SERS-based detection of the antibiotic ceftriaxone in spiked fresh plasma and microdialysate matrix by using silver-functionalized silicon nanowire substrates - 2024
SERS-based detection of the antibiotic ceftriaxone in spiked fresh plasma and microdialysate matrix by using silver-functionalized silicon nanowire substrates
[en] Therapeutic drug monitoring (TDM) is an important tool in precision medicine as it allows estimating pharmacodynamic and pharmacokinetic effects of drugs in clinical settings. An accurate, fast and real-time determination of the drug concentrations in patients ensures fast decision-making processes at the bedside to optimize the clinical treatment. Surface-enhanced Raman spectroscopy (SERS), which is based on the application of metallic nanostructured substrates to amplify the inherent weak Raman signal, is a promising technique in medical research due to its molecular specificity and trace sensitivity accompanied with short detection times. Therefore, we developed a SERS-based detection scheme using silicon nanowires decorated with silver nanoparticles, fabricated by means of top-down etching combined with chemical deposition, to detect the antibiotic ceftriaxone (CRO) in spiked fresh plasma and microdialysis samples. We successfully detected CRO in both matrices with an LOD of 94 μM in protein-depleted fresh plasma and 1.4 μM in microdialysate.
Disciplines :
Chemistry Physics
Author, co-author :
Liu, Chen; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany, Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
Weber, Susanne ; Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar of the Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
Sivakov, Vladimir; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
Luppa, Peter B ; Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar of the Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
Popp, Jürgen; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany, Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
Cialla-May, Dana ; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany, Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany. Electronic address: dana.cialla-may@leibniz-ipht.de
Other collaborator :
Dib, Tony; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany, Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
Liu, Poting; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany, Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
Wu, Long; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany, School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University. Haikou 570228, China, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
Farnesi, Edoardo ; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany, Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
Zhang, Wen-Shu; China Fire and Rescue Institute, Beijing, 102202, China
Language :
English
Title :
SERS-based detection of the antibiotic ceftriaxone in spiked fresh plasma and microdialysate matrix by using silver-functionalized silicon nanowire substrates
Funding of the project InfectoGnostics ( 13GW0096F ) by BMBF , Germany, as well as the project 465289819 by DFG , Germany, is gratefully acknowledged. VS and PL gratefully acknowledge financial support by the German Research Foundation ( DFG ) under Grant No. 448666227 ( SI1893/27-1 ). The authors give special thanks to Prof. Dr. Thomas Bocklitz and Dr. Oleg Ryabchykov (both Leibniz IPHT) for supporting the algorithm script in the program language R, Dr. Jan Dellith and Andrea Dellith in the Competence Center for Micro- and Nanotechnologies at Leibniz IPHT for supporting the characterization supporting, and Prof. Dr. Alois Bonifacio and Dr. Stefano Fornasaro (both University of Trieste, Italy) for helpful discussion.
Jaworska, A., Fornasaro, S., Sergo, V., Bonifacio, A., Potential of surface enhanced Raman spectroscopy (SERS) in therapeutic drug monitoring (TDM). A critical review. Biosensors, 6(3), 2016.
Fornasaro, S., Cialla-May, D., Sergo, V., Bonifacio, A., The Role of Surface Enhanced Raman Scattering for Therapeutic Drug Monitoring of Antimicrobial Agents. 2022, Chemosensors.
Bliese, S.L., Maina, M., Were, P., Lieberman, M., Detection of degraded, adulterated, and falsified ceftriaxone using paper analytical devices. Anal. Methods 11:37 (2019), 4727–4732.
Wicha, S.G., Märtson, A.-G., Nielsen, E.I., Koch, B.C.P., Friberg, L.E., Alffenaar, J.-W., Minichmayr, I.K., The international society of anti-infective pharmacology, from therapeutic drug monitoring to model-informed precision dosing for antibiotics. Clin. Pharmacol. Therapeut. 109:4 (2021), 928–941 t.P.K.P.D.s.g.o.t.E.S.o.C.M.I.D.
de Velde, F., Mouton, J.W., de Winter, B.C.M., van Gelder, T., Koch, B.C.P., Clinical applications of population pharmacokinetic models of antibiotics: challenges and perspectives. Pharmacol. Res. 134 (2018), 280–288.
Huttner, A., Harbarth, S., Hope, W.W., Lipman, J., Roberts, J.A., Therapeutic drug monitoring of the β-lactam antibiotics: what is the evidence and which patients should we be using it for?. J. Antimicrob. Chemother. 70:12 (2015), 3178–3183.
Avataneo, V., D'Avolio, A., Cusato, J., Cantù, M., De Nicolò, A., LC-MS application for therapeutic drug monitoring in alternative matrices. J. Pharmaceut. Biomed. Anal. 166 (2019), 40–51.
Cairoli, S., Simeoli, R., Tarchi, M., Dionisi, M., Vitale, A., Perioli, L., Dionisi-Vici, C., Goffredo, B.M., A new HPLC–DAD method for contemporary quantification of 10 antibiotics for therapeutic drug monitoring of critically ill pediatric patients. Biomed. Chromatogr., 34(10), 2020, e4880.
Briscoe, S.E., McWhinney, B.C., Lipman, J., Roberts, J.A., Ungerer, J.P.J., A method for determining the free (unbound) concentration of ten beta-lactam antibiotics in human plasma using high performance liquid chromatography with ultraviolet detection. J. Chromatogr. B 907 (2012), 178–184.
Herrera-Hidalgo, L., Gil-Navarro, M.V., Dilly Penchala, S., López-Cortes, L.E., de Alarcón, A., Luque-Márquez, R., López-Cortes, L.F., Gutiérrez-Valencia, A., Ceftriaxone pharmacokinetics by a sensitive and simple LC–MS/MS method: development and application. J. Pharmaceut. Biomed. Anal., 189, 2020, 113484.
Kanu, A.B., Recent developments in sample preparation techniques combined with high-performance liquid chromatography: a critical review. J. Chromatogr. A, 1654, 2021, 462444.
Liszewska, M., Bartosewicz, B., Budner, B., Nasiłowska, B., Szala, M., Weyher, J.L., Dzięcielewski, I., Mierczyk, Z., Jankiewicz, B.J., Evaluation of selected SERS substrates for trace detection of explosive materials using portable Raman systems. Vib. Spectrosc. 100 (2019), 79–85.
Jahn, I.J., Grjasnow, A., John, H., Weber, K., Popp, J., Hauswald, W., Noise sources and requirements for confocal Raman spectrometers in biosensor applications. Sensors, 21, 2021, 5067.
Wang, H., Xue, Z., Wu, Y., Gilmore, J., Wang, L., Fabris, L., Rapid SERS quantification of trace fentanyl laced in recreational drugs with a portable Raman module. Anal. Chem. 93:27 (2021), 9373–9382.
Xiao, R., Lu, L., Rong, Z., Wang, C., Peng, Y., Wang, F., Wang, J., Sun, M., Dong, J., Wang, D., Wang, L., Sun, N., Wang, S., Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing. Biosens. Bioelectron., 168, 2020, 112524.
Langer, J., Jimenez de Aberasturi, D., Aizpurua, J., Alvarez-Puebla, R.A., Auguié, B., Baumberg, J.J., Bazan, G.C., Bell, S.E.J., Boisen, A., Brolo, A.G., Choo, J., Cialla-May, D., Deckert, V., Fabris, L., Faulds, K., García de Abajo, F.J., Goodacre, R., Graham, D., Haes, A.J., Haynes, C.L., Huck, C., Itoh, T., Käll, M., Kneipp, J., Kotov, N.A., Kuang, H., Le Ru, E.C., Lee, H.K., Li, J.-F., Ling, X.Y., Maier, S.A., Mayerhöfer, T., Moskovits, M., Murakoshi, K., Nam, J.-M., Nie, S., Ozaki, Y., Pastoriza-Santos, I., Perez-Juste, J., Popp, J., Pucci, A., Reich, S., Ren, B., Schatz, G.C., Shegai, T., Schlücker, S., Tay, L.-L., Thomas, K.G., Tian, Z.-Q., Van Duyne, R.P., Vo-Dinh, T., Wang, Y., Willets, K.A., Xu, C., Xu, H., Xu, Y., Yamamoto, Y.S., Zhao, B., Liz-Marzán, L.M., Present and future of surface-enhanced Raman scattering. ACS Nano 14:1 (2020), 28–117.
Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., Popp, J., Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem. 403:1 (2012), 27–54.
Cialla-May, D., Zheng, X.S., Weber, K., Popp, J., Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem. Soc. Rev. 46:13 (2017), 3945–3961.
Zheng, X.-S., Jahn, I.J., Weber, K., Cialla-May, D., Popp, J., Label-free SERS in biological and biomedical applications: recent progress, current challenges and opportunities. Spectrochim. Acta Mol. Biomol. Spectrosc. 197 (2018), 56–77.
Wu, L., Zhang, C., Long, Y., Chen, Q., Zhang, W., Liu, G., Food additives: from functions to analytical methods. Crit. Rev. Food Sci. Nutr. 62:30 (2022), 8497–8517.
Wu, L., Zhang, W., Liu, C., Foda, M.F., Zhu, Y., Strawberry-like SiO2/Ag nanocomposites immersed filter paper as SERS substrate for acrylamide detection. Food Chem., 328, 2020, 127106.
Wu, L., Yan, H., Li, G., Xu, X., Zhu, L., Chen, X., Wang, J., Surface-imprinted gold nanoparticle-based surface-enhanced Raman scattering for sensitive and specific detection of patulin in food samples. Food Anal. Methods 12:7 (2019), 1648–1657.
Liu, C., Müller-Bötticher, L., Liu, C., Popp, J., Fischer, D., Cialla-May, D., Raman-based detection of ciprofloxacin and its degradation in pharmaceutical formulations. Talanta, 2022, 123719.
Liu, C., Weber, S., Peng, R., Wu, L., Zhang, W.-s., Luppa, P.B., Popp, J., Cialla-May, D., Toward SERS-based therapeutic drug monitoring in clinical settings: recent developments and trends. TrAC, Trends Anal. Chem., 164, 2023, 117094.
Hidi, I.J., Jahn, M., Pletz, M.W., Weber, K., Cialla-May, D., Popp, J., Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique. J. Phys. Chem. C 120:37 (2016), 20613–20623.
Koh, E.H., Lee, W.-C., Choi, Y.-J., Moon, J.-I., Jang, J., Park, S.-G., Choo, J., Kim, D.-H., Jung, H.S., A wearable surface-enhanced Raman scattering sensor for label-free molecular detection. ACS Appl. Mater. Interfaces 13:2 (2021), 3024–3032.
Yang, T., Guo, X., Wang, H., Fu, S., wen, Y., Yang, H., Magnetically optimized SERS assay for rapid detection of trace drug-related biomarkers in saliva and fingerprints. Biosens. Bioelectron. 68 (2015), 350–357.
Andreou, C., Hoonejani, M.R., Barmi, M.R., Moskovits, M., Meinhart, C.D., Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS Nano 7:8 (2013), 7157–7164.
Bonifacio, A., Dalla Marta, S., Spizzo, R., Cervo, S., Steffan, A., Colombatti, A., Sergo, V., Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study. Anal. Bioanal. Chem. 406:9 (2014), 2355–2365.
Markina, N.E., Markin, A.V., Weber, K., Popp, J., Cialla-May, D., Liquid-liquid extraction-assisted SERS-based determination of sulfamethoxazole in spiked human urine. Anal. Chim. Acta 1109 (2020), 61–68.
Szultka, M., Kegler, R., Fuchs, P., Olszowy, P., Miekisch, W., Schubert, J.K., Buszewski, B., Mundkowski, R.G., Polypyrrole solid phase microextraction: a new approach to rapid sample preparation for the monitoring of antibiotic drugs. Anal. Chim. Acta 667:1 (2010), 77–82.
Göksel, Y., Zor, K., Rindzevicius, T., Thorhauge Als-Nielsen, B.E., Schmiegelow, K., Boisen, A., Quantification of methotrexate in human serum using surface-enhanced Raman scattering—toward therapeutic drug monitoring. ACS Sens. 6:7 (2021), 2664–2673.
Weber, S., Tombelli, S., Giannetti, A., Trono, C., O'Connell, M., Wen, M., Descalzo, A.B., Bittersohl, H., Bietenbeck, A., Marquet, P., Renders, L., Orellana, G., Baldini, F., Luppa, P.B., Immunosuppressant quantification in intravenous microdialysate – towards novel quasi-continuous therapeutic drug monitoring in transplanted patients. Clin. Chem. Lab. Med. 59:5 (2021), 935–945.
Markina, N.E., Goryacheva, I.Y., Markin, A.V., Sample pretreatment and SERS-based detection of ceftriaxone in urine. Anal. Bioanal. Chem. 410:8 (2018), 2221–2227.
Li, C., Lin, W., Shao, Y., Feng, Y., Simultaneous determination of ternary cephalosporin solutions by Raman spectroscopy. Chin. Opt Lett., 11(12), 2013 123001-123001.
Le Ru, E.C., Meyer, S.A., Artur, C., Etchegoin, P.G., Grand, J., Lang, P., Maurel, F., Experimental demonstration of surface selection rules for SERS on flat metallic surfaces. Chem. Commun. 47:13 (2011), 3903–3905.
Moskovits, M., Suh, J.S., Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. J. Phys. Chem. 88:23 (1984), 5526–5530.
Gonçalves, M.R., Enderle, F., Marti, O., Surface-enhanced Raman spectroscopy of dye and thiol molecules adsorbed on triangular silver nanostructures: a study of near-field enhancement, localization of hot-spots, and passivation of adsorbed carbonaceous species. J. Nanotechnol., 2012, 2012, 173273.
Parker, J.H., Feldman, D.W., Ashkin, M., Raman scattering by silicon and germanium. Phys. Rev. 155:3 (1967), 712–714.
Patze, S., Huebner, U., Weber, K., Cialla-May, D., Popp, J., TopUp SERS substrates with integrated internal standard. Materials, 11(2), 2018.
Li, P., Wang, X., Li, H., Yang, X., Zhang, X., Zhang, L., Ozaki, Y., Liu, B., Zhao, B., Investigation of charge-transfer between a 4-mercaptobenzoic acid monolayer and TiO2 nanoparticles under high pressure using surface-enhanced Raman scattering. Chem. Commun. 54:49 (2018), 6280–6283.
Dong, X., Zhou, J., Liu, X., Lin, D., Zha, L., Preparation of monodisperse bimetallic nanorods with gold nanorod core and silver shell and their plasmonic property and SERS efficiency. J. Raman Spectrosc. 45:6 (2014), 431–437.
Yakimchuk, D.V., Bundyukova, V.D., Ustarroz, J., Terryn, H., Baert, K., Kozlovskiy, A.L., Zdorovets, M.V., Khubezhov, S.A., Trukhanov, A.V., Trukhanov, S.V., Panina, L.V., Arzumanyan, G.M., Mamatkulov, K.Z., Tishkevich, D.I., Kaniukov, E.Y., Sivakov, V., Morphology and microstructure evolution of gold nanostructures in the limited volume porous matrices. Sensors, 20, 2020, 4397.
Krebs, H.A., Chemical composition of blood plasma and serum. Annu. Rev. Biochem. 19:1 (1950), 409–430.
Cedervall, T., Lynch, I., Lindman, S., Berggård, T., Thulin, E., Nilsson, H., Dawson, K.A., Linse, S., Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 104:7 (2007), 2050–2055.
Yıldırım, S., Fikarová, K., Pilařová, V., Nováková, L., Solich, P., Horstkotte, B., Lab-in-syringe automated protein precipitation and salting-out homogenous liquid-liquid extraction coupled online to UHPLC-MS/MS for the determination of beta-blockers in serum. Anal. Chim. Acta, 1251, 2023, 340966.
Pollock, A.A., Tee, P.E., Patel, I.H., Spicehandler, J., Simberkoff, M.S., Rahal, J.J., Pharmacokinetic characteristics of intravenous ceftriaxone in normal adults. Antimicrob. Agents Chemother. 22:5 (1982), 816–823.
Popick, A.C., Crouthamel, W.G., Bekersky, I., Plasma protein binding of ceftriaxone. Xenobiotica 17:10 (1987), 1139–1145.
Schleibinger, M., Steinbach, C.L., Töpper, C., Kratzer, A., Liebchen, U., Kees, F., Salzberger, B., Kees, M.G., Protein binding characteristics and pharmacokinetics of ceftriaxone in intensive care unit patients. Br. J. Clin. Pharmacol. 80:3 (2015), 525–533.
Ewoldt, T.M.J., Bahmany, S., Abdulla, A., Muller, A.E., Endeman, H., Koch, B.C.P., Plasma protein binding of ceftriaxone in critically ill patients: can we predict unbound fractions?. J. Antimicrob. Chemother. 78:4 (2023), 1059–1065.
Seyfinejad, B., Ozkan, S.A., Jouyban, A., Recent advances in the determination of unbound concentration and plasma protein binding of drugs: analytical methods. Talanta, 225, 2021, 122052.
Zhang, X., Yonzon, C.R., Van Duyne, R.P., Nanosphere lithography fabricated plasmonic materials and their applications. J. Mater. Res. 21:5 (2006), 1083–1092.
de Oliveira, K.V., Rubim, J.C., Surface-enhanced Raman spectroscopy of molecules adsorbed on silver nanoparticles dispersed an agarose gel and their adsorption isotherms. Vib. Spectrosc. 86 (2016), 290–301.
Schlücker, S., Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53:19 (2014), 4756–4795.
Gao, D., Yang, X., Teng, P., Liu, Z., Yang, J., Kong, D., Zhang, J., Luo, M., Li, Z., Tian, F., Yuan, L., Optofluidic in-fiber integrated surface-enhanced Raman spectroscopy detection based on a hollow optical fiber with a suspended core. Opt. Lett. 44:21 (2019), 5173–5176.
Markina, N.E., Ustinov, S.N., Zakharevich, A.M., Markin, A.V., Copper nanoparticles for SERS-based determination of some cephalosporin antibiotics in spiked human urine. Anal. Chim. Acta 1138 (2020), 9–17.
Markina, N.E., Markin, A.V., Application of aluminum hydroxide for improvement of label-free SERS detection of some cephalosporin antibiotics in urine. Biosensors, 9(3), 2019.