[en] The emergence of artemisinin-resistant parasites in Africa highlights the need to expand the arsenal of new antimalarial lead pharmacophores with good pharmacological properties and novel mechanisms of action, particularly those derived from natural products. Lantana camara L. is a medicinal plant historically used to treat various ailments, including malaria. Decoctions of its leaves and roots have traditionally been used in endemic regions to treat the disease. However, a thorough validation of its efficacy through the identification of its antimalarial chemical pharmacophores has never been achieved. The purpose of this study was to unveil antiplasmodial chemical “hits” from the leaves and roots of L. camara coupled with in silico predictions of their pharmacokinetic properties and drug-likeness. Crude ethanolic and EtOAc-MeOH (12:13; v/v) extracts were obtained through the maceration of L. camara leaves and roots. Subsequently, fractionation was performed, and all fractions were assessed for their activity against chloroquine-susceptible (Pf3D7) and multidrug-resistant (PfDd2) strains of Plasmodium falciparum using the SyBr Green fluorescence-based methods. The antiplasmodial "hit" compounds were isolated through flash silica chromatography followed by successive column chromatography. The obtained compounds were then subjected to in vitro evaluation against the same strains (Pf3D7 and PfDd2). Virtual in silico prediction using an open Artificial Intelligence and Machine Learning (AI/ML)-assisted tool named pKSCM predictor was used to retrieve the pharmacokinetic (ADMET) properties of the potent antiplasmodial scaffolds. The ethanolic leaf and EtOAc-MeOH root extracts of L. camara showed moderate antiplasmodial activity against both chloroquine-sensitive (Pf3D7) and multidrug-resistant (PfDd2) P. falciparum strains. Notably, the RF2 root fraction exhibited significant activity, particularly against PfDd2 (IC₅₀ = 7.73 µg/mL). From this fraction, a binary mixture of furanonaphthoquinones [diodantunezone (1a) and isodiodantunezone (1b) (2:1)] was isolated, showing strong potency against both parasite strains (IC₅₀ = 2.59 µg/mL [12.10 µM] for PfDd2 and 6.05 µg/mL [28.27 µM] for Pf3D7). The compounds were non-toxic to erythrocytes and selective for intraerythrocytic parasites. In silico prediction of ADMET (absorption, distribution, metabolism, and toxicity parameters further supported their drug-like properties. This study provides the first evidence of the antiplasmodial efficacy of L. camara extracts and derivatives, with an emphasis on their drug-like ability, supporting its traditional use against malaria.
Disciplines :
Agriculture & agronomy Chemistry
Author, co-author :
Taguimjeu Tafokeu K, Pierre Leonel ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Tchatat Tali, Mariscal Brice
Dongmo, Kevine Johane Jumeta
Fongang, Yannick Stéphane Fotsing
Fauconnier, Marie-Laure ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES)
Lenta, Bruno Ndjakou
Boyom, Fabrice Fekam
Sewald, Norbert
Ngouela, Silvère Augustin
Language :
English
Title :
Chemical constituents of the leaves and roots of Lantana camara Linn (Verbenaceae) display good in vitro antiplasmodial potency and ADMET properties
Aman, D., 2019. Introductory chapter: plant extracts. https://doi.org/10.5772/intechopen.85493.
Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A., Khim, N., Kim, S., Duru, V., Bouchier, C., Ma, L., Lim, P., Leang, R., Duong, S., Sreng, S., Suon, S., Meng, C.C., Mey, B.D., Menard, S., Ranger, W., Genton, B., Fandeur, T., Miotto, O., Ringwald, P., Le Bras, J., Berry, A., Fairhurst, R., Benoit-Vical, F., Mercereau-Puijalon, O., Ménard, D., A molecular marker of artemisinin resistant plasmodium falciparum malaria. Nature 505 (2014), 50–55, 10.1038/nature12876.
Asua, V., Conrad, M.D., Aydemir, O., Duvalsaint, M., Legac, J., Duarte, E., Tumwebaze, P., Chin, D., Cooper, R., Yeka, A., Kamya, M., Dorsey, G., Nsobya, S., Bailey, J., Rosenthal, P.J., Changing prevalence of potential mediators of aminoquinoline, antifolate, and artemisinin resistance across Uganda 223. J. Infect. Dis. 223:6 (2021), 985–994, 10.1093/infdis/jiaa687.
Atanasov, A., Waltenberger, B., Pferschy-Wenzig, E., Linder, T., Wawrosch, C., Uhrin, P., Temmi, V., Wang, L., Schwaiger, S., Heiss, E., Rollinger, J., Schuster, D., Breuss, J., Bochkov, V., Mihovilovic, M., Kopp, B., Bauer, D.V.M., Stuppner, H., Discovery and resupply of pharmacologically active plant derived natural products: a review. Biotechnol. Adv. 33 (2015), 1582–1614, 10.1016/J.biotechadv.2015.08.001.
Baba, G., Adewumi, A.A.J., Aina, V.O., Phytochemical characterization and in-vivo anti-malaria activity of Lantana camara leaf extract. British J. Pharmacol. Toxicol. 2:6 (2011), 277–282.
Barre, T., Bowden, F., Coll, C., De Jesus, J., De la Fuente, E., Janairo, G., Ragassa, C., A bioactive triterpene from Lantana camara. Phytochemistry 45 (1997), 321–324, 10.1016/S0031-9422(96)00805-9.
Boakye, Y.D., Agana, T.A., Oteng-Amankwah, E.A., Boamah, V.E., Agyare, C., Evidence-based review of medicinal plants for the management of onchocerciasis. Nat. Product. Vector-Borne Dis. Manag., 2023, 27–49, 10.1016/B978-0-323-91942-5.00004-5.
Bowling, T., Mercer, L., Don, R., Jacobs, R., Nare, B., Application of a resazurin-based high-throughput screening assay for the identification and progression of new treatments for human African trypanosomiasis. Int. J. Parasitol. 2 (2012), 262–270, 10.1016/j.ijpddr.2012.02.002.
Cameron, M., Callender, E., Kramer, J., NMR studies of selected cholesteric compounds. Molecul. Cryst. Liquid Cryst. 3 (1972), 867–877, 10.1080/15421407208083581.
Cock, I.E., Van Vuuren, S.F., The traditional use of southern African medicinal plants in the treatment of viral respiratory diseases: a review of the ethnobotany and scientific evaluations. J. Ethnopharmacol., 262, 2020, 113194, 10.1016/j.jep.2020.113194.
Daoui, O., Elkhattabi, S., Chtita, S., Elkhalabi, R., Zgou, H., Benjelloun, A.T., QSAR, molecular docking and ADMET properties in silico studies of novel 4,5,6,7-tetrahydrobenzo [D]-thiazol-2-yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase. Heliyon, 7, 2021, e07463, 10.1016/j.heliyon.2021.e07463.
Daoui, O., Mazoir, N., Bakhouch, M., Salah, M., Benharref, A., Gonzalez-Coloma, A., Elkhattabi, S., Yazidi, M.E., Chita, S., 3D-QSAR, ADME-tox, and molecular docking of semisynthetic triterpene derivatives as antibacterial and insecticide agents. Struct. Chem. 33 (2022), 1063–1084, 10.1007/s11224-022-01912-4.
Delgado-Altamirano, R., Garcia-Aguilera, E., Delgado-Dominguez, J., Becker, I., Rodriguez, D.S.M., Rojas-Molinas, A., Esturau-Escofet, N., 1H NMR profiling and chemometric analysis as an approach to predict the leishmanicidal activity of dichloromethane extracts from Lantana camara (L.). J. Pharm. Biomed. Anal. 199 (2021), 114060–114068, 10.1016/j.jpba.2021.114060.
Dibong, S.D., Mpondo, M.E., Ngoye, A., Kwin, M.F., Betti, J.L., Ethnobotanique et phytomédecine des plantes médicinales de Douala, Cameroun [Ethnobotany and phytomedicine of medicinal plants sold in Douala markets]. J. Appl. Biosci. 37 (2011), 2496–2507.
Dominguez, A., Franco, R., Cano, G., Garcia, F., Consue, L., Dominguez, S., Xorge, A., Leonardo, M., Mexican medicinal plants. Part 47. Isolation of a new furano-1,4-naphthaquinones, diodantunezone from Lantana achyranthifolia. Planta Med., 49, 1983, 63, 10.1055/s-2007-969816.
Dongmo, J., Tali, T., Fongang, F., Taguimjeu, T., Kagho, K., Bitchagno, T., Lenta, N., Boyom, F., Sewald, N., Ngouela, A., In vitro antiplasmodial activity and toxicological profile of extracts, fractions and chemical constituents of leaves and stem bark from Dacryodes edulis (Burseraceae). BMC Complement. Med. Therap., 23, 2023, 211, 10.1186/s12906-023-03957-2.
Dzeumo, L.C., Happi, G.M., Ahmed, S.A., Tsopgni, W.D.T., Akuma, M.N., Salau, S., Happi, E.N., Wansi, J.D., Chemical constituents of the bark of zanthoxylum gilletii (Rutaceae) and their in vitro antiplasmodial and molecular docking studies. J. Chem. ID 1111817 (2022), 1–10, 10.1155/2022/1111817.
FajriahS, M., Darmawan, A., Apigenin, an anticancer isolated from Macaranga gigantifolia leaves. J. Tropic. Life Sci. 6:1 (2016), 7–9.
Fongang, S., Bankeu, J., Batiha, G., Ali, I., Lenta, B., Extraction of bioactive compounds from medicinal plants and herbs. Medicinal Plants, 2021, IntechOpen Pharmacognosy, 10.5772/intechopen.98602.
Fouedjou, R.T., Daoui, O., Nour, H., Ayoub, M., Fogang, H.P.D., Siddique, F., Elkhattabi, S., Bakhouch, M., Belaidi, S., Chtita, S., In silico approach for designing novel SARS-CoV-2 inhibitors from medicinal plants. Phys. Chem. Res. 11:3 (2022), 589–604, 10.22036/pcr.2022.349693.2138.
Ghallab, D.S., Mohyeldin, M.M., Shawky, E., Metwally, A.M., Ibrahim, R.S., Chemical profiling of Egyptian propolis and determination of its xanthine oxidase inhibitory properties using UPLC-MS/MS and chemometrics. LWT- Food Sci. Technol., 136, 2021, 110298, 10.1016/j.lwt.2020.110298.
Herbert, J.M., Maffrand, J.P., Taoubi, K., Augereau, J.M., Fouraste, I., Gleye, J., Verbascoside isolated from Lantana camara, an inhibitor of protein kinase C. J. Nat. Prod. 54:6 (1991), 1595–1600, 10.1021/np50078a016.
Kambele, K., Mukubwa, K., Mwabonkolo, M., Musuyu, M., Nkanga, I., Memvanga, B., In vivo antimalarial activity of self-nanoemulsifying drug delivery systems containing ethanolic extract of Morinda lucida in combination with other Congolese plants extracts. Brazil. J. Pharmaceutic. Sci., 58, 2022, e20074, 10.1590/s2175-97902022e20074.
Kaushik, N., Sharma, J., Sahal, D., Anti-plasmodial action of de novo designed, cationic, lysine-branched, amphipathic, helical peptides. Malar. J., 11, 2012, 256, 10.1186/1475-2875-11-256.
Lambros, C., Vanderberg, J., Synchronization of plasmodium falciparum erythrocytic stages in culture. J. Parasitol., 65, 1979, 418, 10.2307/3280287.
Mahato, S., Kundu, A., 13C NMR spectra of pentacyclic triterpenoids – A compilation and some salient features. Phytochemistry 37 (1994), 1517–1575, 10.1016/S0031-9422(00)89569-2.
Mahwasane, S.T., Middleton, L., Boaduo, N., An ethnobotanical survey of indigenous knowledge on medicinal plants used by the traditional healers of the Lwamondo area, Limpopo province, South Africa. South African J. Botany. 88 (2013), 69–75, 10.1016/j.sajb.2013.05.004.
Mangoyi, R., Midiwo, .J, Mukanganyama, S., Isolation and characterization of an antifungal compound 5-hydroxy-7,4’-dimethoxyflavone from Combretum zeyheri. BMC Complement. Altern. Med., 15, 2015, 405, 10.1186/s12906-015-0934-7.
Mayori, A., Traditional usage, phytochemistry and pharmacology of Croton sylvaticus Hochst. Ex. Krauss, C., (eds.) Traditional usage, phytochemistry and pharmacology of Croton sylvaticus Hochst. Ex. Asian. Pac. J. Trop. Med., 10(5), 2017, 423–429, 10.1016/j.apjtm.2017.05.002.
Muganza, D.M., Fruth, B., Nzunzu, J.L., Tuenter, E., Foubert, K., Cos, P., Maes, L., Kanyanga, R.C., Exarchou, V., Apers, S., Pieters, L., In vitroantiprotozoal activity and cytotoxicity of extracts and isolated constituents from Greenwayodendron suaveolens. J. Ethnopharmacol. 193 (2016), 510–516, 10.1016/j.jep.2016.09.051.
Nea, F., Bitchi, M.B., Genva, M., Ledoux, A., Tchinda, A.T., Damblon, C., Frederich, M., Tonzibo, Z.F., Fauconnier, M.-L., Phytochemical investigation and biological activities of Lantana rhodesiensis. Molecules, 26(4), 2021, 846, 10.3390/molecules16053663.
Njoroge, G.N., Bussmann, R.W., Diversity and utilization on antimalarial ethnophytotherapeutic remedies among the Kikuyus (Central Kenya). J. Ethnobiol. Ethnomed., 2(8), 2006, 10.1186/1746-4269-2-8.
Nkengasong, N., Tessema, S., Africa needs a new public health order to tackle infectious disease threats. Cell Press. 183:2 (2020), 296–300, 10.1016/j.cell.2020.09.041.
Ntiga, L., Cameroun: lantana Camara - une thérapie contre les filaires. Mutations, 2008 https://fr.allafrica.com/stories/200809030947.html consulted online on October 11th, 2024.
Pires, D., Blundell, T., Ascher, D., pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 58 (2015), 4066–4072, 10.1021/acs.jmedchem.5b00104.
Qureshi, H., Anwar, T., Ali, Q., Haider, M.Z., Habib, N., Fatima, S., Waseem, M., Bibi, Y., Arshad, M., Adkins, S.W., Isolation of natural herbicidal compound from Lantana camara. Int. J. Environ. Anal. Chem. 101:5 (2019), 631–638, 10.1080/03067319.2019.1670822.
Ramaraj, D.J., Rathinasamy, G., Sivasamy, V.V., Isoaltion of eupatorin form Albizia odorotissima and its application for L-tryptophan sensing. Res. Chem. Intermed. 44 (2018), 6917–6931.
Rosenthal, P., Are artemisinin-based combination therapies for malaria beginning to fail in Africa. Am. J. Tropic. Med. Hygiene 105:4 (2021), 857–858, 10.4269/ajtmh.21-0797.
Sato, S., Plasmodium – a brief introduction to the parasites causing human malaria and their basic biology. J. Physiol. Anthropol. 40:1 (2021), 1–13, 10.1186/s40101-020-00251-9.
Shipa, S.J., Khandokar, L., Bari, M.S., Qais, N., Rashid, M.A., Haque, M.A., Mohamed, I.N., An insight into the anti-ulcerogenic potentials of medicinal herbs and their bioactive metabolites. J Ethnopharmacol, 293, 2022, 115245, 10.1016/j.jep.2022.115245.
Sinha, S., Batovska, D.I., Medhi, B., Radotra, B.D., Bhalla, A., Markova, N., Sehgal, R., In vitro anti-malarial efficacy of chalcones: cytotoxicity profile, mechanism of action and their effect on erythrocytes. Malar J, 18(1), 2019, 421, 10.1186/s12936-019-3060-z.
Smilkstein, M., Sriwilaijaroen, N., Kelly, X., Wilairat, P., Riscoe, M., Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob. Agents Chemother. 48 (2004), 1803–1806, 10.1128/AAC.48.5.1803-1806.2004.
Smit, F., van Biljon, R., Birkholtz, L., N'Da, D., Synthesis and in vitro biological evaluation of dihydroartemisinyl-chalcone esters. Eur. J. Med. Chem. 90 (2015), 33–44, 10.1016/j.ejmech.2014.11.016.
Sousa, E., Braz-Filho, R., Coutinho, M., Menezes, R., Rodrigues, G., Costa, M., New 132-epi- phaeophorbide-a ethyl ester from Lantana camara. Chem. Nat. Compound. 54:6 (2018), 1114–1116, 10.1007/s10600-018-2567-9.
Stensen, W.G., Jensen, E., Structural determination of 1,4-naphthoquinones by mass spectrometry/mass spectrometry. J. Mass Spectrom. 30 (1995), 1126–1132, 10.1002/jms.1190300809.
Suryati, S., Malasari, Y., Efdi, M., Mardiah, E., A cytotoxic compound from n-hexane fraction of Lantana camara Linn Leaves. Molekul 14:1 (2019), 31–36, 10.20884/1.jm.2019.14.1.477.
Szakàcs, G., Vàradi, A., Özvegy-Laczka, C., Sarkadi, B., The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov. Today 13 (2008), 379–393, 10.1016/j.drudis.2007.12.010.
Tabudi, J.R.S., Herbal medicines used in the treatment of malaria in Budiope county, Uganda. J. Ethnopharm. 116 (2008), 33–42, 10.1016/j.jep.2007.10.036.
Taguimjeu, P.L.K.T., Fongang, Y.S.F., Genva, M., Shinyuy, L.M., Held, J., Frederich, M., Ngouela, S.A., Fauconnier, M.-L., Antiplasmodial activity of a new chemotype of Croton sylvaticus Hochst. Ex C. Krauss essential oil. Int. J. Molecul. Sci., 26, 2025, 858, 10.3390/ijms26020858.
Tajbakhsh, E., Kwenti, T.E., Kheyri, P., Nezaratizade, S., Lindsay, D.S., Khamesipour, F., Antiplasmodial, antimalarial activities and toxicity of African medicinal plants: a systematic review of literature. Malar. J., 20, 2021, 349, 10.1186/s12936-021-03866-0.
Tali, T., Dize, D., Wouamba, N., Fokou, V., Keumoe, R., Ngansop, C., Njionhou, M., Mbouna, C., Tchokouaha, L., Maharaj, V., Khorommbi, K., Naidoo-Maharaj, D., Tchouankeu, J., Fekam, F., In vitro antiplasmodial activity-directed investigation and UPLC-MS fingerprint of promising extracts and fractions from Terminalia ivorensis A. Chev and Terminalia brownii Fresen. J. Ethnopharmcol., 296, 2022, 10.1016/j.jep.2022.115512.
Tamdem, M., Ntonga, A., Tsila, G., Tonga, C., Nkouandou, M., Djeukam, A., Ngaha, R., Ngo Hondt, E., Mbongue, R., Soh, T., Kamga, K., Foko, K., Dogmo, J., Menut, C., Biological activities of the essential oils of Cupressus macrocarpa, Lantana camara and Psidium littorale against Plasmodium falciparum welch, 1987 and Anopheles gambiae giles, 1902. J. Entomol. Zool. Stud. 8:6 (2020), 854–862, 10.22271/j.ento.2020.v8.i6l.7949.
Tsague, M.A.I.M., Etude Floristique Et Ethnobotanique Des Plantes Antipaludéennes Du Département de La Vina (Adamaoua – Cameroun). 2019, Mémoire de Master, Université de Ngaoundéré, Ngaoundéré, Cameroun.
Venkatesalu, V., Gopalan, N., Pillai, R., Singh, V., Chandrasekaran, M., Senthilkumar, A., Chandramouli, N., In vitro anti-plasmodial activity of some traditionally used medicinal plants against plasmodium falciparum. Parasitol. Res. 111 (2012), 497–501, 10.1007/s00436-012-2834-9.
Watanabe, R., Esaki, T., Kawashima, H., Natsume-Kitatani, Y., Nagao, C., Ohashi, R., Mizuguchi, K., Predicting fraction unbound in Human plasma from chemical structure: improved accuracy in the low value range. Mol. Pharm. 15 (2018), 5302–5311, 10.1021/acs.molpharmaceut.8b00785.
WHO, 2024. World Malaria Report 2024. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2024. (accessed on 14 January 2025).
WHO, 2023. World malaria report 2023. Geneva: World Health Organization; 2023. Licence: CC BY-NC-SA 3.0 IGO.
WHO. World Health Organization, 2021a. World Malaria Report 2021, World Malaria Report. 2021, World Health Organization, Geneve.
WHO. World Health Organization, 2021b. https://www.who.int/news/item/06-10-2021, 2021 who recommends-groundbreaking-malaria-vaccine-for-children-at-risk?Accessed on 22 March 2022.
WHO, 2020. World Health Organization, 2020. The E-2020 Eliminating 2019 progress report.
Xiong, G., Wu, Z., Yi, J., Li, F., Zhijiang, Y., Changyu, H., Mingzhu, Y., Xiangxiang, Z., Chengkun, W., Aiping, L., Xiang, C., Tingjun, H., Dongsheng, C., ADMET lab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 49:1 (2021), W5–W14, 10.1093/nar/gkab255.
Ye, M., Han, J., Chen, H., Zheng, J., Analysis of phenolic compounds in rhubarbs using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 18 (2007), 82–91, 10.1016/j.jasms.2006.08.009.
Zhan, C., Xiong, A., Shen, D., Yang, L., Wang, Z., Characterization pf the principal constituents of Danning Tablets, a Chinese formula consisting of seven herbs, by an UPLC-DAD-MS/MS approach. Molecules, 21, 2016, 631, 10.3390/molecules21050631.
Zoete, V., Cuendet, A., Grosdidier, A., Michielin, O., SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem. 32:11 (2011), 2359–2368, 10.1002/jcc.21816.