. Urban water capacity: irrigation for heat mitigation. Computers, Environment and Urban Systems, 78, 101397. doi:10.1016/j.compenvurbsys.2019.101397
Wang, Y., et al., 2024. Attributing effects of classified infrastructure management on mitigating urban flood risks: a case study in Beijing, China. Sustainable Cities and Society, 101, 105141. doi:10.1016/j.scs.2023.105141
Wannewitz, M., et al., 2024. Progress and gaps in climate change adaptation in coastal cities across the globe. Nat Cities, 1 (9), 610–619. doi:10.1038/s44284-024-00106-9.
Warter, M.M., et al., 2024. Impact of drought hazards on flow regimes in anthropogenically impacted streams: an isotopic perspective on climate stress. Natural Hazards and Earth System Sciences, 24 (11), 3907–3924. doi:10.5194/nhess-24-3907-2024.
Welty, C., et al., 2023. Spatial heterogeneity and temporal stability of baseflow stream chemistry in an urban watershed. Water Resour. Res, 59 (1). doi:10.1029/2021WR031804.
Welty, C., et al., 2007. Design of an environmental field observatory for quantifying the urban water budget. In: V., Novotny and P., Brown, eds. Cities of the Future towards Integrated Sustainable Water and Landscape. London, UK: IWA Publishing, 72–88.
Wong, T., Briony, R., and Brown, R., 2020. Transforming cities through water-sensitive principles and practices. One Earth, 3 (4), 436–447. doi:10.1016/j.oneear.2020.09.012.
Woodruff, J., Irish, J.L., and Camargo, J., 2013. Coastal Flooding by Tropical Cyclones and Sea-Level Rise. Nature, 504 (7478), 44–52. doi:10.1038/nature12855.
Wu, H., et al., 2016. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai–Tibet Plateau, China. Science of the Total Environment, 542 (Part A), 182–191. doi:10.1016/j.scitotenv.2015.10.121.
Yadav, A., Kansal, M.L., and Singh, A., 2024. Land use and land cover dynamics in the Upper Ganga Riverine Wetland: unravelling ecosystem services over two decades. Environ Monit Assess, 196 (6), 590. doi:10.1007/s10661-024-12748-2.
Yang, L., et al., 2015. Climate-related flood risks and urban responses in the Pearl River Delta, China. Regional Environmental Change, 15 (2), 379–391. doi:10.1007/s10113-014-0651-7.
Yang, L.E., et al., 2021. Social resilience and its scale effects along the historical Tea-Horse Road. Environmental Research Letters, 16 (4), 045001. doi:10.1088/1748-9326/abea35.
Yang, L., Zhang, C., and Ngaruiya, G.W., 2013. Water supply risks and urban responses under a changing climate: a case study of Hong Kong. Pacific Geographies, 39, 9–15.
Yang, X., Wang, Z.H., and Wang, C., 2022. Critical transitions in the hydrological system: early-warning signals and network analysis. Hydrology and Earth System Sciences, 26 (7), 1845–1856. doi:10.5194/hess-26-1845-2022.
Zhai, J., et al., 2021. Multiscale watershed landscape infrastructure: integrated system design for sponge city development. Urban Forestry & Urban Greening, 60, 127060. doi:10.1016/J.UFUG.2021.127060
Zhang, K., et al., 2020. Quantifying the benefits of stormwater harvesting for pollution mitigation. Water Res, 171, 115395. doi:10.1016/j.watres.2019.115395
Zhi, W., et al., 2023. Widespread deoxygenation in warming rivers. Nat. Clim. Chang, 13 (10), 1105–1113. doi:10.1038/s41558-023-01793-3.
Zorn, C., et al., 2020. Evaluating the Magnitude and Spatial Extent of Disruptions Across Interdependent National Infrastructure Networks. ASME. ASME J. Risk Uncertainty Part B, 6 (2), 020904. doi:10.1115/1.4046327.
Zwirglmaier, V., Reimuth, A., and Garschagen, M., 2024. How suitable are current approaches to simulate flood risk under future urbanization trends?Environmental Research Letters, 19 (7), 073003. doi:10.1088/1748-9326/ad536f.