astro-ph.CO; General Relativity and Quantum Cosmology; High Energy Physics - Phenomenology
Abstract :
[en] The standard model of cosmology has provided a good phenomenological
description of a wide range of observations both at astrophysical and
cosmological scales for several decades. This concordance model is constructed
by a universal cosmological constant and supported by a matter sector described
by the standard model of particle physics and a cold dark matter contribution,
as well as very early-time inflationary physics, and underpinned by gravitation
through general relativity. There have always been open questions about the
soundness of the foundations of the standard model. However, recent years have
shown that there may also be questions from the observational sector with the
emergence of differences between certain cosmological probes. In this White
Paper, we identify the key objectives that need to be addressed over the coming
decade together with the core science projects that aim to meet these
challenges. These discordances primarily rest on the divergence in the
measurement of core cosmological parameters with varying levels of statistical
confidence. These possible statistical tensions may be partially accounted for
by systematics in various measurements or cosmological probes but there is also
a growing indication of potential new physics beyond the standard model. After
reviewing the principal probes used in the measurement of cosmological
parameters, as well as potential systematics, we discuss the most promising
array of potential new physics that may be observable in upcoming surveys. We
also discuss the growing set of novel data analysis approaches that go beyond
traditional methods to test physical models. [Abridged]
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Di Valentino, Eleonora
Levi Said, Jackson
Riess, Adam
Pollo, Agnieszka
Poulin, Vivian
Gómez-Valent, Adrià
Weltman, Amanda
Palmese, Antonella
Huang, Caroline D.
van de Bruck, Carsten
Shekhar Saraf, Chandra
Kuo, Cheng-Yu
Uhlemann, Cora
Grandón, Daniela
Paz, Dante
Eckert, Dominique
Teixeira, Elsa M.
Saridakis, Emmanuel N.
Ó Colgáin, Eoin
Beutler, Florian
Niedermann, Florian
Bajardi, Francesco
Barenboim, Gabriela
Gubitosi, Giulia
Musella, Ilaria
Banik, Indranil
Szapudi, Istvan
Singal, Jack
Haro Cases, Jaume
Chluba, Jens
Torrado, Jesús
Mifsud, Jurgen
Jedamzik, Karsten
Said, Khaled
Dialektopoulos, Konstantinos
Herold, Laura
Perivolaropoulos, Leandros
Zu, Lei
Galbany, Lluís
Breuval, Louise
Visinelli, Luca
Escamilla, Luis A.
Anchordoqui, Luis A.
Sheikh-Jabbari, M. M.
Lembo, Margherita
Giovanna Dainotti, Maria
Vincenzi, Maria
Asgari, Marika
Gerbino, Martina
Forconi, Matteo
Cantiello, Michele
Moresco, Michele
Benetti, Micol
Schöneberg, Nils
Akarsu, Özgür
Nunes, Rafael C.
Christian Bernardo, Reginald
Chávez, Ricardo
Anderson, Richard I.
Watkins, Richard
Capozziello, Salvatore
Li, Siyang
Vagnozzi, Sunny
Pan, Supriya
Treu, Tommaso
Irsic, Vid
Handley, Will
Giarè, William
Murakami, Yukei
Poudou, Adèle
Heavens, Alan
Kogut, Alan
Domi, Alba
Łukasz Lenart, Aleksander
Melchiorri, Alessandro
Vadalà, Alessandro
Amon, Alexandra
Bonilla, Alexander
Reeves, Alexander
Zhuk, Alexander
Bonanno, Alfio
Övgün, Ali
Pisani, Alice
Talebian, Alireza
Abebe, Amare
Aboubrahim, Amin
Luisa González Morán, Ana
Kovács, András
Papatriantafyllou, Andreas
Liddle, Andrew R.
Lymperis, Andreas
Paliathanasis, Andronikos
Borowiec, Andrzej
Kumar Yadav, Anil
Yadav, Anita
Ananda Sen, Anjan
John William Mini Latha, Anjitha
Christine Davis, Anne
Shajib, Anowar J.
Walters, Anthony
Idicherian Lonappan, Anto
Chudaykin, Anton
Capodagli, Antonio
da Silva, Antonio
De Felice, Antonio
Racioppi, Antonio
Soler Oficial, Araceli
Montiel, Ariadna
Favale, Arianna
Bernui, Armando
Crystal Velasco, Arrianne
Heinesen, Asta
Bakopoulos, Athanasios
Chatzistavrakidis, Athanasios
Khanpour, Bahman
Sathyaprakash, Bangalore S.
Zgirski, Bartek
L'Huillier, Benjamin
Famaey, Benoit
Jain, Bhuvnesh
Marek, Biesiada
Zhang, Bing
Karmakar, Biswajit
Dragovich, Branko
Thomas, Brooks
Correa, Carlos
Boiza, Carlos G.
Marques, Catarina
Escamilla-Rivera, Celia
Tzerefos, Charalampos
Zhang, Chi
De Leo, Chiara
Pfeifer, Christian
Lee, Christine
Venter, Christo
Gomes, Cláudio
Roque De bom, Clecio
Moreno-Pulido, Cristian
Iosifidis, Damianos
Grin, Dan
Blixt, Daniel
Scolnic, Dan
Oriti, Daniele
Dobrycheva, Daria
Bettoni, Dario
Benisty, David
Fernández-Arenas, David
Wiltshire, David L.
Sanchez Cid, David
Tamayo, David
Valls-Gabaud, David
Pedrotti, Davide
Wang, Deng
Staicova, Denitsa
Totolou, Despoina
Rubiera-Garcia, Diego
Milaković, Dinko
Pesce, Dom
Sluse, Dominique ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
CosmoVerse Network, CA21136 - Addressing observational tensions in cosmology with systematics and fundamental physics, CosmoVerse Network, https://www.cost.eu/actions/CA21136.
CosmoVerse Network, CA21136 - Addressing observational tensions in cosmology with systematics and fundamental physics, CosmoVerse Network, https://cosmoversetensions.eu/.
Abdalla, E., et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. JHEAp 34 (2022), 49–211 arXiv:2203.06142 [astro-ph.CO].
Di Valentino, E., et al. Snowmass2021 - Letter of interest cosmology intertwined I: Perspectives for the next decade. Astropart. Phys., 131, 2021, 102606 arXiv:2008.11283 [astro-ph.CO].
Di Valentino, E., et al. Snowmass2021 - Letter of interest cosmology intertwined II: The Hubble constant tension. Astropart. Phys., 131, 2021, 102605 arXiv:2008.11284 [astro-ph.CO].
Di Valentino, E., et al. Cosmology intertwined III: fσ8 and S8. Astropart. Phys., 131, 2021, 102604 arXiv:2008.11285 [astro-ph.CO].
Di Valentino, E., et al. Snowmass2021 - Letter of interest cosmology intertwined IV: The age of the universe and its curvature. Astropart. Phys., 131, 2021, 102607 arXiv:2008.11286 [astro-ph.CO].
CosmoVerse Network Seminars, CA21136 - Addressing observational tensions in cosmology with systematics and fundamental physics, CosmoVerse Network Seminars, https://cosmoversetensions.eu/for-scientists/cosmoverse-seminars/.
CosmoVerse Network Conferences, CA21136 - Addressing observational tensions in cosmology with systematics and fundamental physics, CosmoVerse Network Conferences, https://cosmoversetensions.eu/category/event/conferences/.
CosmoVerse Network School, CA21136 - Addressing observational tensions in cosmology with systematics and fundamental physics, CosmoVerse Network School, https://cosmoversetensions.eu/event/cosmoverseschoolcorfu/.
CosmoVerse Network Training Series, CA21136 - Addressing observational tensions in cosmology with systematics and fundamental physics, CosmoVerse Network Training Series, https://cosmoversetensions.eu/for-scientists/training-series/.
CosmoVerse Network Training Series, CA21136 - Addressing observational tensions in cosmology with systematics and fundamental physics, CosmoVerse Network Training Series, https://cosmoversetensions.eu/for-scientists/journal-club/.
Rácz, G., Dobos, L., Beck, R., Szapudi, I., Csabai, I., Concordance cosmology without dark energy. Mon. Not. R. Astron. Soc. 469:1 (2017), L1–L5 arXiv:1607.08797 [astro-ph.CO].
Beck, R., Csabai, I., Rácz, G., Szapudi, I., The integrated Sachs–Wolfe effect in the AvERA cosmology. Mon. Not. R. Astron. Soc. 479:3 (2018), 3582–3591 arXiv:1801.08566 [astro-ph.CO].
Freedman, W.L., et al. The Carnegie-Chicago Hubble Program. VIII. An independent determination of the Hubble constant based on the tip of the red giant branch. Astrophys. J., 882, 2019, 34 arXiv:1907.05922 [astro-ph.CO].
Anand, G.S., et al. Tip of the red giant branch distances with JWST: An absolute calibration in NGC 4258 and first applications to type Ia Supernova hosts. Astrophys. J., 966(1), 2024, 89 arXiv:2401.04776 [astro-ph.CO].
Lee, A.J., Freedman, W.L., Jang, I.S., Madore, B.F., Owens, K.A., First JWST observations of JAGB stars in the SN Ia host Galaxies: NGC 7250, NGC 4536, NGC 3972. Astrophys. J., 961(1), 2024, 132 arXiv:2312.02282 [astro-ph.GA].
Li, S., Riess, A.G., Casertano, S., Anand, G.S., Scolnic, D.M., Yuan, W., Breuval, L., Huang, C.D., Reconnaissance with JWST of the J-region asymptotic giant branch in distance ladder galaxies: From irregular luminosity functions to approximation of the Hubble constant. Astrophys. J., 966(1), 2024, 20 arXiv:2401.04777 [astro-ph.CO].
Huang, C.D., Riess, A.G., Yuan, W., Macri, L.M., Zakamska, N.L., Casertano, S., Whitelock, P.A., Hoffmann, S.L., Filippenko, A.V., Scolnic, D., Hubble space telescope observations of Mira variables in the type Ia supernova host NGC 1559: An alternative candle to measure the Hubble constant. Astrophys. J., 889, 2020, 5 arXiv:1908.10883 [astro-ph.CO].
Huang, C.D., et al. The Mira distance to M101 and a 4% measurement of H 0. Astrophys. J., 963(2), 2024, 83 arXiv:2312.08423 [astro-ph.CO].
Anand, G.S., Tully, R.B., Cohen, Y., Makarov, D.I., Makarova, L.N., Jensen, J.B., Blakeslee, J.P., Cantiello, M., Kourkchi, E., Raimondo, G., The population II extragalactic distance scale: A TRGB distance to the Fornax cluster with JWST. Astrophys. J., 973(2), 2024, 83 arXiv:2405.03743 [astro-ph.CO].
de Jaeger, T., Galbany, L., Riess, A.G., Stahl, B.E., Shappee, B.J., Filippenko, A.V., Zheng, W., A 5 per cent measurement of the Hubble–Lemaître constant from Type II supernovae. Mon. Not. R. Astron. Soc. 514:3 (2022), 4620–4628 arXiv:2203.08974 [astro-ph.CO].
Csörnyei, G., Vogl, C., Taubenberger, S., Flörs, A., Blondin, S., Cudmani, M.G., Holas, A., Kressierer, S., Leibundgut, B., Hillebrandt, W., Consistency of Type IIP supernova sibling distances. Astron. Astrophys., 672, 2023, A129 arXiv:2302.03112 [astro-ph.SR].
Kourkchi, E., Tully, R.B., Courtois, H.M., Dupuy, A., Guinet, D., Cosmicflows-4: the baryonic Tully–Fisher relation providing ∼10 000 distances. Mon. Not. R. Astron. Soc. 511:4 (2022), 6160–6178 arXiv:2201.13023 [astro-ph.GA].
Riess, A.G., et al. JWST validates HST distance measurements: Selection of supernova subsample explains differences in JWST estimates of local H 0. Astrophys. J., 977(1), 2024, 120 arXiv:2408.11770 [astro-ph.CO].
Freedman, W.L., et al., HST Collaboration. Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 553 (2001), 47–72 arXiv:astro-ph/0012376.
Gaia Collaboration, Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys., 674, 2023, A1 arXiv:2208.00211 [astro-ph.GA].
Pietrzyński, G., et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567:7747 (2019), 200–203.
Graczyk, D., Pietrzyński, G., Thompson, I.B., Gieren, W., Zgirski, B., Villanova, S., Górski, M., Wielgórski, P., Karczmarek, P., Narloch, W., Pilecki, B., Taormina, M., Smolec, R., Suchomska, K., Gallenne, A., Nardetto, N., Storm, J., Kudritzki, R.-P., Kałuszyński, M., Pych, W., A distance determination to the small magellanic cloud with an accuracy of better than two percent based on late-type eclipsing binary stars. Astrophys. J., 904(1), 2020, 13 arXiv:2010.08754 [astro-ph.GA].
Reid, M.J., Pesce, D.W., Riess, A.G., An improved distance to NGC 4258 and its implications for the Hubble constant. Astrophys. J. Lett., 886(2), 2019, L27 arXiv:1908.05625 [astro-ph.GA].
Scolnic, D., et al. The Pantheon+ analysis: The full data set and light-curve release. Astrophys. J., 938(2), 2022, 113 arXiv:2112.03863 [astro-ph.CO].
Brout, D., et al. The Pantheon+ analysis: Cosmological constraints. Astrophys. J., 938(2), 2022, 110 arXiv:2202.04077 [astro-ph.CO].
Riess, A.G., et al. A comprehensive measurement of the local value of the Hubble constant with 1 km/s/Mpc uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett., 934(1), 2022, L7 arXiv:2112.04510 [astro-ph.CO].
Breuval, L., Riess, A.G., Casertano, S., Yuan, W., Macri, L.M., Romaniello, M., Murakami, Y.S., Scolnic, D., Anand, G.S., Soszyński, I., Small magellanic cloud cepheids observed with the Hubble space telescope provide a new anchor for the SH0ES distance ladder. Astrophys. J., 973(1), 2024, 30 arXiv:2404.08038 [astro-ph.CO].
Galbany, L., et al. An updated measurement of the Hubble constant from near-infrared observations of Type Ia supernovae. Astron. Astrophys., 679, 2023, A95 arXiv:2209.02546 [astro-ph.CO].
Scowcroft, V., Freedman, W.L., Madore, B.F., Monson, A., Persson, S.E., Rich, J., Seibert, M., Rigby, J.R., The Carnegie Hubble program: the distance and structure of the SMC as revealed by mid-infrared observations of cepheids. Astrophys. J., 816(2), 2016, 49 arXiv:1502.06995 [astro-ph.GA].
Soszyński, I., Udalski, A., Szymański, M.K., Skowron, D., Pietrzyński, G., Poleski, R., Pietrukowicz, P., Skowron, J., Mróz, P., Kozłowski, S., Wyrzykowski, Ł., Ulaczyk, K., Pawlak, M., The OGLE collection of variable stars. Classical cepheids in the Magellanic system. Acta Astron. 65:4 (2015), 297–312 arXiv:1601.01318 [astro-ph.SR].
Ripepi, V., Cioni, M.-R.L., Moretti, M.I., Marconi, M., Bekki, K., Clementini, G., de Grijs, R., Emerson, J., Groenewegen, M.A.T., Ivanov, V.D., Molinaro, R., Muraveva, T., Oliveira, J.M., Piatti, A.E., Subramanian, S., van Loon, J.T., The VMC survey - XXV. The 3D structure of the small magellanic cloud from classical cepheids. Mon. Not. R. Astro. Soc. 472:1 (2017), 808–827 arXiv:1707.04500 [astro-ph.GA].
Zhevakin, S.A., Physical basis of the pulsation theory of variable stars. Ann. Rev. Astron. Astrophys. 1 (1963), 367–400.
Cox, J.P., Theory of Stellar Pulsation. (PSA-2), Volume 2, 1980, Princeton University Press.
Leavitt, H.S., Pickering, E.C., Periods of 25 variable stars in the small magellanic cloud. Harv. Obs. Circ. 173 (1912), 1–3.
Shapley, H., Studies based on the colors and magnitudes in stellar clusters. IX. Three notes on cepheid variation. Astrophys. J. 49 (1919), 24–41.
Hoffmann, S.L., et al. Optical identification of cepheids in 19 host galaxies of type Ia supernovae and NGC 4258 with the Hubble Space Telescope. Astrophys. J., 830(1), 2016, 10 arXiv:1607.08658 [astro-ph.SR].
Inno, L., Matsunaga, N., Romaniello, M., Bono, G., Monson, A., Ferraro, I., Iannicola, G., Persson, E., Buonanno, R., Freedman, W., Gieren, W., Groenewegen, M.A.T., Ita, Y., Laney, C.D., Lemasle, B., Madore, B.F., Nagayama, T., Nakada, Y., Nonino, M., Pietrzyński, G., Primas, F., Scowcroft, V., Soszyński, I., Tanabé, T., Udalski, A., New NIR light-curve templates for classical Cepheids. Astron. Astrophys., 576, 2015, A30 arXiv:1410.5460 [astro-ph.SR].
Breuval, L., Riess, A.G., Macri, L.M., Li, S., Yuan, W., Casertano, S., Konchady, T., Trahin, B., Durbin, M.J., Williams, B.F., A 1.3% distance to M33 from Hubble Space Telescope cepheid photometry. Astrophys. J., 951(2), 2023, 118 arXiv:2304.00037 [astro-ph.CO].
Anderson, R.I., On cepheid distances in the H0 measurement. 2024, 10.48550/arXiv.2403.02801 arXiv e-prints, arXiv:2403.02801, arXiv:2403.02801 [astro-ph.SR].
Riess, A.G., Casertano, S., Yuan, W., Macri, L.M., Scolnic, D., Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM. Astrophys. J., 876(1), 2019, 85 arXiv:1903.07603 [astro-ph.CO].
Riess, A.G., Narayan, G., Calamida, A., Calibration of the WFC3-IR count-rate nonlinearity, sub-percent accuracy for a factor of a million in flux. 2019, 1 Instrument Science Report WFC3 2019-1, 13 pages.
Riess, A.G., Anand, G.S., Yuan, W., Casertano, S., Dolphin, A., Macri, L.M., Breuval, L., Scolnic, D., Perrin, M., Anderson, R.I., Crowded no more: The accuracy of the Hubble constant tested with high-resolution observations of cepheids by JWST. Astrophys. J. Lett., 956(1), 2023, L18 arXiv:2307.15806 [astro-ph.CO].
Riess, A.G., Anand, G.S., Yuan, W., Casertano, S., Dolphin, A., Macri, L.M., Breuval, L., Scolnic, D., Perrin, M., Anderson, I.R., JWST observations reject unrecognized crowding of cepheid photometry as an explanation for the Hubble tension at 8σ confidence. Astrophys. J. Lett., 962(1), 2024, L17 arXiv:2401.04773 [astro-ph.CO].
Kennicutt, R.C. Jr., et al. The HST key project on the extragalactic distance scale. 13. The metallicity dependence of the cepheid distance scale. Astrophys. J., 498, 1998, 181 arXiv:astro-ph/9712055.
Sakai, S., Ferrarese, L., Kennicutt, R., Saha, A., The effect of metallicity on cepheid - based distances. Astrophys. J. 608 (2004), 42–61 arXiv:astro-ph/0402499.
Macri, L.M., Stanek, K.Z., Bersier, D., Greenhill, L., Reid, M., A new cepheid distance to the maser-host galaxy NGC 4258 and its implications for the Hubble constant. Astrophys. J. 652 (2006), 1133–1149 arXiv:astro-ph/0608211.
Ripepi, V., Catanzaro, G., Molinaro, R., Gatto, M., De Somma, G., Marconi, M., Romaniello, M., Leccia, S., Musella, I., Trentin, E., Clementini, G., Testa, V., Cusano, F., Storm, J., Cepheid metallicity in the Leavitt Law (C-metall) survey - I. HARPS-N@TNG spectroscopy of 47 classical cepheids and 1 BL her variables. Mon. Not. R. Astro. Soc. 508:3 (2021), 4047–4071 arXiv:2108.11391 [astro-ph.GA].
Bhardwaj, A., et al. High-resolution spectroscopic metallicities of Milky Way cepheid standards and their impact on the Leavitt Law and the Hubble constant. Astrophys. J. Lett., 955(1), 2023, L13 arXiv:2309.03263 [astro-ph.SR].
Trentin, E., Ripepi, V., Molinaro, R., Catanzaro, G., Storm, J., De Somma, G., Marconi, M., Bhardwaj, A., Gatto, M., Testa, V., Musella, I., Clementini, G., Leccia, S., Cepheid metallicity in the Leavitt Law (C- MetaLL) survey. IV. The metallicity dependence of cepheid period-luminosity relations. Astron. Astrophys., 681, 2024, A65 arXiv:2310.03603 [astro-ph.SR].
Breuval, L., Riess, A.G., Kervella, P., Anderson, R.I., Romaniello, M., An improved calibration of the wavelength dependence of metallicity on the cepheid Leavitt Law. Astrophys. J., 939(2), 2022, 89 arXiv:2205.06280 [astro-ph.GA].
Anderson, R.I., Saio, H., Ekström, S., Georgy, C., Meynet, G., On the effect of rotation on populations of classical cepheids II. Pulsation analysis for metallicities 0.014, 0.006, and 0.002. Astron. Astrophys., 591, 2016, A8 arXiv:1604.05691 [astro-ph.SR].
De Somma, G., Marconi, M., Molinaro, R., Ripepi, V., Leccia, S., Musella, I., An updated metal-dependent theoretical scenario for classical cepheids. Astrophys. J. Suppl., 262(1), 2022, 25 arXiv:2206.11154 [astro-ph.SR].
Madore, B.F., The period-luminosity relation. IV - Intrinsic relations and reddenings for the large magellanic cloud cepheids. Astrophys. J. 253 (1982), 575–579.
Romaniello, M., et al. The iron and oxygen content of LMC Classical Cepheids and its implications for the extragalactic distance scale and Hubble constant - Equivalent width analysis with Kurucz stellar atmosphere models. Astron. Astrophys., 658, 2022, A29 arXiv:2110.08860 [astro-ph.CO] Erratum: Astron. Astrophys., 662, 2022, C1.
Zaritsky, D., Kennicutt, R.C., Huchra, J.P., H II regions and the abundance properties of spiral galaxies. Astrophys. J., 420, 1994, 87.
Riess, A.G., Li, W.-D., Stetson, P.B., Filippenko, A.V., Jha, S., Kirshner, R.P., Challis, P.M., Garnavich, P.M., Chornock, R., Cepheid calibrations from the Hubble Space Telescope of the luminosity of two recent type Ia supernovae and a re-determination of the Hubble constant. Astrophys. J. 627 (2005), 579–607 arXiv:astro-ph/0503159.
Riess, A.G., et al. Cepheid calibrations of modern type Ia supernovae: Implications for the Hubble constant. Astrophys. J. Suppl. 183 (2009), 109–141 arXiv:0905.0697 [astro-ph.CO].
Galbany, L., et al. Nearby supernova host galaxies from the CALIFA Survey: II. SN environmental metallicity. Astron. Astrophys., 591, 2016, A48 arXiv:1603.07808 [astro-ph.GA].
Kervella, P., Gallenne, A., Remage Evans, N., Szabados, L., Arenou, F., Mérand, A., Proto, Y., Karczmarek, P., Nardetto, N., Gieren, W., Pietrzynski, G., Multiplicity of Galactic Cepheids and RR Lyrae stars from Gaia DR2. I. Binarity from proper motion anomaly. Astron. Astrophys., 623, 2019, A116 arXiv:1903.03632 [astro-ph.SR].
Karczmarek, P., Hajdu, G., Pietrzyński, G., Gieren, W., Narloch, W., Smolec, R., Wiktorowicz, G., Belczynski, K., Synthetic population of binary cepheids. II. The effect of companion light on the extragalactic distance scale. Astrophys. J., 950(2), 2023, 182 arXiv:2303.15664 [astro-ph.GA].
Anderson, R.I., Riess, A.G., On cepheid distance scale bias due to stellar companions and cluster populations. Astrophys. J., 861(1), 2018, 36 arXiv:1712.01065 [astro-ph.SR].
Mochejska, B.J., Macri, L.M., Sasselov, D.D., Stanek, K.Z., The direct project: influence of blending on the cepheid distance scale. I. Cepheids in m31. Astron. J., 120, 2000, 810 arXiv:astro-ph/9908293.
Follin, B., Knox, L., Insensitivity of the distance ladder Hubble constant determination to Cepheid calibration modelling choices. Mon. Not. R. Astron. Soc. 477:4 (2018), 4534–4542 arXiv:1707.01175 [astro-ph.CO].
Perivolaropoulos, L., Skara, F., Hubble tension or a transition of the cepheid SnIa calibrator parameters?. Phys. Rev. D, 104(12), 2021, 123511 arXiv:2109.04406 [astro-ph.CO].
Hahn, C., Starkenburg, T.K., Anglés-Alcázar, D., Choi, E., Davé, R., Dickey, C., Iyer, K.G., Maller, A.H., Somerville, R.S., Tinker, J.L., Yung, L.Y.A., IQ collaboratory. III. The empirical dust attenuation framework-taking hydrodynamical simulations with a grain of dust. Astrophys. J., 926(2), 2022, 122 arXiv:2106.09741 [astro-ph.GA].
Casertano, S., et al. Parallax of galactic cepheids from spatially scanning the wide field camera 3 on the Hubble Space Telescope: The Case of SS Canis Majoris. Astrophys. J., 825(1), 2016, 11 arXiv:1512.09371 [astro-ph.SR].
Riess, A.G., et al. New parallaxes of galactic cepheids from spatially scanning the Hubble space telescope: Implications for the Hubble constant. Astrophys. J., 855(2), 2018, 136 arXiv:1801.01120 [astro-ph.SR].
Lindegren, L., Bastian, U., Biermann, M., Bombrun, A., de Torres, A., Gerlach, E., Geyer, R., Hernández, J., Hilger, T., Hobbs, D., Klioner, S.A., Lammers, U., McMillan, P.J., Ramos-Lerate, M., Steidelmüller, H., Stephenson, C.A., van Leeuwen, F., Gaia early data release 3. Parallax bias versus magnitude, colour, and position. Astron. Astrophys., 649, 2021, A4 arXiv:2012.01742 [astro-ph.IM].
Riess, A.G., Casertano, S., Yuan, W., Bowers, J.B., Macri, L., Zinn, J.C., Scolnic, D., Cosmic distances calibrated to 1% precision with Gaia EDR3 parallaxes and Hubble Space Telescope photometry of 75 Milky Way Cepheids confirm tension with ΛCDM. Astrophys. J. Lett., 908(1), 2021, L6 arXiv:2012.08534 [astro-ph.CO].
Li, S., Casertano, S., Riess, A.G., A maximum likelihood calibration of the tip of the red giant branch luminosity from high latitude field giants using Gaia early data release 3 parallaxes. Astrophys. J., 939(2), 2022, 96 arXiv:2202.11110 [astro-ph.GA].
Anderson, R.I., Eyer, L., Mowlavi, N., Cepheids in open clusters: An 8-D all-sky census. Mon. Not. R. Astron. Soc., 434, 2013, 2238 arXiv:1212.5119 [astro-ph.GA].
Breuval, L., et al. The Milky Way cepheid Leavitt Law based on Gaia DR2 parallaxes of companion stars and host open cluster populations. Astron. Astrophys., 643, 2020, A115 arXiv:2006.08763 [astro-ph.SR].
Riess, A.G., Breuval, L., Yuan, W., Casertano, S., Macri, L.M., Bowers, J.B., Scolnic, D., Cantat-Gaudin, T., Anderson, R.I., Reyes, M.C., Cluster cepheids with high precision Gaia parallaxes, low zero-point uncertainties, and Hubble Space Telescope photometry. Astrophys. J., 938(1), 2022, 36 arXiv:2208.01045 [astro-ph.CO].
Reyes, M.C., Anderson, R.I., A 0.9% calibration of the galactic cepheid luminosity scale based on Gaia DR3 data of open clusters and cepheids. Astron. Astrophys., 672, 2023, A85 arXiv:2208.09403 [astro-ph.GA].
Yuan, W., Macri, L.M., Riess, A.G., Brink, T.G., Casertano, S., Filippenko, A.V., Hoffmann, S.L., Huang, C.D., Scolnic, D., Absolute calibration of cepheid Period–Luminosity relations in NGC 4258. Astrophys. J., 940(1), 2022, 64 arXiv:2203.06681 [astro-ph.GA].
Li, S., Riess, A.G., Busch, M.P., Casertano, S., Macri, L.M., Yuan, W., A sub-2% distance to M31 from photometrically homogeneous near-infrared cepheid Period–Luminosity relations measured with the Hubble Space Telescope. Astrophys. J., 920(2), 2021, 84 arXiv:2107.08029 [astro-ph.CO].
Argon, A.L., Greenhill, L.J., Moran, J.M., Reid, M.J., Menten, K.M., Inoue, M., The IC133 water vapor maser in the galaxy M33: A geometric distance. Astrophys. J. 615 (2004), 702–719 arXiv:astro-ph/0407486.
Bonanos, A.Z., et al. The first DIRECT distance determination to a detached eclipsing binary in M33. Astrophys. J. 652 (2006), 313–322 arXiv:astro-ph/0606279.
Taormina, M., Kudritzki, R.-P., Puls, J., Pilecki, B., Sextl, E., Pietrzyński, G., Urbaneja, M.A., Gieren, W., Toward early-type eclipsing binaries as extragalactic milestones. II. NLTE spectral analysis and stellar parameters of the detached O-type system OGLE-LMC-ECL-06782 in the LMC. Astrophys. J., 890(2), 2020, 137 arXiv:2001.04762 [astro-ph.SR].
Salsi, A., Nardetto, N., Mourard, D., Graczyk, D., Taormina, M., Creevey, O., Hocdé, V., Morand, F., Perraut, K., Pietrzynski, G., Schaefer, G.H., Progress on the calibration of surface brightness-color relations for early- and late-type stars. Astron. Astrophys., 652, 2021, A26 arXiv:2106.01073 [astro-ph.SR].
Ngeow, C.-C., Bhardwaj, A., Henderson, J.-Y., Graham, M.J., Laher, R.R., Medford, M.S., Purdum, J., Rusholme, B., Zwicky transient facility and globular clusters: The period-luminosity and period-wesenheit relations for Type II Cepheids. Astrophys. J., 164(4), 2022, 154 arXiv:2208.03404 [astro-ph.SR].
Narloch, W., Hajdu, G., Pietrzyński, G., Gieren, W., Wielgórski, P., Zgirski, B., Karczmarek, P., Górski, M., Graczyk, D., Period-luminosity relations for galactic classical cepheids in the sloan bands. Astrophys. J., 953(1), 2023, 14 arXiv:2306.06326 [astro-ph.GA].
Bresolin, F., Gieren, W., Kudritzki, R.-P., Pietrzynski, G., Urbaneja, M.A., Carraro, G., Extragalactic chemical abundances: do HII regions and young stars tell the same story? The case of the spiral galaxy NGC 300. Astrophys. J. 700 (2009), 309–330 arXiv:0905.2791 [astro-ph.CO].
Bresolin, F., Kudritzki, R.-P., Urbaneja, M.A., The metallicity and distance of NGC 2403 from blue supergiants. Astrophys. J., 940(1), 2022, 32 arXiv:2209.13135 [astro-ph.GA].
Ngeow, C.-C., Kanbur, S.M., Nikolaev, S., Buonaccorsi, J., Cook, K.H., Welch, D.L., Further empirical evidence for the non-linearity of the period-luminosity relations as seen in the Large Magellanic Cloud Cepheids. Mon. Not. R. Astron. Soc. 363 (2005), 831–846 arXiv:astro-ph/0507601.
Sandage, A., Tammann, G.A., Reindl, B., New period-luminosity and period-color relations of classical Cepheids: III. Cepheids in SMC. Astron. Astrophys. 493 (2009), 471–479 arXiv:0810.1780 [astro-ph].
Kodric, M., et al. Properties of M31. II: A Cepheid disk sample derived from the first year of PS1 PAndromeda data. AJ, 145, 2013, 106 arXiv:1301.6170 [astro-ph.CO].
Bhardwaj, A., Kanbur, S.M., Macri, L.M., Singh, H.P., Ngeow, C.-C., Ishida, E.E.O., Large magellanic cloud near-infrared synoptic survey - III. A statistical study of non-linearity in the Leavitt Laws. Mon. Not. R. Astro. Soc. 457:2 (2016), 1644–1665 arXiv:1601.00953 [astro-ph.GA].
Kushnir, D., Sharon, A., A cepheid systematics-free test of H0 to ≲2.5% accuracy using SH0ES photometry. 2024 arXiv:2404.16102 [astro-ph.CO].
Kuo, C., Braatz, J.A., Reid, M.J., Lo, F.K.Y., Condon, J.J., Impellizzeri, C.M.V., Henkel, C., The megamaser cosmology project. V. An angular diameter distance to NGC 6264 at 140 Mpc. Astrophys. J., 767, 2013, 155 arXiv:1207.7273 [astro-ph.CO].
Kuo, C.Y., Braatz, J.A., Lo, K.Y., Reid, M.J., Suyu, S.H., Pesce, D.W., Condon, J.J., Henkel, C., Impellizzeri, C.M.V., The megamaser cosmology project. VI. Observations of NGC 6323. Astrophys. J., 800(1), 2015, 26 arXiv:1411.5106 [astro-ph.GA].
Cooke, B., Elitzur, M., Water masers in late-type stars. Astrophys. J. 295 (1985), 175–182.
Argon, A.L., Greenhill, L.J., Reid, M.J., Moran, J.M., Humphreys, E.M.L., Toward a new geometric distance to the active galaxy NGC4258. 1. VLBI monitoring of water maser emission. Astrophys. J. 659 (2007), 1040–1062 arXiv:astro-ph/0701396.
Kormendy, J., Ho, L.C., Coevolution (or not) of supermassive black holes and host galaxies. Ann. Rev. Astron. Astrophys. 51 (2013), 511–653 arXiv:1304.7762 [astro-ph.CO].
Herrnstein, J.R., Moran, J.M., Greenhill, L.J., Diamond, P.J., Inoue, M., Nakai, N., Miyoshi, M., Henkel, C., Riess, A., A geometric distance to the galaxy NGC 4258 from orbital motions in a nuclear gas disk. Nature 400 (1999), 539–541 arXiv:astro-ph/9907013.
Kuo, C.Y., Braatz, J.A., Condon, J.J., Impellizzeri, C.M.V., Lo, K.Y., Zaw, I., Schenker, M., Henkel, C., Reid, M.J., Greene, J.E., The megamaser cosmology project. III. Accurate masses of seven supermassive black holes in active galaxies with circumnuclear megamaser disks. Astrophys. J., 727, 2011, 20 arXiv:1008.2146 [astro-ph.CO].
Gao, F., Braatz, J.A., Reid, M.J., Condon, J.J., Greene, J.E., Henkel, C., Impellizzeri, C.M.V., Lo, K.Y., Kuo, C.Y., Pesce, D.W., Wagner, J., Zhao, W., The megamaser cosmology project. IX. Black hole masses for three maser galaxies. Astrophys. J., 834(1), 2017, 52 arXiv:1610.06802 [astro-ph.GA].
Reid, M.J., Braatz, J.A., Condon, J.J., Lo, K.Y., Kuo, C.Y., Impellizzeri, C.M.V., Henkel, C., The megamaser cosmology project: IV. A direct measurement of the Hubble constant from UGC 3789. Astrophys. J., 767, 2013, 154 arXiv:1207.7292 [astro-ph.CO].
Gao, F., Braatz, J.A., Reid, M.J., Lo, K.Y., Condon, J.J., Henkel, C., Kuo, C.Y., Impellizzeri, C.M.V., Pesce, D.W., Zhao, W., The megamaser cosmology project VIII. A geometric distance to NGC 5765b. Astrophys. J., 817(2), 2016, 128 arXiv:1511.08311 [astro-ph.GA].
Pesce, D.W., et al. The megamaser cosmology project. XIII. Combined Hubble constant constraints. Astrophys. J. Lett., 891(1), 2020, L1 arXiv:2001.09213 [astro-ph.CO].
Reid, M.J., Braatz, J.A., Condon, J.J., Greenhill, L.J., Henkel, C., Lo, K.Y., The megamaser cosmology project: I. VLBI observations of UGC 3789. Astrophys. J. 695 (2009), 287–291 arXiv:0811.4345 [astro-ph].
Braatz, J.A., Reid, M.J., Humphreys, E.M.L., Henkel, C., Condon, J.J., Lo, K.Y., The megamaser cosmology Project. II. The angular-diameter distance to UGC 3789. Astrophys. J. 718 (2010), 657–665 arXiv:1005.1955 [astro-ph.CO].
Kuo, C.Y., Constantin, A., Braatz, J.A., Chung, H.H., Witherspoon, C.A., Pesce, D., Impellizzeri, C.M.V., Gao, F., Hao, L., Woo, J.H., Zaw, I., Enhancing the H2O megamaser detection rate using optical and mid-infrared photometry. Astrophys. J., 860(2), 2018, 169 arXiv:1712.04204 [astro-ph.GA].
Kuo, C.Y., Hsiang, J.Y., Chung, H.H., Constantin, A., Chang, Y.Y., Cunha, E.d., Pesce, D., Chien, W.T., Chen, B.Y., Braatz, J.A., Zaw, I., Matsushita, S., Lin, J.C., A more efficient search for H2O megamaser galaxies: The power of X-ray and mid-infrared photometry. Astrophys. J., 892(1), 2020, 18 arXiv:1911.10721 [astro-ph.GA].
Pesce, D.W., Braatz, J.A., Condon, J.J., Gao, F., Henkel, C., Litzinger, E., Lo, K.Y., Reid, M.J., The megamaser cosmology project. VII. Investigating disk physics using spectral monitoring observations. Astrophys. J., 810(1), 2015, 65 arXiv:1507.07904 [astro-ph.GA].
Bragg, A.E., Greenhill, L.J., Moran, J.M., Henkel, C., Accelerations of water masers in ngc4258. Astrophys. J., 535, 2000, 73 arXiv:astro-ph/0001543.
Humphreys, E.M.L., Reid, M.J., Greenhill, L.J., Moran, J.M., Argon, A.L., Toward a new distance to the active galaxy ngc 4258: II. Centripetal accelerations and investigation of spiral structure. Astrophys. J. 672 (2008), 800–816 arXiv:0709.0925 [astro-ph].
Braatz, J., Pesce, D., Condon, J., Reid, M., H2O megamaser cosmology with the ngVLA. Bull. Am. Astron. Soc., 51(3), 2019, 446.
Lee, M.G., Freedman, W.L., Madore, B.F., The tip of the red giant branch as a distance indicator for resolved galaxies. Astrophys. J., 417, 1993, 553.
Jensen, J.B., Blakeslee, J.P., Cantiello, M., Cowles, M., Anand, G.S., Tully, R.B., Kourkchi, E., Raimondo, G., The TRGB-SBF Project. III. Refining the hst surface brightness fluctuation distance scale calibration with JWST. 2025 arXiv:2502.15935 [astro-ph.CO].
Anand, G.S., Tully, R.B., Rizzi, L., Riess, A.G., Yuan, W., Comparing tip of the red giant branch distance scales: An independent reduction of the Carnegie-Chicago Hubble program and the value of the Hubble constant. Astrophys. J., 932(1), 2022, 15 arXiv:2108.00007 [astro-ph.CO].
Scolnic, D., Riess, A.G., Wu, J., Li, S., Anand, G.S., Beaton, R., Casertano, S., Anderson, R.I., Dhawan, S., Ke, X., CATS: The Hubble constant from standardized TRGB and type Ia supernova measurements. Astrophys. J. Lett., 954(1), 2023, L31 arXiv:2304.06693 [astro-ph.CO].
Li, S., Beaton, R.L., The tip of the red giant branch distance ladder and the Hubble constant. 2024 arXiv:2403.17048 [astro-ph.CO].
Jensen, J.B., et al. Infrared surface brightness fluctuation distances for massive and type Ia supernova host galaxies. Astrophys. J. Supp., 255(2), 2021, 21 arXiv:2105.08299 [astro-ph.CO].
Wu, J., Scolnic, D., Riess, A.G., Anand, G.S., Beaton, R., Casertano, S., Ke, X., Li, S., Comparative analysis of TRGBs (CATs) from unsupervised, multi-halo-field measurements: Contrast is key. Astrophys. J., 954(1), 2023, 87 arXiv:2211.06354 [astro-ph.CO].
Anderson, R.I., Koblischke, N.W., Eyer, L., Small-amplitude red giants elucidate the nature of the tip of the red giant branch as a standard candle. Astrophys. J. Lett., 963(2), 2024, L43 arXiv:2303.04790 [astro-ph.CO].
Hatt, D., et al. The Carnegie-Chicago Hubble Program. II. The distance to IC 1613: The tip of the red giant branch and RR Lyrae Period–luminosity relations. Astrophys. J., 845(2), 2017, 146 arXiv:1703.06468 [astro-ph.CO].
Nikolaev, S., Weinberg, M.D., Stellar populations in the large magellanic cloud from 2mass. Astrophys. J. 542 (2000), 804–818 arXiv:astro-ph/0003012.
Madore, B.F., Freedman, W.L., Astrophysical distance scale: The AGB J-band method. I. Calibration and a first application. Astrophys. J., 899(1), 2020, 66 arXiv:2005.10792 [astro-ph.GA].
Anderson, R.I., The span of space. Nat. Phys., 20(11), 2024 1841–1841.
Tang, J., Bressan, A., Rosenfield, P., Slemer, A., Marigo, P., Girardi, L., Bianchi, L., New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star-forming dwarf galaxies. Mon. Not. R. Astro. Soc. 445:4 (2014), 4287–4305 arXiv:1410.1745 [astro-ph.SR].
Chen, Y., Bressan, A., Girardi, L., Marigo, P., Kong, X., Lanza, A., PARSEC evolutionary tracks of massive stars up to 350 M⊙ at metallicities 0.0001 ≤ Z ≤ 0.04. Mon. Not. R. Astro. Soc. 452:1 (2015), 1068–1080 arXiv:1506.01681 [astro-ph.SR].
Salaris, M., Cassisi, S., The tip of the red giant branch as a distance indicator: results from evolutionary models. Mon. Not. R. Astron. Soc., 289, 1997, 406 arXiv:astro-ph/9703186.
Salaris, M., Cassisi, S., Weiss, A., Red giant branch stars: the theoretical framework. Publ. Astron. Soc. Pac., 114, 2002, 375 arXiv:astro-ph/0201387.
Salaris, M., Cassisi, S., Evolution of Stars and Stellar Populations. 2005, Wiley.
Cassisi, S., Salaris, M., Old Stellar Populations: How to Study the Fossil Record of Galaxy Formation. 2013, Wiley-VCH Verlag GmbH.
Serenelli, A., Weiss, A., Cassisi, S., Salaris, M., Pietrinferni, A., The brightness of the red giant branch tip. theoretical framework, a set of reference models, and predicted observables. Astron. Astrophys., 606, 2017, A33 arXiv:1706.09910 [astro-ph.SR].
Rizzi, L., Tully, R.B., Makarov, D., Makarova, L., Dolphin, A.E., Sakai, S., Shaya, E.J., Tip of the red giant branch distances. 2. Zero-point calibration. Astrophys. J. 661 (2007), 815–829 arXiv:astro-ph/0701518.
Jang, I.S., Lee, M.G., The tip of the red giant branch distances to type Ia supernova host galaxies. IV. Color dependence and zero-point calibration. Astrophys. J., 835(1), 2017, 28 arXiv:1611.05040 [astro-ph.GA].
Farag, E., Timmes, F.X., Chidester, M.T., Anandagoda, S., Hartmann, D.H., Stellar neutrino emission across the Mass–Metallicity plane. Astrophys. J. Suppl., 270(1), 2024, 5 arXiv:2310.13142 [astro-ph.SR].
Cassisi, S., Modelling of red giant stars: The state-of-the-art. Eur. Phys. J. Web Conf., 160, 2017, 04002.
Saltas, I.D., Tognelli, E., New calibrated models for the tip of the red giant branch luminosity and a thorough analysis of theoretical uncertainties. Mon. Not. R. Astron. Soc. 514:2 (2022), 3058–3073 arXiv:2203.02499 [astro-ph.SR].
Prusti, T., et al., Gaia Collaboration. The Gaia mission. Astron. Astrophys., 595(Gaia Data Release 1), 2016, A1 arXiv:1609.04153 [astro-ph.IM].
Freedman, W.L., Measurements of the Hubble constant: Tensions in perspective. Astrophys. J., 919(1), 2021, 16 arXiv:2106.15656 [astro-ph.CO].
Madore, B.F., Freedman, W.L., Owens, K., Astrophysical distance scale VII: A self-consistent, multi-wavelength calibration of the slopes and relative zero points for the run of luminosity with color of stars defining the tip of the red giant branch. 2023 arXiv:2311.05048 [astro-ph.GA].
Csörnyei, G., Anderson, R.I., Vogl, C., Taubenberger, S., Blondin, S., Leibundgut, B., Hillebrandt, W., Reeling in the Whirlpool galaxy: Distance to M 51 clarified through Cepheids and the Type IIP supernova 2005cs. Astron. Astrophys., 678, 2023, A44 arXiv:2305.13943 [astro-ph.GA].
Koblischke, N.W., Anderson, R.I., Calibrating and standardizing the tip of the red giant branch in the small magellanic cloud using small-amplitude red giants. Astrophys. J., 974(2), 2024, 181 arXiv:2406.19375 [astro-ph.SR].
Li, S., Casertano, S., Riess, A.G., A Gaia data release 3 view on the tip of the red giant branch luminosity. Astrophys. J., 950(2), 2023, 83 arXiv:2304.06695 [astro-ph.GA].
Maíz Apellániz, J., Pantaleoni González, M., Barbá, R.H., Validation of the accuracy and precision of Gaia EDR3 parallaxes with globular clusters. Astron. Astrophys., 649, 2021, A13 arXiv:2101.10206 [astro-ph.IM].
Huang, Y., Yuan, H., Beers, T.C., Zhang, H., The parallax zero-point of Gaia early data release 3 from LAMOST primary red clump stars. Astrophys. J. Lett., 910(1), 2021, L5 arXiv:2101.09691 [astro-ph.GA].
Ren, F., Chen, X., Zhang, H., de Grijs, R., Deng, L., Huang, Y., Gaia EDR3 parallax zero-point offset based on W Ursae majoris-type eclipsing binaries. Astrophys. J. Lett., 911(2), 2021, L20 arXiv:2103.16096 [astro-ph.SR].
Khan, S., Anderson, R.I., Miglio, A., Mosser, B., Elsworth, Y.P., Investigating Gaia EDR3 parallax systematics using asteroseismology of cool giant stars observed by Kepler, K2, and TESS. II. Deciphering Gaia parallax systematics using red clump stars. Astron. Astrophys., 680, 2023, A105 arXiv:2310.03654 [astro-ph.SR].
Soltis, J., Casertano, S., Riess, A.G., The parallax of ω centauri measured from Gaia EDR3 and a direct, geometric calibration of the tip of the red giant branch and the Hubble constant. Astrophys. J. Lett., 908(1), 2021, L5 arXiv:2012.09196 [astro-ph.GA].
Jang, S., Milone, A.P., Lagioia, E.P., Tailo, M., Carlos, M., Dondoglio, E., Martorano, M., Mohandasan, A., Marino, A.F., Cordoni, G., Lee, Y.W., Integrated photometry of multiple stellar populations in globular clusters. Astrophys. J., 920(2), 2021, 129 arXiv:2107.14246 [astro-ph.GA].
Skowron, D.M., Skowron, J., Udalski, A., Szymański, M.K., Soszyński, I., Wyrzykowski, Ł., Ulaczyk, K., Poleski, R., Kozłowski, S., Pietrukowicz, P., Mróz, P., Rybicki, K., Iwanek, P., Wrona, M., Gromadzki, M., OGLE-ing the magellanic system: Optical reddening maps of the large and small magellanic clouds from red clump stars. Astrophys. J. Suppl., 252(2), 2021, 23 arXiv:2006.02448 [astro-ph.SR].
Schlegel, D.J., Finkbeiner, D.P., Davis, M., Maps of dust IR emission for use in estimation of reddening and CMBR foregrounds. Astrophys. J., 500, 1998, 525 arXiv:astro-ph/9710327.
Schlafly, E.F., Finkbeiner, D.P., Measuring reddening with SDSS Stellar spectra and recalibrating SFD. Astrophys. J., 737, 2011, 103 arXiv:1012.4804 [astro-ph.GA].
Anderson, R.I., Relativistic corrections for measuring Hubble's constant to 1% using stellar standard candles. Astron. Astrophys., 658, 2022, A148 arXiv:2108.09067 [astro-ph.CO].
Peek, J.E.G., Ménard, B., Corrales, L., Dust in the circumgalactic medium of low-redshift galaxies. Astrophys. J., 813(1), 2015, 7 arXiv:1411.3333 [astro-ph.GA].
Mendez, B., Davis, M., Moustakas, J., Newman, J., Madore, B.F., Freedman, W.L., Deviations from the local Hubble flow. 1. The tip of the red giant branch as a distance indicator. Astron. J., 124, 2002, 213 arXiv:astro-ph/0204192.
Makarov, D., Makarova, L., Rizzi, L., Tully, R.B., Dolphin, A.E., Sakai, S., Shaya, E.J., Tip of the red giant branch distances. 1. optimization of a maximum likelihood algorithm. Astron. J. 132 (2006), 2729–2742 arXiv:astro-ph/0603073.
Madore, B.F., Mager, V., Freedman, W.L., Sharpening the tip of the red giant branch. Astrophys. J. 690 (2009), 389–393 arXiv:0809.2598 [astro-ph].
Beaton, R.L., Bono, G., Braga, V.F., Dall'Ora, M., Fiorentino, G., Jang, I.S., Martínez-Vázquez, C.E., Matsunaga, N., Monelli, M., Neeley, J.R., Salaris, M., Old-aged primary distance indicators. Space Sci. Rev., 214(8), 2018, 113 arXiv:1808.09191 [astro-ph.GA].
Mellier, Y., et al., Euclid Collaboration. Euclid. i. Overview of the Euclid mission. 2024 arXiv:2405.13491 [astro-ph.CO].
Newman, M.J.B., McQuinn, K.B.W., Skillman, E.D., Boyer, M.L., Cohen, R.E., Dolphin, A.E., Telford, O.G., An empirical calibration of the tip of the red giant branch distance method in the near infrared. I. Hubble Space Telescope WFC3/IR F110W and F160W filters. Astrophys. J., 966(2), 2024, 175 arXiv:2403.03086 [astro-ph.GA].
Newman, M.J.B., McQuinn, K.B.W., Skillman, E.D., Boyer, M.L., Cohen, R.E., Dolphin, A.E., Telford, O.G., An empirical calibration of the tip of the red giant branch distance method in the near infrared. II. JWST NIRCam wide filters. Astrophys. J., 975(2), 2024, 195 arXiv:2406.03532 [astro-ph.CO].
Valenti, E., Ferraro, F.R., Origlia, L., The red giant branch in the near - infrared color - magnitude diagrams. 1: The calibration of photometric indices. Mon. Not. R. Astron. Soc., 351, 2004, 1204 arXiv:astro-ph/0403563.
Dalcanton, J.J., et al. Resolved near-infrared stellar populations in nearby galaxies. Astrophys. J. Suppl., 198, 2012, 6 arXiv:1109.6893 [astro-ph.CO].
Wu, P.-F., Tully, R.B., Rizzi, L., Dolphin, A.E., Jacobs, B.A., Karachentsev, I.D., Infrared tip of the red giant branch and distances to the Maffei/IC 342 group. Astron. J., 148, 2014, 7 arXiv:1404.2987 [astro-ph.GA].
Madore, B.F., et al. The near-infrared tip of the red giant branch. I. A calibration in the isolated dwarf Galaxy IC 1613. Astrophys. J., 858(1), 2018, 11 arXiv:1803.01278 [astro-ph.GA].
Hoyt, T.J., Freedman, W.L., Madore, B.F., Seibert, M., Beaton, R.L., Hatt, D., Jang, I.S., Lee, M.G., Monson, A.J., Rich, J.A., The near-infrared tip of the red giant branch. II. An absolute calibration in the large magellanic cloud. Astrophys. J., 858(1), 2018, 12 arXiv:1803.01277 [astro-ph.GA].
Durbin, M.J., Beaton, R.L., Dalcanton, J.J., Williams, B.F., Boyer, M.L., MCR-TRGB: A multiwavelength-covariant, robust tip of the red giant branch measurement method. Astrophys. J., 898(1), 2020, 57 arXiv:2006.08559 [astro-ph.GA].
McQuinn, K.B.W., Boyer, M., Skillman, E.D., Dolphin, A.E., Using the tip of the red giant branch as a distance indicator in the near infrared. Astrophys. J., 880(1), 2019, 63 arXiv:1904.01571 [astro-ph.GA].
Freedman, W.L., Madore, B.F., Jang, I.S., Hoyt, T.J., Lee, A.J., Owens, K.A., Status report on the Chicago-Carnegie Hubble program (CCHP): Three independent astrophysical determinations of the Hubble constant using the james webb space telescope. 2024 arXiv:2408.06153 [astro-ph.CO].
Gaia Collaboration, Gaia data release 3. The galaxy in your preferred colours: Synthetic photometry from Gaia low-resolution spectra. Astron. Astrophys., 674, 2023, A33 arXiv:2206.06215 [astro-ph.SR].
Weisz, D.R., et al. The JWST resolved stellar populations early release science program. II. Survey overview. Astrophys. J. Suppl., 268(1), 2023, 15 arXiv:2301.04659 [astro-ph.GA].
Lee, A.J., Rousseau-Nepton, L., Freedman, W.L., Madore, B.F., Cioni, M.-R.L., Hoyt, T.J., Jang, I.S., Javadi, A., Owens, K.A., The astrophysical distance scale. V. A 2% distance to the local group spiral M33 via the JAGB method, tip of the red giant branch, and Leavitt Law. Astrophys. J., 933(2), 2022, 201 arXiv:2205.11323 [astro-ph.GA].
Tonry, J., Schneider, D.P., A new technique for measuring extragalactic distances. Astron. J., 96, 1988, 807.
Tonry, J.L., Ajhar, E.A., Luppino, G.A., Observations of surface-brightness fluctuations in virgo. Astron. J., 100, 1990, 1416.
Blakeslee, J.P., Jordan, A., Mei, S., Cote, P., Ferrarese, L., Infante, L., Peng, E.W., Tonry, J.L., West, M.J., The ACS Fornax Cluster Survey. V. Measurement and recalibration of surface brightness fluctuations and a precise value of the Fornax–Virgo relative distance. Astrophys. J. 694 (2009), 556–572 arXiv:0901.1138 [astro-ph.CO].
Moresco, M., et al. Unveiling the universe with emerging cosmological probes. Living Rev. Rel., 25(1), 2022, 6 arXiv:2201.07241 [astro-ph.CO].
Cantiello, M., Blakeslee, J.P., Surface brightness fluctuations. 2023 arXiv:2307.03116 [astro-ph.CO].
Tonry, J.L., Dressler, A., Blakeslee, J.P., Ajhar, E.A., Fletcher, A.B., Luppino, G.A., Metzger, M.R., Moore, C.B., The sbf survey of galaxy distances. 4. sbf magnitudes, colors, and distances. Astrophys. J. 546 (2001), 681–693 arXiv:astro-ph/0011223.
Raimondo, G., Joint analysis of near-infrared properties and surface brightness fluctuations of LMC star clusters. Astrophys. J. 700 (2009), 1247–1261 arXiv:0907.1408 [astro-ph.GA].
Cantiello, M., et al. The Next Generation Virgo Cluster Survey (ngvs). III. A catalog of surface brightness fluctuation distances and the three-dimensional distribution of galaxies in the Virgo cluster. Astrophys. J., 966(1), 2024, 145 arXiv:2403.16235 [astro-ph.GA].
Ferrarese, L., Côté, P., Cuillandre, J.-C., Gwyn, S.D.J., Peng, E.W., MacArthur, L.A., Duc, P.-A., Boselli, A., Mei, S., Erben, T., McConnachie, A.W., Durrell, P.R., Mihos, J.C., Jordán, A., Lançon, A., Puzia, T.H., Emsellem, E., Balogh, M.L., Blakeslee, J.P., van Waerbeke, L., Gavazzi, R., Vollmer, B., Kavelaars, J.J., Woods, D., Ball, N.M., Boissier, S., Courteau, S., Ferriere, E., Gavazzi, G., Hildebrandt, H., Hudelot, P., Huertas-Company, M., Liu, C., McLaughlin, D., Mellier, Y., Milkeraitis, M., Schade, D., Balkowski, C., Bournaud, F., Carlberg, R.G., Chapman, S.C., Hoekstra, H., Peng, C., Sawicki, M., Simard, L., Taylor, J.E., Tully, R.B., van Driel, W., Wilson, C.D., Burdullis, T., Mahoney, B., Manset, N., The Next Generation Virgo Cluster Survey (NGVS). I. Introduction to the survey. Astrophys. J. Suppl., 200(1), 2012, 4.
Sales, L.V., Wetzel, A., Fattahi, A., Baryonic solutions and challenges for cosmological models of dwarf galaxies. Nat. Astron. 6:8 (2022), 897–910 arXiv:2206.05295 [astro-ph.GA].
Blakeslee, J.P., Cantiello, M., Independent analysis of the distance to NGC, 1052-DF2. Res. Notes the Am. Astron. Soc., 2(3), 2018, 146 arXiv:1808.02176 [astro-ph.GA].
Carlsten, S.G., Beaton, R.L., Greco, J.P., Greene, J.E., Using surface brightness fluctuations to study nearby satellite galaxy systems: Calibration and methodology. Astrophys. J., 879(1), 2019, 13 arXiv:1901.07575 [astro-ph.GA].
Kim, Y.J., Lee, M.G., Calibration of surface brightness fluctuations for dwarf galaxies in the hyper suprime-cam gi filter system. Astrophys. J., 923(2), 2021, 152 arXiv:2110.02522 [astro-ph.GA].
Khetan, N., et al. A new measurement of the Hubble constant using type Ia supernovae calibrated with surface brightness fluctuations. Astron. Astrophys., 647, 2021, A72 arXiv:2008.07754 [astro-ph.CO].
Garnavich, P., Wood, C.M., Milne, P., Jensen, J.B., Blakeslee, J.P., Brown, P.J., Scolnic, D., Rose, B., Brout, D., Connecting infrared surface brightness fluctuation distances to type Ia supernova hosts: Testing the top rung of the distance ladder. Astrophys. J., 953(1), 2023, 35 arXiv:2204.12060 [astro-ph.CO].
Chung, C., Yoon, S.-J., Cho, H., Lee, S.-Y., Lee, Y.-W., Yonsei Evolutionary Population Synthesis (YEPS) model. III. Surface brightness fluctuation of normal and helium-enhanced simple stellar populations. Astrophys. J. Suppl., 250(2), 2020, 33 arXiv:2009.00625 [astro-ph.GA].
Glass, I.S., Evans, T.L., A period-luminosity relation for Mira variables in the large magellanic cloud. nature 291:5813 (1981), 303–304.
Feast, M.W., Glass, I.S., Whitelock, P.A., Catchpole, R.M., A period-luminosity-colour relation for Mira variables. Mon. Not. R. Astro. Soc. 241 (1989), 375–392.
Whitelock, P.A., Asymptotic giant branch variables as extragalactic distance indicators. IAU Symp., 289, 2013, 209 arXiv:1210.7307 [astro-ph.CO].
Whitelock, P.A., Asymptotic giant branch variables in nearby galaxies. Kerschbaum, F., Groenewegen, M., Olofsson, H., (eds.) Why Galaxies Care About AGB Stars: A Continuing Challenge through Cosmic Time IAU Symposium, vol. 343, 2019, 275–282 arXiv:1809.10077 [astro-ph.GA].
Huang, C.D., The Mira distance ladder. 2024 arXiv:2401.09581 [astro-ph.CO].
Iwanek, P., Poleski, R., Kozłowski, S., Soszyński, I., Pietrukowicz, P., Ban, M., Skowron, J., Mróz, P., Wrona, M., Udalski, A., Szymański, M.K., Skowron, D.M., Ulaczyk, K., Gromadzki, M., Rybicki, K., Ratajczak, M., A three-dimensional map of the Milky Way using 66,000 Mira variable stars. Astrophys. J. Suppl., 264(1), 2023, 20 arXiv:2212.00035 [astro-ph.GA].
Boyer, M.L., McQuinn, K.B.W., Groenewegen, M.A.T., Zijlstra, A.A., Whitelock, P.A., van Loon, J.T., Sonneborn, G., Sloan, G.C., Skillman, E.D., Meixner, M., McDonald, I., Jones, O.C., Javadi, A., Gehrz, R.D., Britavskiy, N., Bonanos, A.Z., An infrared census of DUST in nearby galaxies with spitzer (DUSTiNGS). IV. Discovery of high-redshift AGB analogs. Astrophys. J., 851(2), 2017, 152 arXiv:1711.02129 [astro-ph.SR].
Goldman, S.R., Boyer, M.L., McQuinn, K.B.W., Whitelock, P.A., McDonald, I., van Loon, J.T., Skillman, E.D., Gehrz, R.D., Javadi, A., Sloan, G.C., Jones, O.C., Groenewegen, M.A.T., Menzies, J.W., An infrared census of dust in nearby galaxies with spitzer (DUSTiNGS). V. The period-luminosity relation for dusty metal-poor AGB stars. Astrophys. J., 877(1), 2019, 49 arXiv:1902.07362 [astro-ph.SR].
Trabucchi, M., Wood, P.R., Mowlavi, N., Pastorelli, G., Marigo, P., Girardi, L., Lebzelter, T., Modelling long-period variables - II. Fundamental mode pulsation in the non-linear regime. Mon. Not. R. Astro. Soc. 500:2 (2021), 1575–1591 arXiv:2010.13654 [astro-ph.SR].
Yuan, W., Macri, L.M., He, S., Huang, J.Z., Kanbur, S.M., Ngeow, C.-C., Large magellanic cloud near-infrared synoptic survey. V. Period-luminosity relations of Miras. Astron. J., 154(4), 2017, 149 arXiv:1708.04742 [astro-ph.SR].
Yuan, W., Macri, L.M., Javadi, A., Lin, Z., Huang, J.Z., Near-infrared Mira period-luminosity relations in M33. Astron. J., 156(3), 2018, 112 arXiv:1807.03544 [astro-ph.SR].
Huang, C.D., et al. A near-infrared Period–Luminosity relation for Miras in NGC 4258, an anchor for a new distance ladder. Astrophys. J., 857(1), 2018, 67 arXiv:1801.02711 [astro-ph.CO].
Chiavassa, A., Freytag, B., Schultheis, M., Heading Gaia to measure atmospheric dynamics in AGB stars. Astron. Astrophys., 617, 2018, L1 arXiv:1808.02548 [astro-ph.SR].
Chiavassa, A., Kravchenko, K., Millour, F., Schaefer, G., Schultheis, M., Freytag, B., Creevey, O., Hocdé, V., Morand, F., Ligi, R., Kraus, S., Monnier, J.D., Mourard, D., Nardetto, N., Anugu, N., Le Bouquin, J.B., Davies, C.L., Ennis, J., Gardner, T., Labdon, A., Lanthermann, C., Setterholm, B.R., ten Brummelaar, T., Optical interferometry and Gaia measurement uncertainties reveal the physics of asymptotic giant branch stars. Astron. Astrophys., 640, 2020, A23 arXiv:2006.07318 [astro-ph.SR].
Andriantsaralaza, M., Ramstedt, S., Vlemmings, W.H.T., De Beck, E., Distance estimates for AGB stars from parallax measurements. Astron. Astrophys., 667, 2022, A74 arXiv:2209.03906 [astro-ph.SR].
Ahmad, A., Freytag, B., Höfner, S., Properties of self-excited pulsations in 3D simulations of AGB stars and red supergiants. Astron. Astrophys., 669, 2023, A49 arXiv:2211.07682 [astro-ph.SR].
Konchady, T., Macri, L.M., Yan, X., Huang, J.Z., The M33 synoptic stellar survey. III. Miras and LPVs in griJHKS. Mon. Not. R. Astro. Soc. 531:1 (2024), 110–132 arXiv:2405.00503 [astro-ph.GA].
Yuan, W., Period-Luminosity Relations of Cepheid and Mira Variables and Their Application to the Extragalactic Distance Scale. (PhD thesis), 2017, Texas A&M University https://oaktrust.library.tamu.edu/items/26f6e9a7-5e4c-47ea-ac3e-1645a5b6ab5a/full.
Guy, J., et al., SNLS Collaboration. SALT2: Using distant supernovae to improve the use of type Ia supernovae as distance indicators. Astron. Astrophys. 466 (2007), 11–21 arXiv:astro-ph/0701828.
Kenworthy, W.D., et al. SALT3: An improved type Ia supernova model for measuring cosmic distances. Astrophys. J., 923(2), 2021, 265 arXiv:2104.07795 [astro-ph.CO].
Burns, C.R., et al. The Carnegie supernova project: Light curve fitting with SNooPy. Astron. J., 141, 2011, 19 arXiv:1010.4040 [astro-ph.CO].
Mandel, K.S., Narayan, G., Kirshner, R.P., Type Ia supernova light curve inference: hierarchical models in the optical and near infrared. Astrophys. J., 731, 2011, 120 arXiv:1011.5910 [astro-ph.CO].
Tripp, R., A two-parameter luminosity correction for type Ia supernovae. Astron. Astrophys. 331 (1998), 815–820.
Conley, A., et al., SNLS Collaboration. Supernova constraints and systematic uncertainties from the first 3 years of the supernova legacy survey. Astrophys. J. Suppl., 192, 2011, 1 arXiv:1104.1443 [astro-ph.CO].
Dhawan, S., Brout, D., Scolnic, D., Goobar, A., Riess, A.G., Miranda, V., Cosmological model insensitivity of local H0 from the cepheid distance ladder. Astrophys. J., 894(1), 2020, 54 arXiv:2001.09260 [astro-ph.CO].
Murakami, Y.S., Riess, A.G., Stahl, B.E., Kenworthy, W.D., Pluck, D.-M.A., Macoretta, A., Brout, D., Jones, D.O., Scolnic, D.M., Filippenko, A.V., Leveraging SN Ia spectroscopic similarity to improve the measurement of H 0. JCAP, 11, 2023, 046 arXiv:2306.00070 [astro-ph.CO].
Peterson, E.R., et al. The pantheon+ analysis: Evaluating peculiar velocity corrections in cosmological analyses with nearby type Ia supernovae. Astrophys. J., 938(2), 2022, 112 arXiv:2110.03487 [astro-ph.CO].
Brownsberger, S.R., Brout, D., Scolnic, D., Stubbs, C.W., Riess, A.G., Dependence of cosmological constraints on gray photometric zero-point uncertainties of supernova surveys. Astrophys. J., 944(2), 2023, 188 arXiv:2110.03486 [astro-ph.CO].
Jones, D.O., et al. Should type Ia supernova distances be corrected for their local environments?. Astrophys. J., 867(2), 2018, 108 arXiv:1805.05911 [astro-ph.CO].
Burns, C.R., et al., CSP Collaboration. The carnegie supernova project: Absolute calibration and the Hubble constant. Astrophys. J., 869(1), 2018, 56 arXiv:1809.06381 [astro-ph.CO].
Dhawan, S., et al. A uniform type Ia supernova distance ladder with the Zwicky transient facility: Absolute calibration based on the tip of the red giant branch method. Astrophys. J., 934(2), 2022, 185 arXiv:2203.04241 [astro-ph.CO].
Dhawan, S., Jha, S.W., Leibundgut, B., Measuring the Hubble constant with type Ia supernovae as near-infrared standard candles. Astron. Astrophys., 609, 2018, A72 arXiv:1707.00715 [astro-ph.CO].
Jones, D.O., et al. Cosmological results from the RAISIN survey: Using type Ia supernovae in the near infrared as a novel path to measure the dark energy equation of state. Astrophys. J., 933(2), 2022, 172 arXiv:2201.07801 [astro-ph.CO].
Dhawan, S., Thorp, S., Mandel, K.S., Ward, S.M., Narayan, G., Jha, S.W., Chant, T., A BayeSN distance ladder: H0 from a consistent modelling of type Ia supernovae from the optical to the near-infrared. Mon. Not. R. Astron. Soc. 524:1 (2023), 235–244 arXiv:2211.07657 [astro-ph.CO].
Carr, A., Davis, T.M., Scolnic, D., Scolnic, D., Said, K., Brout, D., Peterson, E.R., Kessler, R., The Pantheon+ analysis: Improving the redshifts and peculiar velocities of type Ia supernovae used in cosmological analyses. Publ. Astron. Soc. Austral., 39, 2022, e046 arXiv:2112.01471 [astro-ph.CO].
Steinhardt, C.L., Sneppen, A., Sen, B., VizieR online data catalog: revised redshifts of the pantheon supernovae Ia (Steinhardt+, 2020). 2022, 10.26093/cds/vizier.19020014 VizieR On-line Data Catalog: J/ApJ/902/14. Originally published in: 2020ApJ…902…14S.
Popovic, B., Brout, D., Kessler, R., Scolnic, D., The Pantheon+ analysis: Forward modeling the dust and intrinsic color distributions of type Ia supernovae, and quantifying their impact on cosmological inferences. Astrophys. J., 945(1), 2023, 84 arXiv:2112.04456 [astro-ph.CO].
Rigault, M., et al. Confirmation of a star formation bias in type Ia supernova distances and its effect on measurement of the Hubble constant. Astrophys. J., 802(1), 2015, 20 arXiv:1412.6501 [astro-ph.CO].
Riess, A.G., Macri, L., Casertano, S., Lampeitl, H., Ferguson, H.C., Filippenko, A.V., Jha, S.W., Li, W., Chornock, R., A 3% solution: Determination of the Hubble constant with the Hubble space telescope and wide field camera 3. Astrophys. J., 730, 2011, 119 arXiv:1103.2976 [astro-ph.CO] Erratum: Astrophys. J., 732, 2011, 129.
Wojtak, R.a., Hjorth, J., Consistent extinction model for type Ia supernovae in Cepheid-based calibration galaxies and its impact on H0. Mon. Not. R. Astron. Soc. 533:2 (2024), 2319–2334 arXiv:2403.10388 [astro-ph.CO].
Macaulay, E., et al., DES Collaboration. First cosmological results using type Ia supernovae from the dark energy survey: Measurement of the Hubble constant. Mon. Not. R. Astron. Soc. 486:2 (2019), 2184–2196 arXiv:1811.02376 [astro-ph.CO].
Feeney, S.M., Peiris, H.V., Williamson, A.R., Nissanke, S.M., Mortlock, D.J., Alsing, J., Scolnic, D., Prospects for resolving the Hubble constant tension with standard sirens. Phys. Rev. Lett., 122(6), 2019, 061105 arXiv:1802.03404 [astro-ph.CO].
Camilleri, R., et al., DES Collaboration. The dark energy survey supernova program: An updated measurement of the Hubble constant using the inverse distance ladder. Mon. Not. R. Astron. Soc. 537:2 (2025), 1818–1825 arXiv:2406.05049 [astro-ph.CO].
Ruiz-Lapuente, P., González Hernández, J.I., ‘SNe Ia twins for life’: Toward a precise determination of H 0. Astrophys. J., 977(2), 2024, 180 arXiv:2312.10334 [astro-ph.CO].
Richer, H.B., Observations of a complete sample of C stars in the large magellanic cloud. Astrophys. J., 243, 1981, 744.
Richer, H.B., Crabtree, D.R., Pritchet, C.J., Luminous late-type stars in NGC 205. Astrophys. J. 287 (1984), 138–147.
Richer, H.B., Pritchet, C.J., Crabtree, D.R., Luminous late-type stars in Ngc 300. Astrophys. J. 298 (1985), 240–248.
Pritchet, C.J., Richer, H.B., Schade, D., Crabtree, D., Yee, H.K.C., The late-type Stellar content of NGC 55. Astrophys. J., 323, 1987, 79.
Cook, K.H., Aaronson, M., Norris, J., Carbon and m stars in nearby galaxies: A preliminary survey using a photometric technique. Astrophys. J., 305, 1986, 634.
Battinelli, P., Demers, S., The standard candle aspect of carbon stars. Astron. Astrophys. 442:1 (2005), 159–163.
Ripoche, P., Heyl, J., Parada, J., Richer, H., Carbon stars as standard candles: I. The luminosity function of carbon stars in the Magellanic clouds. Mon. Not. R. Astro. Soc. 495:3 (2020), 2858–2866 arXiv:2005.05539 [astro-ph.SR].
Freedman, W.L., Madore, B.F., Astrophysical distance scale II. Application of the JAGB Method: A nearby galaxy sample. Astrophys. J., 899(1), 2020, 67 arXiv:2005.10793 [astro-ph.GA].
Zgirski, B., Pietrzyński, G., Gieren, W., Górski, M., Wielgórski, P., Karczmarek, P., Bresolin, F., Kervella, P., Kudritzki, R.-P., Storm, J., Graczyk, D., Hajdu, G., Narloch, W., Pilecki, B., Suchomska, K., Taormina, M., The araucaria project. distances to nine galaxies based on a statistical analysis of their carbon stars (JAGB Method). Astrophys. J., 916(1), 2021, 19.
Lee, A.J., Carbon stars as standard candles: An empirical test for the reddening, metallicity, and age sensitivity of the J-region Asymptotic Giant Branch (JAGB) method. Astrophys. J., 956(1), 2023, 15 arXiv:2305.02453 [astro-ph.GA].
Macri, L.M., Ngeow, C.-C., Kanbur, S.M., Mahzooni, S., Smitka, M.T., Large magellanic cloud near-infrared synoptic survey. I. Cepheid variables and the calibration of the Leavitt Law. Astron. J., 149, 2015, 117 arXiv:1412.1511 [astro-ph.SR].
Parada, J., Heyl, J., Richer, H., Ripoche, P., Rousseau-Nepton, L., Carbon stars as standard candles – II. The median J magnitude as a distance indicator. Mon. Not. R. Astron. Soc. 501:1 (2021), 933–947 arXiv:2011.11681 [astro-ph.GA].
Parada, J., Heyl, J., Richer, H., Ripoche, P., Rousseau-Nepton, L., Carbon stars as standard candles – III. Un-binned maximum likelihood fitting and comparison with TRGB estimations. Mon. Not. R. Astron. Soc. 522:1 (2023), 195–210 arXiv:2303.16934 [astro-ph.GA].
Li, S., Riess, A.G., Scolnic, D., Casertano, S., Anand, G.S., JAGB 2.0: Improved constraints on the J-region Asymptotic Giant Branch-based Hubble constant from an expanded sample of JWST observations. 2025 arXiv:2502.05259 [astro-ph.CO].
Li, S., Riess, A.G., Scolnic, D., Anand, G.S., Wu, J., Casertano, S., Yuan, W., Beaton, R., Anderson, R.I., Standardized luminosity of the tip of the red giant branch utilizing multiple fields in NGC 4258 and the CATs algorithm. Astrophys. J., 956(1), 2023, 32 arXiv:2306.10103 [astro-ph.GA].
Smartt, S.J., Progenitors of core-collapse supernovae. Ann. Rev. Astron. Astrophys. 47 (2009), 63–106 arXiv:0908.0700 [astro-ph.SR].
Kilpatrick, C.D., et al. SN 2023ixf in Messier 101: A variable red supergiant as the progenitor candidate to a Type II Supernova. Astrophys. J. Lett., 952(1), 2023, L23 arXiv:2306.04722 [astro-ph.SR].
Baron, E.A., Nugent, P.E., Branch, D., Hauschildt, P.H., Type IIP supernovae as cosmological probes: A SEAM distance to SN 1999em. Astrophys. J. Lett. 616 (2004), L91–L94 arXiv:astro-ph/0410153.
Dessart, L., Hillier, D.J., Distance determinations using Type II supernovae and the expanding photosphere method. Astron. Astrophys., 439, 2005, 671 arXiv:astro-ph/0505465.
Hamuy, M., Pinto, P.A., Type II supernovae as standardized candles. Astrophys. J. Lett. 566 (2002), L63–L65 arXiv:astro-ph/0201279.
Gall, E.E.E., et al. An updated Type II supernova Hubble diagram. Astron. Astrophys., 611, 2018, A25 arXiv:1705.10806 [astro-ph.CO].
Wagoner, R.V., Effects of scattering on continuous radiation from supernovae and determination of their distances. Astrophys. J. Lett. 250 (1981), L65–L69.
Eastman, R.G., Schmidt, B.P., Kirshner, R., The atmospheres of Type II supernovae and the expanding photosphere method. Astrophys. J., 466, 1996, 911.
Dessart, L., Hillier, D.J., Quantitative spectroscopy of photospheric-phase Type II supernovae. Astron. Astrophys., 437, 2005, 667 arXiv:astro-ph/0504028.
Vogl, C., Sim, S.A., Noebauer, U.M., Kerzendorf, W.E., Hillebrandt, W., Spectral modeling of Type II supernovae. I. Dilution factors. Astron. Astrophys., 621, 2019, A29 arXiv:1811.02543 [astro-ph.HE].
Jones, M.I., Distance determination to 12 Type II supernovae using the expanding photosphere method. Rev. Mex. Astron. Astrof. Ser. Conf., 35, 2009, 310 arXiv:0810.5538 [astro-ph].
Gall, E.E.E., Kotak, R., Leibundgut, B., Taubenberger, S., Hillebrandt, W., Kromer, M., Applying the expanding photosphere and standardized candle methods to Type II-Plateau supernovae at cosmologically significant redshifts: the distance to SN 2013eq. Astron. Astrophys., 592, 2016, A129 arXiv:1603.04730 [astro-ph.CO].
Dhungana, G., et al. Cosmological distance measurement of twelve nearby Supernovae IIP with ROTSE-IIIb. Astrophys. J., 962(1), 2024, 60 arXiv:2308.00916 [astro-ph.HE].
Dessart, L., et al. Using quantitative spectroscopic analysis to determine the properties and distances of Type II-Plateau Supernovae: SNe 2005cs and 2006bp. Astrophys. J., 675, 2008, 644 arXiv:0711.1815 [astro-ph].
Vogl, C., Kerzendorf, W.E., Sim, S.A., Noebauer, U.M., Lietzau, S., Hillebrandt, W., Spectral modeling of Type II supernovae II. A machine learning approach to quantitative spectroscopic analysis. Astron. Astrophys., 633, 2020, A88 arXiv:1911.04444 [astro-ph.HE].
Vogl, C., et al. No rungs attached: a distance-ladder free determination of the Hubble constant through Type II supernova spectral modelling. 2024 arXiv:2411.04968 [astro-ph.CO].
de Jaeger, T., Stahl, B.E., Zheng, W., Filippenko, A.V., Riess, A.G., Galbany, L., A measurement of the Hubble constant from Type II supernovae. Mon. Not. R. Astron. Soc. 496:3 (2020), 3402–3411 arXiv:2006.03412 [astro-ph.CO].
Hamuy, M.A., Type II Supernovae as Distance Indicators. (PhD thesis), 2001, University of Arizona.
Hamuy, M., Observed and physical properties of core-collapse supernovae. Astrophys. J. 582 (2003), 905–914 arXiv:astro-ph/0209174.
Nugent, P., et al., SNLS Collaboration. Towards a cosmological Hubble diagram for Type II-P supernovae. Astrophys. J. 645 (2006), 841–850 arXiv:astro-ph/0603535.
de Jaeger, T., Galbany, L., The pursuit of the Hubble constant using Type II supernovae. 2023 arXiv:2305.17243 [astro-ph.CO].
Bose, S., Kumar, B., Distance determination to eight galaxies using expanding photosphere method. Astrophys. J., 782, 2014, 98 arXiv:1401.5115 [astro-ph.CO].
Searle, L., Sargent, W.L.W., Inferences from the composition of two dwarf blue galaxies. Astrophys. J., 173, 1972, 25.
Bergeron, J., Characteristics of the blue stars in the dwarf galaxies I Zw 18 and II Zw 40. Astrophys. J. 211 (1977), 62–67.
Terlevich, R., Melnick, J., The dynamics and chemical composition of giant extragalactic H II regions. Mon. Not. R. Astro. Soc. 195 (1981), 839–851.
Kunth, D., Ostlin, G., The most metal-poor galaxies. Astron. Astrophys. Rev. 10 (2000), 1–79 arXiv:astro-ph/9911094.
Chávez, R., Terlevich, R., Terlevich, E., Bresolin, F., Melnick, J., Plionis, M., Basilakos, S., The L–σ relation for massive bursts of star formation. Mon. Not. R. Astron. Soc. 442:4 (2014), 3565–3597 arXiv:1405.4010 [astro-ph.GA].
Melnick, J., Terlevich, R., Moles, M., Giant H II regions as distance indicators- ii. application to h ii galaxies and the value of the Hubble constant. Mon. Not. R. Astro. Soc. 235 (1988), 297–313.
Bordalo, V., Telles, E., The L-sigma relation of local HII galaxies. Astrophys. J., 735, 2011, 52 arXiv:1104.4719 [astro-ph.CO].
Plionis, M., Terlevich, R., Basilakos, S., Bresolin, F., Terlevich, E., Melnick, J., Chavez, R., A strategy to measure the dark energy equation of state using the HII galaxy Hubble relation & X-ray AGN clustering: Preliminary results. Mon. Not. R. Astron. Soc., 416, 2011, 2981 arXiv:1106.4558 [astro-ph.CO].
Chávez, R., Plionis, M., Basilakos, S., Terlevich, R., Terlevich, E., Melnick, J., Bresolin, F., González-Morán, A.L., Constraining the dark energy equation of state with HII galaxies. Mon. Not. R. Astron. Soc. 462:3 (2016), 2431–2439 arXiv:1607.06458 [astro-ph.CO].
González-Morán, A.L., Chávez, R., Terlevich, R., Terlevich, E., Bresolin, F., Fernández-Arenas, D., Plionis, M., Basilakos, S., Melnick, J., Telles, E., Independent cosmological constraints from high-z H II galaxies. Mon. Not. R. Astron. Soc. 487:4 (2019), 4669–4694 arXiv:1906.02195 [astro-ph.GA].
Chávez, R., Terlevich, R., Terlevich, E., González-Morán, A.L., Fernández-Arenas, D., Bresolin, F., Plionis, M., Basilakos, S., Amorín, R., Llerena, M., Mapping the Hubble flow from z-0 to z-7.5 with H II galaxies. Mon. Not. R. Astro. Soc. 538:2 (2025), 1264–1271 arXiv:2404.16261 [astro-ph.CO].
Dorner, B., Giardino, G., Ferruit, P., Alves de Oliveira, C., Birkmann, S.M., Böker, T., De Marchi, G., Gnata, X., Köhler, J., Sirianni, M., Jakobsen, P., A model-based approach to the spatial and spectral calibration of NIRSpec onboard JWST. Astron. Astrophys., 592, 2016, A113 arXiv:1606.05640 [astro-ph.IM].
Gardner, J.P., et al. The James Webb space telescope. Space Sci. Rev., 123, 2006, 485 arXiv:astro-ph/0606175.
Feroz, F., Hobson, M.P., Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis. Mon. Not. R. Astron. Soc., 384, 2008, 449 arXiv:0704.3704 [astro-ph].
Feroz, F., Hobson, M.P., Bridges, M., MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398 (2009), 1601–1614 arXiv:0809.3437 [astro-ph].
Feroz, F., Hobson, M.P., Cameron, E., Pettitt, A.N., Importance nested sampling and the MultiNest algorithm. Open J. Astrophys., 2(1), 2019, 10 arXiv:1306.2144 [astro-ph.IM].
Ratra, B., Peebles, P.J.E., Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D, 37, 1988, 3406.
Wetterich, C., Cosmology and the fate of dilatation symmetry. Nuclear Phys. B 302 (1988), 668–696 arXiv:1711.03844 [hep-th].
Chevallier, M., Polarski, D., Accelerating universes with scaling dark matter. Internat. J. Modern Phys. D 10 (2001), 213–224 arXiv:gr-qc/0009008.
Linder, E.V., Exploring the expansion history of the universe. Phys. Rev. Lett., 90, 2003, 091301 arXiv:astro-ph/0208512.
Peebles, P.J.E., Ratra, B., The cosmological constant and dark energy. Rev. Modern Phys. 75 (2003), 559–606 arXiv:astro-ph/0207347.
Fernández Arenas, D., Terlevich, E., Terlevich, R., Melnick, J., Chávez, R., Bresolin, F., Telles, E., Plionis, M., Basilakos, S., An independent determination of the local Hubble constant. Mon. Not. R. Astron. Soc. 474:1 (2018), 1250–1276 arXiv:1710.05951 [astro-ph.CO].
Llerena, M., Amorín, R., Pentericci, L., Calabrò, A., Shapley, A.E., Boutsia, K., Pérez-Montero, E., Vílchez, J.M., Nakajima, K., Ionized gas kinematics and chemical abundances of low-mass star-forming galaxies at z ∼ 3. Astron. Astrophys., 676, 2023, A53 arXiv:2303.01536 [astro-ph.GA].
de Graaff, A., et al. Ionised gas kinematics and dynamical masses of z ≳ 6 galaxies from JADES/NIRSpec high-resolution spectroscopy. Astron. Astrophys., 684, 2024, A87 arXiv:2308.09742 [astro-ph.GA].
McGaugh, S.S., Schombert, J.M., Bothun, G.D., de Blok, W.J.G., The baryonic Tully-Fisher relation. Astrophys. J. Lett. 533 (2000), L99–L102 arXiv:astro-ph/0003001.
Bell, E.F., de Jong, R.S., Stellar mass-to-light ratios and the Tully-Fisher relation. Astrophys. J. 550 (2001), 212–229 arXiv:astro-ph/0011493.
McGaugh, S.S., The baryonic Tully-Fisher relation of galaxies with extended rotation curves and the stellar mass of rotating galaxies. Astrophys. J. 632 (2005), 859–871 arXiv:astro-ph/0506750.
Pfenniger, D., Revaz, Y., The baryonic Tully-Fisher relation revisited. Astron. Astrophys., 431, 2005, 511 arXiv:astro-ph/0409621.
Begum, A., Chengalur, J.N., Karachentsev, I.D., Sharina, M.E., Baryonic Tully-Fisher relation for extremely low mass galaxies. Mon. Not. R. Astron. Soc., 386, 2008, 138 arXiv:0801.3606 [astro-ph].
Trachternach, C., de Blok, W.J.G., McGaugh, S.S., van der Hulst, J.M., Dettmar, R.J., The baryonic Tully-Fisher relation and its implication for dark matter halos. Astron. Astrophys., 505, 2009, 577 arXiv:0907.5533 [astro-ph.CO].
Stark, D.V., McGaugh, S.S., Swaters, R.A., A first attempt to calibrate the baryonic Tully-Fisher relation with gas dominated galaxies. Astron. J., 138, 2009, 392 arXiv:0905.4528 [astro-ph.CO].
Gurovich, S., Freeman, K., Jerjen, H., Staveley-Smith, L., Puerari, I., The slope of the baryonic Tully-Fisher relation. Astron. J., 140, 2010, 663 arXiv:1004.4365 [astro-ph.CO].
Zaritsky, D., et al. The baryonic Tully-Fisher relationship for S4G galaxies and the “condensed” baryon fraction of galaxies. Astron. J., 147, 2014, 134 arXiv:1402.6315 [astro-ph.GA].
Tully, R.B., Fisher, J.R., A new method of determining distances to galaxies. Astron. Astrophys. 54 (1977), 661–673.
Pierce, M.J., Tully, R.B., Distances to the Virgo and Ursa Major clusters and a determination of H 0. Astrophys. J., 330, 1988, 579.
Teerikorpi, P., The inverse Tully-Fisher relation. Astrophys. Lett. Commun., 31, 1995, 263.
Giovanelli, R., Haynes, M., Herter, T., Vogt, N., Costa, L.d., Freudling, W., Salzer, J., Wegner, G., The i-band Tully-Fisher relation for cluster galaxies: data presentation. Astron. J. 113 (1997), 22–52 arXiv:astro-ph/9610117.
Giovanelli, R., Haynes, M., Herter, T., Vogt, N., Costa, L.d., Freudling, W., Salzer, J., Wegner, G., The i-band Tully-Fisher relation for cluster galaxies: a template relation, its scatter and bias corrections. Astron. J. 113 (1997), 53–79 arXiv:astro-ph/9610118.
Courteau, S., Rix, H.-W., Maximal disks and the Tully-Fisher relation. ASP Conf. Ser., 136, 1998, 196 arXiv:astro-ph/9707290.
Brent, T.R., Pierce, M.J., Distances to galaxies from the correlation between luminosities and linewidths. 3. Cluster template and global measurements of h0. Astrophys. J. 533 (2000), 744–780 arXiv:astro-ph/9911052.
Karachentsev, I.D., Mitronova, S.N., Karachentseva, V.E., Kudrya, Y.N., Jarrett, T.H., The 2MASS Tully-Fisher relation for flat edge - on galaxies. Astron. Astrophys. 396 (2002), 431–438 arXiv:astro-ph/0209189.
Bedregal, A.G., Aragon-Salamanca, A., Merrifield, M.R., The Tully-Fisher relation for s0 galaxies. Mon. Not. R. Astron. Soc. 373 (2006), 1125–1140 arXiv:astro-ph/0609076.
Noordermeer, E., Verheijen, M.A.W., The high mass end of the Tully-Fisher relation. Mon. Not. R. Astron. Soc., 381, 2007, 1463 arXiv:0708.2822 [astro-ph].
Springob, C.M., Masters, K.L., Haynes, M.P., Giovanelli, R., Marinoni, C., SFI++ II: A New I-band Tully-Fisher catalog, derivation of peculiar velocities and dataset properties. Astrophys. J. Suppl. 172 (2007), 599–614 arXiv:0705.0647 [astro-ph] Erratum: Astrophys. J. Suppl. 182 (2009), 474–475.
Williams, M.J., Bureau, M., Cappellari, M., The Tully-Fisher relations of early-type spiral and s0 galaxies. Mon. Not. R. Astron. Soc., 409, 2010, 1330 arXiv:1007.4072 [astro-ph.GA].
Mocz, P., Green, A., Malacari, M., Glazebrook, K., The Tully-Fisher relation for 25,000 SDSS Galaxies as function of environment. Mon. Not. R. Astron. Soc., 425, 2012, 296 arXiv:1206.1662 [astro-ph.CO].
Rawle, T.D., Lucey, J.R., Smith, R.J., Head, J.T.C.G., S0 galaxies in the coma cluster: environmental dependence of the s0 offset from the Tully-Fisher relation. Mon. Not. R. Astron. Soc., 433, 2013, 2667 arXiv:1305.6929 [astro-ph.CO].
Sorce, J.G., Courtois, H.M., Tully, R.B., Seibert, M., Scowcroft, V., Freedman, W.L., Madore, B.F., Persson, S.E., Monson, A., Rigby, J., Calibration of the mid-infrared Tully-Fisher relation. Astrophys. J., 765, 2013, 94 arXiv:1301.4833 [astro-ph.CO].
Sorce, J.G., Tully, R.B., Courtois, H.M., Jarrett, T.H., Neill, J.D., Shaya, E.J., From spitzer galaxy photometry to Tully–Fisher distances. Mon. Not. R. Astron. Soc. 444:1 (2014), 527–541 arXiv:1408.0729 [astro-ph.GA].
Torres-Flores, S., Mendes de Oliveira, C., Plana, H., Amram, P., Epinat, B., The Tully-Fisher relations for Hickson compact group galaxies. Mon. Not. R. Astron. Soc., 432, 2013, 3085 arXiv:1304.4493 [astro-ph.CO].
Said, K., Kraan-Korteweg, R.C., Jarrett, T.H., On how to extend the NIR Tully–Fisher relation to be truly all-sky. Mon. Not. R. Astron. Soc. 447:2 (2015), 1618–1629 arXiv:1411.7361 [astro-ph.GA].
Said, K., Kraan-Korteweg, R.C., Jarrett, T.H., Staveley-Smith, L., Williams, W.L., NIR Tully–Fisher in the zone of avoidance – III. Deep NIR catalogue of the HIZOA galaxies. Mon. Not. R. Astron. Soc. 462:3 (2016), 3386–3400 arXiv:1607.08596 [astro-ph.GA].
Kourkchi, E., Tully, R.B., Anand, G.S., Courtois, H.M., Dupuy, A., Neill, J.D., Rizzi, L., Seibert, M., Cosmicflows-4: The calibration of optical and infrared Tully–Fisher relations. Astrophys. J., 896(1), 2020, 3 arXiv:2004.14499 [astro-ph.GA].
Bell, R., Said, K., Davis, T., Jarrett, T.H., Calibration of the Tully–Fisher relation in the WISE W1 (3.4 μm) and W2 (4.6 μm) bands. Mon. Not. R. Astron. Soc. 519:1 (2022), 102–120 arXiv:2205.13136 [astro-ph.GA].
Boubel, P., Colless, M., Said, K., Staveley-Smith, L., Large-scale motions and growth rate from forward-modelling Tully–Fisher peculiar velocities. Mon. Not. R. Astron. Soc. 531:1 (2024), 84–109 arXiv:2301.12648 [astro-ph.CO].
Eisenstein, D.J., Loeb, A., An analytical model for the triaxial collapse of cosmological perturbations. Astrophys. J., 439, 1995, 520 arXiv:astro-ph/9405012.
McGaugh, S.S., de Blok, W.J.G., Testing the dark matter hypothesis with low surface brightness galaxies and other evidence. Astrophys. J., 499, 1998, 41 arXiv:astro-ph/9801123.
McGaugh, S.S., de Blok, W.J.G., Testing the hypothesis of modified dynamics with low surface brightness galaxies and other evidence. Astrophys. J. 499 (1998), 66–81 arXiv:astro-ph/9801102.
Mo, H.J., Mao, S., White, S.D.M., The formation of galactic disks. Mon. Not. R. Astron. Soc., 295, 1998, 319 arXiv:astro-ph/9707093.
Steinmetz, M., Navarro, J., The cosmological origin of the Tully-Fisher relation. Astrophys. J. 513 (1999), 555–560 arXiv:astro-ph/9808076.
van den Bosch, F.C., Semi-analytical models for the formation of disk galaxies: I. Constraints from the Tully-Fisher relation. Astrophys. J., 530, 2000, 177 arXiv:astro-ph/9909298.
Mayer, L., Moore, B., The baryonic mass - velocity relation: Clues to feedback processes during structure formation and the cosmic baryon inventory. Mon. Not. R. Astron. Soc., 354, 2004, 477 arXiv:astro-ph/0309500.
Gnedin, O.Y., Weinberg, D.H., Pizagno, J., Prada, F., Rix, H.-W., Dark matter Halos of disk galaxies: Constraints from the Tully-Fisher relation. Astrophys. J. 671 (2007), 1115–1134 arXiv:astro-ph/0607394.
Governato, F., Willman, B., Mayer, L., Brooks, A., Stinson, G., Valenzuela, O., Wadsley, J., Quinn, T.R., Forming disk galaxies in lambda-cdm simulations. Mon. Not. R. Astron. Soc. 374 (2007), 1479–1494 arXiv:astro-ph/0602351.
Avila-Reese, V., Zavala, J., Firmani, C., Hernandez-Toledo, H.M., On the baryonic, stellar, and luminous scaling relations of disk galaxies. Astron. J. 136 (2008), 1340–1360 arXiv:0807.0636 [astro-ph].
Dutton, A.A., The baryonic Tully-Fisher relation and galactic outflows. Mon. Not. R. Astron. Soc., 424, 2012, 3123 arXiv:1206.1855 [astro-ph.CO].
McGaugh, S., The baryonic Tully-Fisher relation of gas rich galaxies as a test of LCDM and MOND. Astron. J., 143, 2012, 40 arXiv:1107.2934 [astro-ph.CO].
Aumer, M., White, S., Naab, T., Scannapieco, C., Towards a more realistic population of bright spiral galaxies in cosmological simulations. Mon. Not. R. Astron. Soc., 434, 2013, 3142 arXiv:1304.1559 [astro-ph.GA].
Desmond, H., Wechsler, R.H., The Tully–Fisher and mass–size relations from halo abundance matching. Mon. Not. R. Astron. Soc. 454:1 (2015), 322–343 arXiv:1506.00169 [astro-ph.GA].
Lelli, F., et al. Gas dynamics in tidal dwarf galaxies: Disc formation at z = 0. Astron. Astrophys., 584, 2015, A113 arXiv:1509.05404 [astro-ph.GA].
Salucci, P., Frenk, C.S., Persic, M., A physical distance indicator for spiral galaxies and the determination of H(0). Mon. Not. R. Astron. Soc., 262, 1993, 392.
Lapi, A., Salucci, P., Danese, L., Precision scaling relations for disk galaxies in the local universe. Astrophys. J., 859(1), 2018, 2 arXiv:1804.06086 [astro-ph.GA].
Said, K., Tully-Fisher relation. 2023 arXiv:2310.16053 [astro-ph.CO].
McGaugh, S.S., A novel test of the modified newtonian dynamics with gas rich galaxies. Phys. Rev. Lett., 106, 2011, 121303 arXiv:1102.3913 [astro-ph.CO] Erratum: Phys. Rev. Lett., 107, 2011, 229901.
Yegorova, I.A., Salucci, P., The radial Tully-Fisher relation for spiral galaxies. 1. Mon. Not. R. Astron. Soc. 377 (2007), 507–515 arXiv:astro-ph/0612434.
Haridasu, B.S., Salucci, P., Sharma, G., Radial Tully–Fisher relation and the local variance of Hubble parameter. Mon. Not. R. Astron. Soc. 532:2 (2024), 2234–2247 arXiv:2403.06859 [astro-ph.CO].
Fontaine, J.-P., Salucci, P., Karukes, E., The radial Tully-Fisher relations in dwarf spiral galaxies. Proceedings of the 53rd Rencontres de Moriond on Cosmology 2018, 2020, 363–364 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089624578&partnerID=40&md5=e364fc57db93bf5425ab83b4aa5fadbd.
Salucci, P., The distribution of dark matter in galaxies. Astron. Astrophys. Rev., 27(1), 2019, 2 arXiv:1811.08843 [astro-ph.GA].
Lelli, F., McGaugh, S.S., Schombert, J.M., The small scatter of the baryonic Tully–Fisher relation. Astrophys. J. Lett., 816(1), 2016, L14 arXiv:1512.04543 [astro-ph.GA].
Borka Jovanović, V., Capozziello, S., Jovanović, P., Borka, D., Recovering the fundamental plane of galaxies by f(R) gravity. Phys. Dark Univ. 14 (2016), 73–83 arXiv:1610.03336 [astro-ph.GA].
Capozziello, S., Jovanović, P., Jovanović, V.B., Borka, D., Addressing the missing matter problem in galaxies through a new fundamental gravitational radius. JCAP, 06, 2017, 044 arXiv:1702.03430 [gr-qc].
Banik, I., Zhao, H., From galactic bars to the Hubble tension: Weighing up the astrophysical evidence for milgromian gravity. Symmetry, 14(7), 2022, 1331 arXiv:2110.06936 [astro-ph.CO].
Bertolami, O., Boehmer, C.G., Harko, T., Lobo, F.S.N., Extra force in f(R) modified theories of gravity. Phys. Rev. D, 75, 2007, 104016 arXiv:0704.1733 [gr-qc].
Bertolami, O., Gomes, C., The Layzer-Irvine equation in theories with non-minimal coupling between matter and curvature. JCAP, 09, 2014, 010 arXiv:1406.5990 [astro-ph.CO].
Gomes, C., Jeans instability in non-minimal matter-curvature coupling gravity. Eur. Phys. J. C, 80(7), 2020, 633 arXiv:2008.10026 [gr-qc].
Gomes, C., Ourabah, K., Quantum kinetic theory of Jeans instability in non-minimal matter-curvature coupling gravity. Eur. Phys. J. C, 83(1), 2023, 40 arXiv:2204.07871 [gr-qc].
Barroso Varela, M., Bertolami, O., Hubble tension in a nonminimally coupled curvature-matter gravity model. JCAP, 06, 2024, 025 arXiv:2403.11683 [gr-qc].
van Putten, M.H.P.M., Evidence for galaxy dynamics tracing background cosmology below the de sitter scale of acceleration. Astrophys. J., 848(1), 2017, 28 arXiv:1709.05944 [astro-ph.GA].
van Putten, M.H.P.M., Self-similar galaxy dynamics below the de Sitter scale of acceleration. Mon. Not. R. Astro. Soc. 481:1 (2018), L26–L29 arXiv:1804.06212 [astro-ph.GA].
Lee, G.-M., van Putten, M.H.P.M., Prospects for high-resolution probes of galaxy dynamics tracing background cosmology in MaNGA. New Astron., 117, 2025, 102360 arXiv:2501.11882 [astro-ph.CO].
van Putten, M.H.P.M., Galaxy dynamics tracing quantum cosmology beyond CDM below the de sitter scale of acceleration. Chinese J. Phys. 91 (2024), 377–381 arXiv:2408.06399 [gr-qc].
van Putten, M.H.P.M., The fast and furious in JWST high- z galaxies. Phys. the Dark Universe, 43, 2024, 101417 arXiv:2312.16692 [astro-ph.CO].
Lelli, F., McGaugh, S.S., Schombert, J.M., Pawlowski, M.S., The relation between stellar and dynamical surface densities in the central regions of disk galaxies. Astrophys. J. Lett., 827(1), 2016, L19 arXiv:1607.02145 [astro-ph.GA].
Lelli, F., McGaugh, S.S., Schombert, J.M., SPARC: Mass models for 175 disk galaxies with spitzer photometry and accurate rotation curves. Astron. J., 152, 2016, 157 arXiv:1606.09251 [astro-ph.GA].
Schombert, J., McGaugh, S., Lelli, F., Using the baryonic Tully–Fisher relation to measure H O. Astron. J., 160(2), 2020, 71 arXiv:2006.08615 [astro-ph.CO].
Puech, M., Hammer, F., Flores, H., Delgado-Serrano, R., Rodrigues, M., Yang, Y., The baryonic content and Tully-Fisher relation at z̃0.6. Astron. Astrophys., 510, 2010, A68 arXiv:0903.3961 [astro-ph.CO].
Miller, S.H., Bundy, K., Sullivan, M., Ellis, R.S., Treu, T., The assembly history of disk galaxies: I - The Tully-Fisher relation to z̃1.3 from deep exposures with DEIMOS. Astrophys. J., 741, 2011, 115 arXiv:1102.3911 [astro-ph.CO].
Di Teodoro, E.M., Fraternali, F., Miller, S.H., Flat rotation curves and low velocity dispersions in kmos star-forming galaxies at z 1. Astron. Astrophys., 594, 2016, A77 arXiv:1602.04942 [astro-ph.GA].
Shivaei, I., et al. The MOSDEF survey: Dynamical and baryonic masses and kinematic structures of star-forming galaxies at 1.4≤z≤2.6. Astrophys. J., 819, 2016, 80 arXiv:1511.03272 [astro-ph.GA].
Straatman, C.M.S., et al. ZFIRE: The evolution of the stellar mass Tully-Fisher relation to redshift 2.0 < Z < 2.5 with MOSFIRE. Astrophys. J., 839, 2017, 57 arXiv:1703.00016 [astro-ph.GA].
Alestas, G., Antoniou, I., Perivolaropoulos, L., Hints for a gravitational transition in Tully–Fisher data. Universe, 7(10), 2021, 366 arXiv:2104.14481 [astro-ph.CO].
Stone, C., Courteau, S., Arora, N., Frosst, M., Jarrett, T., PROBES-I: A compendium of deep rotation curves and matched multiband photometry. Astrophys. J. Suppl., 262, 2022, 33 arXiv:2209.09912 [astro-ph.GA].
Boubel, P., Colless, M., Said, K., Staveley-Smith, L., An improved Tully–Fisher estimate of H0. Mon. Not. R. Astron. Soc. 533:2 (2024), 1550–1559 arXiv:2408.03660 [astro-ph.CO].
Scolnic, D., Boubel, P., Byrne, J., Riess, A.G., Anand, G.S., Calibrating the Tully-Fisher relation to measure the Hubble constant. 2024 arXiv:2412.08449 [astro-ph.CO].
Koribalski, B.S., et al. WALLABY – an SKA pathfinder H i survey. Astrophys. Space Sci., 365(7), 2020, 118 arXiv:2002.07311 [astro-ph.GA].
Saulder, C., et al. Target selection for the DESI peculiar velocity survey. Mon. Not. R. Astron. Soc. 525:1 (2023), 1106–1125 arXiv:2302.13760 [astro-ph.CO].
Zhang, C.-P., Zhu, M., Jiang, P., Cheng, C., Wang, J., Wang, J., Xu, J.-L., Liu, X.-L., Yu, N.-P., Qian, L., Yu, H., Ai, M., Jing, Y., Xu, C., Liu, Z., Guan, X., Sun, C., Yang, Q., Huang, M., Hao, Q., FAST Collaboration, The FAST all sky H I survey (FASHI): The first release of catalog. Sci. China Phys., Mech., Astron., 67(1), 2024, 219511 arXiv:2312.06097 [astro-ph.GA].
Said, K., et al. DESI peculiar velocity survey – fundamental plane. 2024 arXiv:2408.13842 [astro-ph.CO].
Djorgovski, S., Davis, M., Fundamental properties of elliptical galaxies. Astrophys. J., 313, 1987, 59.
Dressler, A., Faber, S.M., Burstein, D., Davies, R.L., Lynden-Bell, D., Terlevich, R.J., Wegner, G., Spectroscopy and photometry of elliptical galaxies: A large scale streaming motion in the local universe. Astrophys. J. Lett. 313 (1987), L37–L42.
Scolnic, D., et al. The Hubble tension in our own backyard: DESI and the nearness of the coma cluster. Astrophys. J. Lett., 979(1), 2025, L9 arXiv:2409.14546 [astro-ph.CO].
Jones, D.O., et al., Young Supernova Experiment Collaboration. The young supernova experiment: survey goals, overview, and operations. Astrophys. J., 908(2), 2021, 143 arXiv:2010.09724 [astro-ph.HE].
Carter, D., et al. The HST/ACS Coma Cluster Survey: I - survey objectives and design. Astrophys. J. Suppl., 176, 2008, 424 arXiv:0801.3745 [astro-ph].
Jensen, J.B., Tonry, J.L., Luppino, G.A., The infrared surface brightness fluctuation distances to the hydra and coma clusters. Astrophys. J., 510, 1999, 71 arXiv:astro-ph/9807326.
Thomsen, B., Baum, W.A., Hammergren, M., Worthey, G., The distance to the coma cluster from surface brightness fluctuations. Astrophys. J. Lett. 483 (1997), L37–L40 arXiv:astro-ph/9704121.
Gregg, M.D., The coma - leo I distance ratio and the Hubble constant. New Astron., 1, 1997, 363 arXiv:astro-ph/9703031.
Hjorth, J., Tanvir, N.R., Calibration of the fundamental plane zero-point in the Leo-I group and an estimate of the Hubble constant. Astrophys. J. 482 (1997), 68–74 arXiv:astro-ph/9701025.
Kavelaars, J.J., Harris, W.E., Hanes, D.A., Hesser, J.E., Pritchet, C.J., The globular cluster systems in the coma ellipticals. I: the luminosity function in ngc 4874, and implications for Hubble's constant. Astrophys. J., 533, 2000, 125 arXiv:astro-ph/9911206.
de Grijs, R., Bono, G., Clustering of local group distances: publication bias or correlated measurements? VII. A distance framework out to 100 Mpc. Astrophys. J. Suppl., 248(1), 2020, 6 arXiv:2004.00114 [astro-ph.GA].
Mainieri, V., et al., WST Collaboration. The Wide-field Spectroscopic Telescope (WST) science white paper. 2024 arXiv:2403.05398 [astro-ph.IM].
Jimenez, R., Loeb, A., Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 573 (2002), 37–42 arXiv:astro-ph/0106145.
Simon, J., Verde, L., Jimenez, R., Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D, 71, 2005, 123001 arXiv:astro-ph/0412269.
Stern, D., Jimenez, R., Verde, L., Kamionkowski, M., Stanford, S.A., Cosmic chronometers: Constraining the equation of state of dark energy. I: H(z) measurements. JCAP, 02, 2010, 008 arXiv:0907.3149 [astro-ph.CO].
Moresco, M., Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼ 2. Mon. Not. R. Astron. Soc. 450:1 (2015), L16–L20 arXiv:1503.01116 [astro-ph.CO].
Moresco, M., Pozzetti, L., Cimatti, A., Jimenez, R., Maraston, C., Verde, L., Thomas, D., Citro, A., Tojeiro, R., Wilkinson, D., A 6% measurement of the Hubble parameter at z∼0.45: direct evidence of the epoch of cosmic re-acceleration. JCAP, 05, 2016, 014 arXiv:1601.01701 [astro-ph.CO].
Ratsimbazafy, A.L., Loubser, S.I., Crawford, S.M., Cress, C.M., Bassett, B.A., Nichol, R.C., Väisänen, P., Age-dating luminous red galaxies observed with the Southern African large telescope. Mon. Not. R. Astron. Soc. 467:3 (2017), 3239–3254 arXiv:1702.00418 [astro-ph.CO].
Borghi, N., Moresco, M., Cimatti, A., Huchet, A., Quai, S., Pozzetti, L., Toward a better understanding of cosmic chronometers: Stellar population properties of passive galaxies at intermediate redshift. Astrophys. J., 927(2), 2022, 164 arXiv:2106.14894 [astro-ph.GA].
Jiao, K., Borghi, N., Moresco, M., Zhang, T.-J., New observational H(z) data from full-spectrum fitting of cosmic chronometers in the LEGA-C survey. Astrophys. J. Suppl., 265(2), 2023, 48 arXiv:2205.05701 [astro-ph.CO].
Tomasetti, E., Moresco, M., Borghi, N., Jiao, K., Cimatti, A., Pozzetti, L., Carnall, A.C., McLure, R.J., Pentericci, L., A new measurement of the expansion history of the universe at z = 1.26 with cosmic chronometers in VANDELS. Astron. Astrophys., 679, 2023, A96 arXiv:2305.16387 [astro-ph.CO].
Jimenez, R., Moresco, M., Verde, L., Wandelt, B.D., Cosmic chronometers with photometry: a new path to H(z). JCAP, 11, 2023, 047 arXiv:2306.11425 [astro-ph.CO].
Moresco, M., Addressing the Hubble tension with cosmic chronometers. 2023 arXiv:2307.09501 [astro-ph.CO].
Busti, V.C., Clarkson, C., Seikel, M., Evidence for a lower value for H0 from cosmic chronometers data?. Mon. Not. R. Astron. Soc., 441, 2014, 11 arXiv:1402.5429 [astro-ph.CO].
Cao, S., Zheng, X., Biesiada, M., Qi, J., Chen, Y., Zhu, Z.-H., Ultra-compact structure in intermediate-luminosity radio quasars: building a sample of standard cosmological rulers and improving the dark energy constraints up to z ̃ 3. Astron. Astrophys., 606, 2017, A15 arXiv:1708.08635 [astro-ph.CO].
Yu, H., Ratra, B., Wang, F.-Y., Hubble parameter and baryon acoustic oscillation measurement constraints on the Hubble constant, the deviation from the spatially flat ΛCDM model, the deceleration–acceleration transition redshift, and spatial curvature. Astrophys. J., 856(1), 2018, 3 arXiv:1711.03437 [astro-ph.CO].
Gómez-Valent, A., Amendola, L., H0 From cosmic chronometers and type Ia supernovae, with Gaussian processes and the novel weighted polynomial regression method. JCAP, 04, 2018, 051 arXiv:1802.01505 [astro-ph.CO].
Haridasu, B.S., Luković, V.V., Moresco, M., Vittorio, N., An improved model-independent assessment of the late-time cosmic expansion. JCAP, 10, 2018, 015 arXiv:1805.03595 [astro-ph.CO].
Gómez-Valent, A., Measuring the sound horizon and absolute magnitude of SNIa by maximizing the consistency between low-redshift data sets. Phys. Rev. D, 105(4), 2022, 043528 arXiv:2111.15450 [astro-ph.CO].
Bonilla, A., Kumar, S., Nunes, R.C., Measurements of H0 and reconstruction of the dark energy properties from a model-independent joint analysis. Eur. Phys. J. C, 81(2), 2021, 127 arXiv:2011.07140 [astro-ph.CO].
Ó Colgáin, E., Sheikh-Jabbari, M.M., Elucidating cosmological model dependence with H0. Eur. Phys. J. C, 81(10), 2021, 892 arXiv:2101.08565 [astro-ph.CO].
Liu, T., Cao, S., Zhang, S., Zheng, C., Guo, W., Revisiting the Hubble constant, spatial curvature, and cosmography with strongly lensed quasar and Hubble parameter observations. Astrophys. J., 939(1), 2022, 37 arXiv:2204.07365 [astro-ph.CO].
Yang, Y., Lu, X., Qian, L., Cao, S., Potentialities of Hubble parameter and expansion rate function data to alleviate Hubble tension. Mon. Not. R. Astron. Soc. 519:4 (2023), 4938–4950 arXiv:2204.01020 [astro-ph.CO].
Favale, A., Gómez-Valent, A., Migliaccio, M., Cosmic chronometers to calibrate the ladders and measure the curvature of the universe. A model-independent study. Mon. Not. R. Astron. Soc. 523:3 (2023), 3406–3422 arXiv:2301.09591 [astro-ph.CO].
Favale, A., Dainotti, M.G., Gómez-Valent, A., Migliaccio, M., Towards a new model-independent calibration of gamma-ray bursts. JHEAp 44 (2024), 323–339 arXiv:2402.13115 [astro-ph.CO].
Yang, Y., Liu, T., Huang, J., Cheng, X., Biesiada, M., Wu, S.-m., Simultaneous measurements on cosmic curvature and opacity using latest HII regions and H(z) observations. Eur. Phys. J. C, 84(1), 2024, 3 arXiv:2401.03413 [astro-ph.CO].
Rani, N., Jain, D., Mahajan, S., Mukherjee, A., Biesiada, M., Revisiting dark energy models using differential ages of galaxies. JCAP, 03, 2017, 005 arXiv:1612.07492 [astro-ph.CO].
Li, Z., Gonzalez, J.E., Yu, H., Zhu, Z.-H., Alcaniz, J.S., Constructing a cosmological model-independent Hubble diagram of type Ia supernovae with cosmic chronometers. Phys. Rev. D, 93(4), 2016, 043014 arXiv:1504.03269 [astro-ph.CO].
Capozziello, S., D'Agostino, R., Luongo, O., High-redshift cosmography: auxiliary variables versus Padé polynomials. Mon. Not. R. Astron. Soc. 494:2 (2020), 2576–2590 arXiv:2003.09341 [astro-ph.CO].
Moresco, M., Verde, L., Pozzetti, L., Jimenez, R., Cimatti, A., New constraints on cosmological parameters and neutrino properties using the expansion rate of the universe to z̃1.75. JCAP, 07, 2012, 053 arXiv:1201.6658 [astro-ph.CO].
Moresco, M., Jimenez, R., Verde, L., Cimatti, A., Pozzetti, L., Maraston, C., Thomas, D., Constraining the time evolution of dark energy, curvature and neutrino properties with cosmic chronometers. JCAP, 12, 2016, 039 arXiv:1604.00183 [astro-ph.CO].
Laureijs, R., et al., EUCLID Collaboration. Euclid definition study report. 2011 arXiv:1110.3193 [astro-ph.CO].
Cogato, F., Moresco, M., Amati, L., Cimatti, A., An analytical late–universe approach to the weaving of modern cosmology. Mon. Not. R. Astron. Soc. 527:3 (2023), 4874–4888 arXiv:2309.01375 [astro-ph.CO].
Heavens, A., Jimenez, R., Verde, L., Standard rulers, candles, and clocks from the low-redshift universe. Phys. Rev. Lett., 113(24), 2014, 241302 arXiv:1409.6217 [astro-ph.CO].
Verde, L., Bernal, J.L., Heavens, A.F., Jimenez, R., The length of the low-redshift standard ruler. Mon. Not. R. Astron. Soc. 467:1 (2017), 731–736 arXiv:1607.05297 [astro-ph.CO].
Guo, W., Wang, Q., Cao, S., Biesiada, M., Liu, T., Lian, Y., Jiang, X., Mu, C., Cheng, D., Newest measurements of Hubble constant from DESI 2024 baryon acoustic oscillation observations. Astrophys. J. Lett., 978(2), 2025, L33 arXiv:2412.13045 [astro-ph.CO].
Amati, L., D'Agostino, R., Luongo, O., Muccino, M., Tantalo, M., Addressing the circularity problem in the Ep−Eiso correlation of gamma-ray bursts. Mon. Not. R. Astron. Soc. 486:1 (2019), L46–L51 arXiv:1811.08934 [astro-ph.HE].
Wei, J.-J., Melia, F., Model-independent distance calibration and curvature measurement using quasars and cosmic chronometers. Astrophys. J., 888(2), 2020, 99 arXiv:1912.00668 [astro-ph.CO].
Sahni, V., Shafieloo, A., Starobinsky, A.A., Model independent evidence for dark energy evolution from baryon acoustic oscillations. Astrophys. J. Lett., 793(2), 2014, L40 arXiv:1406.2209 [astro-ph.CO].
Zheng, X., Ding, X., Biesiada, M., Cao, S., Zhu, Z., What are Omh2(z1,z2) and Om(z1,z2) diagnostics telling us in light of H(z) data?. Astrophys. J., 825(1), 2016, 17 arXiv:1604.07910 [astro-ph.CO].
Zheng, X., Biesiada, M., Ding, X., Cao, S., Zhang, S., Zhu, Z.-H., Statistical analysis with cosmic-expansion-rate measurements and two-point diagnostics. Eur. Phys. J. C, 78(3), 2018, 274 arXiv:1803.09106 [astro-ph.CO].
Suyu, S.H., Goobar, A., Collett, T., More, A., Vernardos, G., Strong gravitational lensing and microlensing of supernovae. Space Sci. Rev., 220(1), 2024, 13 arXiv:2301.07729 [astro-ph.CO].
Birrer, S., Millon, M., Sluse, D., Shajib, A.J., Courbin, F., Erickson, S., Koopmans, L.V.E., Suyu, S.H., Treu, T., Time-delay cosmography: measuring the Hubble constant and other cosmological parameters with strong gravitational lensing. Space Sci. Rev., 220(5), 2024, 48 arXiv:2210.10833 [astro-ph.CO].
Refsdal, S., On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect. Mon. Not. R. Astron. Soc. 128:4 (1964), 307–310.
Quimby, R.M., Oguri, M., More, A., More, S., Moriya, T.J., Werner, M.C., Tanaka, M., Folatelli, G., Bersten, M.C., Nomoto, K., XXX Collaboration. Detection of the gravitational lens magnifying a type Ia supernova. Science 344:6 (2014), 396–399 arXiv:1404.6014 [astro-ph.CO].
Kelly, P.L., et al. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens. Science, 347, 2015, 1123 arXiv:1411.6009 [astro-ph.CO].
Kelly, P.L., et al. Constraints on the Hubble constant from supernova Refsdal's reappearance. Science, 380(6649), 2023, abh1322 arXiv:2305.06367 [astro-ph.CO].
Grillo, C., Pagano, L., Rosati, P., Suyu, S.H., Cosmography with supernova Refsdal through time-delay cluster lensing: Independent measurements of the Hubble constant and geometry of the universe. Astron. Astrophys., 684, 2024, L23 arXiv:2401.10980 [astro-ph.CO].
Jee, I., Komatsu, E., Suyu, S.H., Huterer, D., Time-delay cosmography: Increased leverage with angular diameter distances. JCAP, 04, 2016, 031 arXiv:1509.03310 [astro-ph.CO].
Linder, E.V., Lensing time delays and cosmological complementarity. Phys. Rev. D, 84, 2011, 123529 arXiv:1109.2592 [astro-ph.CO].
Suyu, S.H., et al. Cosmology from gravitational lens time delays and Planck data. Astrophys. J. Lett., 788, 2014, L35 arXiv:1306.4732 [astro-ph.CO].
Collett, T., Montanari, F., Rasanen, S., Model-independent determination of H0 and ΩK0 from strong lensing and type Ia supernovae. Phys. Rev. Lett., 123(23), 2019, 231101 arXiv:1905.09781 [astro-ph.CO].
Shajib, A.J., Treu, T., Agnello, A., Improving time-delay cosmography with spatially resolved kinematics. Mon. Not. R. Astron. Soc. 473:1 (2018), 210–226 arXiv:1709.01517 [astro-ph.CO].
Shajib, A.J., et al., DES Collaboration. STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. Mon. Not. R. Astron. Soc. 494:4 (2020), 6072–6102 arXiv:1910.06306 [astro-ph.CO].
Millon, M., et al. TDCOSMO. I. An exploration of systematic uncertainties in the inference of H0 from time-delay cosmography. Astron. Astrophys., 639, 2020, A101 arXiv:1912.08027 [astro-ph.CO].
Falco, E.E., Gorenstein, M.V., Shapiro, I.I., On model-dependent bounds on H 0 from gravitational images: application to Q 0957+561 A, B. Astrophys. J. Lett. 289 (1985), L1–L4.
Birrer, S., et al. TDCOSMO - IV. hierarchical time-delay cosmography – joint inference of the Hubble constant and galaxy density profiles. Astron. Astrophys., 643, 2020, A165 arXiv:2007.02941 [astro-ph.CO].
Goobar, A., et al. iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova. Science 356 (2017), 291–295 arXiv:1611.00014 [astro-ph.CO].
Goobar, A., et al. Uncovering a population of gravitational lens galaxies with magnified standard candle SN Zwicky. Nat. Astron. 7 (2023), 1098–1107 arXiv:2211.00656 [astro-ph.CO] Erratum: Nature Astron., 7, 2023 1137–1137.
Rodney, S.A., Brammer, G.B., Pierel, J.D.R., Richard, J., Toft, S., O'Connor, K.F., Akhshik, M., Whitaker, K.E., A gravitationally lensed supernova with an observable two-decade time delay. Nat. Astron. 5:11 (2021), 1118–1125 arXiv:2106.08935 [astro-ph.CO].
Chen, W., Kelly, P.L., Oguri, M., Broadhurst, T.J., Diego, J.M., Emami, N., Filippenko, A.V., Treu, T.L., Zitrin, A., Shock cooling of a red-supergiant supernova at redshift 3 in lensed images. nature 611:7935 (2022), 256–259 arXiv:2306.12985 [astro-ph.GA].
Kelly, P., Zitrin, A., Oguri, M., Diego, J., Williams, H., Broadhurst, T., Chen, W., Koekemoer, A., Pierel, J., Strolger, L., Treu, T., Strongly lensed SN in MACS 2129 galaxy-cluster field. Transient Name Serv. AstroNote, 169, 2022, 1.
Frye, B.L., et al. The JWST discovery of the triply imaged type Ia “Supernova H0pe” and observations of the galaxy cluster PLCK G165.7+67.0. Astrophys. J., 961(2), 2024, 171 arXiv:2309.07326 [astro-ph.GA].
Pierel, J.D.R., et al. Lensed type Ia Supernova ‘Encore’ at z = 2: The first instance of two multiply imaged supernovae in the same host galaxy. Astrophys. J. Lett., 967(2), 2024, L37 arXiv:2404.02139 [astro-ph.CO].
Pierel, J.D.R., et al. Jwst photometric time-delay and magnification measurements for the triply imaged type Ia ‘SN H0pe’ at z= 1.78. Astrophys. J., 967(1), 2024, 50 arXiv:2403.18954 [astro-ph.CO].
Pierel, J.D.R., Rodney, S., Vernardos, G., Oguri, M., Kessler, R., Anguita, T., Projected cosmological constraints from strongly lensed supernovae with the Roman Space Telescope. Astrophys. J., 908(2), 2021, 190 arXiv:2010.12399 [astro-ph.CO].
Birrer, S., Treu, T., TDCOSMO - V. Strategies for precise and accurate measurements of the Hubble constant with strong lensing. Astron. Astrophys., 649, 2021, A61 arXiv:2008.06157 [astro-ph.CO].
Oguri, M., Marshall, P.J., Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys. Mon. Not. R. Astron. Soc. 405 (2010), 2579–2593 arXiv:1001.2037 [astro-ph.CO].
Petrushevska, T., Strongly lensed supernovae in well-studied galaxy clusters with the Vera C. Rubin observatory. Symmetry, 12(12), 2020, 1966 arXiv:2011.14122 [astro-ph.CO].
Arendse, N., Dhawan, S., Carracedo, A.S., Peiris, H.V., Goobar, A., Wojtak, R., Alves, C., Biswas, R., Huber, S., Birrer, S., LSST Dark Enrgy Science Collaboration. Detecting strongly lensed type Ia supernovae with LSST. Mon. Not. R. Astron. Soc. 531:3 (2024), 3509–3523 arXiv:2312.04621 [astro-ph.CO].
Collett, T.E., The population of galaxy-galaxy strong lenses in forthcoming optical imaging surveys. Astrophys. J., 811(1), 2015, 20 arXiv:1507.02657 [astro-ph.CO].
Meng, X.-L., Treu, T., Agnello, A., Auger, M.W., Liao, K., Marshall, P.J., Precision cosmology with time delay lenses: high resolution imaging requirements. JCAP, 09, 2015, 059 arXiv:1506.07640 [astro-ph.CO].
Liao, K., et al. Strong lens time delay challenge: II. Results of TDC1. Astrophys. J., 800(1), 2015, 11 arXiv:1409.1254 [astro-ph.IM].
Jovanovic, P., Zakharov, A.F., Popovic, L.C., Petrovic, T., Microlensing of the X-ray, UV and optical emission regions of quasars: Simulations of the time-scales and amplitude variations of microlensing events. Mon. Not. R. Astron. Soc., 386, 2008, 397 arXiv:0801.4473 [astro-ph].
Millon, M., et al. TDCOSMO - II. Six new time delays in lensed quasars from high-cadence monitoring at the MPIA 2.2 m telescope. Astron. Astrophys., 642, 2020, A193 arXiv:2006.10066 [astro-ph.CO].
Goldstein, D.A., Nugent, P.E., Kasen, D.N., Collett, T.E., Precise time delays from strongly gravitationally lensed type Ia supernovae with chromatically microlensed images. Astrophys. J., 855(1), 2018, 22 arXiv:1708.00003 [astro-ph.CO].
Bayer, J., Huber, S., Vogl, C., Suyu, S.H., Taubenberger, S., Sluse, D., Chan, J.H.H., Kerzendorf, W.E., HOLISMOKES - V. Microlensing of Type II supernovae and time-delay inference through spectroscopic phase retrieval. Astron. Astrophys., 653, 2021, A29 arXiv:2101.06229 [astro-ph.CO].
Etherington, A., et al. Automated galaxy–galaxy strong lens modelling: No lens left behind. Mon. Not. R. Astron. Soc. 517:3 (2022), 3275–3302 arXiv:2202.09201 [astro-ph.CO].
Schmidt, T., et al., DES Collaboration. STRIDES: automated uniform models for 30 quadruply imaged quasars. Mon. Not. R. Astron. Soc. 518:1 (2023), 1260–1300 arXiv:2206.04696 [astro-ph.CO].
Legin, R., Hezaveh, Y., Perreault-Levasseur, L., Wandelt, B., A framework for obtaining accurate posteriors of strong gravitational lensing parameters with flexible priors and implicit likelihoods using density estimation. Astrophys. J., 943(1), 2023, 4 arXiv:2212.00044 [astro-ph.IM].
Shajib, A.J., Treu, T., Birrer, S., Sonnenfeld, A., Dark matter haloes of massive elliptical galaxies at z ∼ 0.2 are well described by the Navarro-Frenk-White profile. Mon. Not. R. Astro. Soc. 503:2 (2021), 2380–2405 arXiv:2008.11724 [astro-ph.GA].
Adam, A., Perreault-Levasseur, L., Hezaveh, Y., Welling, M., Pixelated reconstruction of foreground density and background surface brightness in gravitational lensing systems using recurrent inference machines. Astrophys. J., 951(1), 2023, 6 arXiv:2301.04168 [astro-ph.IM].
Park, J.W., Wagner-Carena, S., Birrer, S., Marshall, P.J., Lin, J.Y.-Y., Roodman, A., LSST Dark Energy Science Collaboration. Large-scale gravitational lens modeling with bayesian neural networks for accurate and precise inference of the Hubble constant. Astrophys. J., 910(1), 2021, 39 arXiv:2012.00042 [astro-ph.IM].
Schuldt, S., Cañameras, R., Shu, Y., Suyu, S.H., Taubenberger, S., Meinhardt, T., Leal-Taixé, L., HOLISMOKES – IX. Neural network inference of strong-lens parameters and uncertainties from ground-based images. Astron. Astrophys., 671, 2023, A147 arXiv:2206.11279 [astro-ph.IM].
Ertl, S., Schuldt, S., Suyu, S.H., Schmidt, T., Treu, T., Birrer, S., Shajib, A.J., Sluse, D., TDCOSMO X. Automated modeling of 9 strongly lensed quasars and comparison between lens modeling software. Astron. Astrophys., 672, 2023, A2 arXiv:2209.03094 [astro-ph.CO].
Treu, T., Koopmans, L.V.E., The internal structure of the lens pg1115+080: breaking degeneracies in the value of the Hubble constant. Mon. Not. R. Astron. Soc., 337, 2002, L6 arXiv:astro-ph/0210002.
Yıldırım, A., Suyu, S.H., Halkola, A., Time-delay cosmographic forecasts with strong lensing and JWST stellar kinematics. Mon. Not. R. Astron. Soc. 493:4 (2020), 4783–4807 arXiv:1904.07237 [astro-ph.CO].
Shajib, A.J., et al., TDCOSMO Collaboration. TDCOSMO. XII. Improved Hubble constant measurement from lensing time delays using spatially resolved stellar kinematics of the lens galaxy. Astron. Astrophys., 673, 2023, A9 arXiv:2301.02656 [astro-ph.CO].
Birrer, S., Dhawan, S., Shajib, A.J., The Hubble constant from strongly lensed supernovae with standardizable magnifications. Astrophys. J., 924(1), 2022, 2 arXiv:2107.12385 [astro-ph.CO].
Khadka, N., Birrer, S., Leauthaud, A., Nix, H., Breaking the mass-sheet degeneracy in strong lensing mass modelling with weak lensing observations. Mon. Not. R. Astron. Soc. 533:1 (2024), 795–806 arXiv:2404.01513 [astro-ph.CO].
Yıldırım, A., Suyu, S.H., Chen, G.C.F., Komatsu, E., TDCOSMO - XIII. Cosmological distance measurements in light of the mass-sheet degeneracy: Forecasts from strong lensing and integral field unit stellar kinematics. Astron. Astrophys., 675, 2023, A21 arXiv:2109.14615 [astro-ph.CO].
Pascale, M., et al. SN H0pe: The first measurement of H0 from a multiply imaged type Ia supernova, discovered by JWST. Astrophys. J., 979(1), 2025, 13 arXiv:2403.18902 [astro-ph.CO].
Lusso, E., et al. Quasars as standard candles III. Validation of a new sample for cosmological studies. Astron. Astrophys., 642, 2020, A150 arXiv:2008.08586 [astro-ph.GA].
Wang, F., Yang, J., Fan, X., Hennawi, J.F., Barth, A.J., Banados, E., Bian, F., Boutsia, K., Connor, T., Davies, F.B., Decarli, R., Eilers, A.-C., Farina, E.P., Green, R., Jiang, L., Li, J.-T., Mazzucchelli, C., Nanni, R., Schindler, J.-T., Venemans, B., Walter, F., Wu, X.-B., Yue, M., A luminous quasar at redshift 7.642. Astrophys. J. Lett., 907(1), 2021, L1 arXiv:2101.03179 [astro-ph.GA].
Watson, D., Denney, K.D., Vestergaard, M., Davis, T.M., A new cosmological distance measure using AGN. Astrophys. J. Lett., 740, 2011, L49 arXiv:1109.4632 [astro-ph.CO].
Haas, M., Chini, R., Ramolla, M., Pozo Nuñez, F., Westhues, C., Watermann, R., Hoffmeister, V., Murphy, M., Photometric AGN reverberation mapping - an efficient tool for BLR sizes, black hole masses, and host-subtracted AGN luminosities. Astron. Astrophys., 535, 2011, A73 arXiv:1109.1848 [astro-ph.CO].
La Franca, F., Bianchi, S., Ponti, G., Branchini, E., Matt, G., A new cosmological distance measure using active galactic nucleus X-ray variability. Astrophys. J. Lett., 787, 2014, L12 arXiv:1404.2607 [astro-ph.CO].
Martínez-Aldama, M.L., del Olmo, A., Marziani, P., Sulentic, J.W., Negrete, C.A., Dultzin, D., D'Onofrio, M., Perea, J., Extreme quasars at high redshift. Astron. Astrophys., 618, 2018, A179 arXiv:1807.11006 [astro-ph.GA].
Marziani, P., Dultzin, D., Sulentic, J.W., Del Olmo, A., Negrete, C.A., Martínez-Aldama, M.L., D'Onofrio, M., Bon, E., Bon, N., Stirpe, G.M., A main sequence for quasars. Front. Astron. Space Sci., 5, 2018, 6 arXiv:1802.05575 [astro-ph.GA].
Panda, S., Marziani, P., Czerny, B., The Quasar Main Sequence explained by the combination of Eddington ratio, metallicity and orientation. Astrophys. J., 882(2), 2019, 79 arXiv:1905.01729 [astro-ph.HE].
Panda, S., Marziani, P., High Eddington quasars as discovery tools: current state and challenges. Front. Astron. Space Sci., 10, 2023 arXiv:2210.15041 [astro-ph.GA], https://www.frontiersin.org/journals/astronomy-and-space-sciences/articles/10.3389/fspas.2023.1130103.
Prince, R., Hryniewicz, K., Panda, S., Czerny, B., Pollo, A., Viewing angle observations and effects of evolution with redshift, black hole mass, and eddington ratio in quasar-based cosmology. Astrophys. J., 925(2), 2022, 215 arXiv:2106.03877 [astro-ph.GA].
Cao, S., Zajaček, M., Panda, S., Martínez-Aldama, M.L., Czerny, B., Ratra, B., Standardizing reverberation-measured C iv time-lag quasars, and using them with standardized Mg ii quasars to constrain cosmological parameters. Mon. Not. R. Astron. Soc. 516:2 (2022), 1721–1740 arXiv:2205.15552 [astro-ph.CO].
Cao, S., Zaja CČcek, M., Czerny, B., Panda, S., Ratra, B., Effects of heterogeneous data sets and time-lag measurement techniques on cosmological parameter constraints from Mg ii and C iv reverberation-mapped quasar data. Mon. Not. R. Astron. Soc. 528:4 (2024), 6444–6469 arXiv:2309.16516 [astro-ph.CO].
Dainotti, M.G., De Simone, B., Schiavone, T., Montani, G., Rinaldi, E., Lambiase, G., Bogdan, M., Ugale, S., On the evolution of the Hubble constant with the SNe Ia pantheon sample and baryon acoustic oscillations: A feasibility study for GRB-cosmology in 2030. Galaxies, 10(1), 2022, 24 arXiv:2201.09848 [astro-ph.CO].
Bargiacchi, G., Dainotti, M.G., Nagataki, S., Capozziello, S., Gamma-ray bursts, quasars, baryonic acoustic oscillations, and supernovae Ia: new statistical insights and cosmological constraints. Mon. Not. R. Astron. Soc. 521:3 (2023), 3909–3924 arXiv:2303.07076 [astro-ph.CO].
Dainotti, M.G., Bargiacchi, G., Bogdan, M.g., Lenart, A.L., Iwasaki, K., Capozziello, S., Zhang, B., Fraija, N., Reducing the uncertainty on the Hubble constant up to 35% with an improved statistical analysis: different best-fit likelihoods for type Ia supernovae, baryon acoustic oscillations, quasars, and gamma-ray bursts. Astrophys. J., 951(1), 2023, 63 arXiv:2305.10030 [astro-ph.CO].
Lenart, A.L., Bargiacchi, G., Dainotti, M.G., Nagataki, S., Capozziello, S., A bias-free cosmological analysis with quasars alleviating H 0 tension. Astrophys. J. Suppl., 264(2), 2023, 46 arXiv:2211.10785 [astro-ph.CO].
Yang, T., Banerjee, A., Colgáin, E.O., Cosmography and flat ΛCDM tensions at high redshift. Phys. Rev. D, 102(12), 2020, 123532 arXiv:1911.01681 [astro-ph.CO].
Khadka, N., Ratra, B., Quasar X-ray and UV flux, baryon acoustic oscillation, and Hubble parameter measurement constraints on cosmological model parameters. Mon. Not. R. Astron. Soc. 492:3 (2020), 4456–4468 arXiv:1909.01400 [astro-ph.CO].
Bargiacchi, G., Benetti, M., Capozziello, S., Lusso, E., Risaliti, G., Signorini, M., Quasar cosmology: dark energy evolution and spatial curvature. Mon. Not. R. Astron. Soc. 515:2 (2022), 1795–1806 arXiv:2111.02420 [astro-ph.CO].
Colgáin, E.O., Sheikh-Jabbari, M.M., Solomon, R., Bargiacchi, G., Capozziello, S., Dainotti, M.G., Stojkovic, D., Revealing intrinsic flat ΛCDM biases with standardizable candles. Phys. Rev. D, 106(4), 2022, L041301 arXiv:2203.10558 [astro-ph.CO].
Zaja CČcek, M., Czerny, B., Khadka, N., Martínez-Aldama, M.L., Prince, R., Panda, S., Ratra, B., Effect of extinction on quasar luminosity distances determined from UV and X-ray flux measurements. Astrophys. J., 961(2), 2024, 229 arXiv:2305.08179 [astro-ph.GA].
Sacchi, A., et al. Quasars as high-redshift standard candles. Astron. Astrophys., 663, 2022, L7 arXiv:2206.13528 [astro-ph.CO].
Shabani, H., De, A., Loo, T.-H., Saridakis, E.N., Cosmology of f(Q) gravity in non-flat universe. Eur. Phys. J. C, 84(3), 2024, 285 arXiv:2306.13324 [gr-qc].
Sabiee, M., Malekjani, M., Mohammad Zadeh Jassur, D., f(T) cosmology against the cosmographic method: A new study using mock and observational data. Mon. Not. R. Astron. Soc. 516:2 (2022), 2597–2613 arXiv:2212.04113 [astro-ph.CO].
Lusso, E., Piedipalumbo, E., Risaliti, G., Paolillo, M., Bisogni, S., Nardini, E., Amati, L., Tension with the flat ΛCDM model from a high-redshift Hubble diagram of supernovae, quasars, and gamma-ray bursts. Astron. Astrophys., 628, 2019, L4 arXiv:1907.07692 [astro-ph.CO].
Dainotti, M.G., Lenart, A.L., Yengejeh, M.G., Chakraborty, S., Fraija, N., Di Valentino, E., Montani, G., A new binning method to choose a standard set of quasars. Phys. Dark Univ., 44, 2024, 101428 arXiv:2401.12847 [astro-ph.HE].
Bargiacchi, G., Risaliti, G., Benetti, M., Capozziello, S., Lusso, E., Saccardi, A., Signorini, M., Cosmography by orthogonalized logarithmic polynomials. Astron. Astrophys., 649, 2021, A65 arXiv:2101.08278 [astro-ph.CO].
Bargiacchi, G., Dainotti, M.G., Capozziello, S., Tensions with the flat ΛCDM model from high-redshift cosmography. Mon. Not. R. Astron. Soc. 525:2 (2023), 3104–3116 arXiv:2307.15359 [astro-ph.CO].
Preston, R.A., Morabito, D.D., Williams, J.G., Faulkner, J., Jauncey, D.L., Nicolson, G., A VLBI survey at 2.29 GHz. Astron. J. 90 (1985), 1599–1603.
Wang, J.-M., Songsheng, Y.-Y., Li, Y.-R., Du, P., Zhang, Z.-X., A parallax distance to 3C 273 through spectroastrometry and reverberation mapping. Nat. Astron. 4 (2020), 517–525 arXiv:1906.08417 [astro-ph.CO].
Sandoval-Orozco, R., Escamilla-Rivera, C., Briffa, R., Levi Said, J., f(T) cosmology in the regime of quasar observations. Phys. Dark Univ., 43, 2024, 101407 arXiv:2309.03675 [astro-ph.CO].
Sandage, A., The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J., 136, 1962, 319.
Calderone, G., Boutsia, K., Cristiani, S., Grazian, A., Amorin, R., D'Odorico, V., Cupani, G., Fontanot, F., Salvato, M., Finding the brightest cosmic beacons in the southern hemisphere. Astrophys. J., 887(2), 2019, 268 arXiv:1909.06391 [astro-ph.IM].
Liske, J., et al. Cosmic dynamics in the era of extremely large telescopes. Mon. Not. R. Astron. Soc. 386 (2008), 1192–1218 arXiv:0802.1532 [astro-ph].
Marques, C.M.J., Martins, C.J.A.P., Alves, C.S., Fundamental cosmology from ANDES precision spectroscopy. Mon. Not. R. Astron. Soc. 522:4 (2023), 5973–5979 arXiv:2305.01446 [astro-ph.IM].
Martins, C.J.A.P., et al., ANDES Collaboration. Cosmology and fundamental physics with the ELT-ANDES spectrograph. Exper. Astron., 57(1), 2024, 5 arXiv:2311.16274 [astro-ph.CO].
Dainotti, M.G., Bargiacchi, G., Lenart, A.L., Nagataki, S., Capozziello, S., Quasars: Standard candles up to z = 7.5 with the precision of supernovae Ia. Astrophys. J., 950(1), 2023, 45 arXiv:2305.19668 [astro-ph.CO].
Dainotti, M.G., Bargiacchi, G., Lenart, A.L., Capozziello, S., The scavenger hunt for quasar samples to be used as cosmological tools. Galaxies, 12(1), 2024, 4 arXiv:2401.11998 [astro-ph.CO].
Amati, L., et al. Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys., 390, 2002, 81 arXiv:astro-ph/0205230.
Amati, L., The E(p,i) - E(iso) correlation in grbs: updated observational status, re-analysis and main implications. Mon. Not. R. Astron. Soc. 372 (2006), 233–245 arXiv:astro-ph/0601553.
Dirirsa, F.F., Razzaque, S., Piron, F., Arimoto, M., Axelsson, M., Kocevski, D., Longo, F., Ohno, M., Zhu, S., Spectral analysis of fermi-LAT gamma-ray bursts with known redshift and their potential use as cosmological standard candles. Astrophys. J., 887, 2019, 13 arXiv:1910.07009 [astro-ph.HE].
Yonetoku, D., Murakami, T., Nakamura, T., Yamazaki, R., Inoue, A.K., Ioka, K., Gamma-ray burst formation rates inferred from the spectral peak energy-peak luminosity relation. Astrophys. J., 609, 2004, 935 arXiv:astro-ph/0309217.
Aldowma, T., Razzaque, S., Deep neural networks for estimation of gamma-ray burst redshifts. Mon. Not. R. Astron. Soc. 529:3 (2024), 2676–2685 arXiv:2401.11005 [astro-ph.HE].
Dainotti, M.G., Cardone, V.F., Capozziello, S., A time - luminosity correlation for gamma ray bursts in the X - rays. Mon. Not. R. Astron. Soc., 391, 2008, 79 arXiv:0809.1389 [astro-ph].
Metzger, B.D., Giannios, D., Thompson, T.A., Bucciantini, N., Quataert, E., The proto-magnetar model for gamma-ray bursts. Mon. Not. R. Astron. Soc., 413, 2011, 2031 arXiv:1012.0001 [astro-ph.HE].
Rowlinson, A., O'Brien, P.T., Metzger, B.D., Tanvir, N.R., Levan, A.J., Signatures of magnetar central engines in short GRB lightcurves. Mon. Not. R. Astron. Soc., 430, 2013, 1061 arXiv:1301.0629 [astro-ph.HE].
Rowlinson, A., Gompertz, B.P., Dainotti, M., O'Brien, P.T., Wijers, R.A.M.J., van der Horst, A.J., Constraining properties of GRB magnetar central engines using the observed plateau luminosity and duration correlation. Mon. Not. R. Astron. Soc. 443:2 (2014), 1779–1787 arXiv:1407.1053 [astro-ph.HE].
Stratta, G., Dainotti, M.G., Dall'Osso, S., Hernandez, X., De Cesare, G., On the magnetar origin of the GRBs presenting X-ray afterglow plateaus. Astrophys. J., 869(2), 2018, 155 arXiv:1804.08652 [astro-ph.HE].
Uhm, Z.L., Beloborodov, A.M., On the mechanism of gamma-ray burst afterglows. Astrophys. J. Lett., 665, 2007, L93 arXiv:astro-ph/0701205.
Uhm, Z.L., Zhang, B., Hascoet, R., Daigne, F., Mochkovitch, R., Park, I.H., Dynamics and afterglow light curves of grb blast waves with a long-lived reverse shock. Astrophys. J., 761, 2012, 147 arXiv:1208.2347 [astro-ph.HE].
Hascoet, R., Daigne, F., Mochkovitch, R., The prompt–early afterglow connection in gamma-ray bursts: implications for the early afterglow physics. Mon. Not. R. Astron. Soc. 442:1 (2014), 20–27 arXiv:1401.0751 [astro-ph.HE].
Dainotti, M.G., Willingale, R., Capozziello, S., Cardone, V.F., Ostrowski, M., Discovery of a tight correlation for gamma ray burst afterglows with ‘canonical’ light curves. Astrophys. J. Lett., 722, 2010, L215 arXiv:1009.1663 [astro-ph.HE].
Dainotti, M.G., Ostrowski, M., Willingale, R., Toward a standard gamma ray burst: tight correlations between the prompt and the afterglow plateau phase emission. Mon. Not. R. Astron. Soc., 418, 2011, 2202 arXiv:1103.1138 [astro-ph.HE].
Dainotti, M.G., Petrosian, V., Singal, J., Ostrowski, M., Determination of the intrinsic luminosity time correlation in the X-ray afterglows of gamma-ray bursts. Astrophys. J., 774, 2013, 157 arXiv:1307.7297 [astro-ph.HE].
Dainotti, M.G., Petrosian, V., Willingale, R., O'Brien, P., Ostrowski, M., Nagataki, S., Luminosity–time and luminosity–luminosity correlations for GRB prompt and afterglow plateau emissions. Mon. Not. R. Astron. Soc. 451:4 (2015), 3898–3908 arXiv:1506.00702 [astro-ph.HE].
Dainotti, M.G., Postnikov, S., Hernandez, X., Ostrowski, M., A fundamental plane for long gamma-ray bursts with X-ray plateaus. Astrophys. J. Lett., 825(2), 2016, L20 arXiv:1604.06840 [astro-ph.HE].
Dainotti, M.G., Hernandez, X., Postnikov, S., Nagataki, S., Obrien, P., Willingale, R., Striegel, S., A study of the gamma-ray burst fundamental plane. Astrophys. J., 848(2), 2017, 88 arXiv:1704.04908 [astro-ph.HE].
Dainotti, M.G., Nagataki, S., Maeda, K., Postnikov, S., Pian, E., A study of gamma ray bursts with afterglow plateau phases associated with supernovae. Astron. Astrophys., 600, 2017, A98 arXiv:1612.02917 [astro-ph.HE].
Dainotti, M.G., Lenart, A., Sarracino, G., Nagataki, S., Capozziello, S., Fraija, N., The X-ray fundamental plane of the Platinum Sample, the Kilonovae and the SNe Ib/c associated with GRBs. Astrophys. J., 904(2), 2020, 97 arXiv:2010.02092 [astro-ph.HE].
Cardone, V.F., Capozziello, S., Dainotti, M.G., An updated gamma ray bursts Hubble diagram. Mon. Not. R. Astron. Soc. 400:2 (2009), 775–790 arXiv:0901.3194 [astro-ph.CO].
Dainotti, M.G., Cardone, V.F., Piedipalumbo, E., Capozziello, S., Slope evolution of GRB correlations and cosmology. Mon. Not. R. Astron. Soc., 436, 2013, 82 arXiv:1308.1918 [astro-ph.HE].
Dainotti, M.G., Nielson, V., Sarracino, G., Rinaldi, E., Nagataki, S., Capozziello, S., Gnedin, O.Y., Bargiacchi, G., Optical and X-ray GRB fundamental planes as cosmological distance indicators. Mon. Not. R. Astron. Soc. 514:2 (2022), 1828–1856 arXiv:2203.15538 [astro-ph.CO].
Dainotti, M.G., Lenart, A.L., Chraya, A., Sarracino, G., Nagataki, S., Fraija, N., Capozziello, S., Bogdan, M., The gamma-ray bursts fundamental plane correlation as a cosmological tool. Mon. Not. R. Astron. Soc. 518:2 (2023), 2201–2240 arXiv:2209.08675 [astro-ph.HE].
Dainotti, M.G., et al. Inferring the redshift of more than 150 GRBs with a machine-learning ensemble model. Astrophys. J. Suppl., 271(1), 2024, 22 arXiv:2401.03589 [astro-ph.CO].
Dainotti, M.G., Narendra, A., Pollo, A., Petrosian, V., Bogdan, M., Iwasaki, K., Prochaska, J.X., Rinaldi, E., Zhou, D., Gamma-ray bursts as distance indicators by a statistical learning approach. Astrophys. J. Lett., 967(2), 2024, L30 arXiv:2402.04551 [astro-ph.HE].
Dainotti, M.G., Sharma, R., Narendra, A., Levine, D., Rinaldi, E., Pollo, A., Bhatta, G., A stochastic approach to reconstruct gamma ray burst lightcurves. Astrophys. J., 267(2), 2023, 42 arXiv:2305.12126 [astro-ph.HE].
Liang, N., Li, Z., Xie, X., Wu, P., Calibrating gamma-ray bursts by using a gaussian process with type Ia supernovae. Astrophys. J., 941(1), 2022, 84 arXiv:2211.02473 [astro-ph.CO].
Luongo, O., Muccino, M., Kinematic constraints beyond z≃0 using calibrated GRB correlations. Astron. Astrophys., 641, 2020, A174 arXiv:2010.05218 [astro-ph.CO].
Mu, Y., Chang, B., Xu, L., Cosmography via Gaussian process with gamma ray bursts. JCAP, 09, 2023, 041 arXiv:2302.02559 [astro-ph.CO].
Rea, N., Gullon, M., Pons, J.A., Perna, R., Dainotti, M.G., Miralles, J.A., Torres, D.F., Constraining the GRB-magnetar model by means of the Galactic pulsar population. Astrophys. J., 813(2), 2015, 92 arXiv:1510.01430 [astro-ph.HE].
Dainotti, M.G., De Simone, B., Khadir, M.I., Kawaguchi, K., Moriya, T.J., Takiwaki, T., Tominaga, N., Gangopadhyay, A., The quest for new correlations in the realm of the gamma-ray Burst—Supernova connection. Astrophys. J., 938(1), 2022, 41 arXiv:2208.10958 [astro-ph.HE].
Staicova, D., Impact of cosmology on Lorentz Invariance Violation constraints from GRB time-delays. Cl. Quant. Grav., 40(19), 2023, 195012 arXiv:2305.06504 [gr-qc].
Staicova, D., Probing for Lorentz invariance violation in pantheon plus dominated cosmology. Universe, 10(2), 2024, 75 arXiv:2401.06068 [gr-qc].
Abdollahi, S., et al., Fermi-LAT Collaboration. A gamma-ray determination of the Universe's star formation history. Science 362:6418 (2018), 1031–1034 arXiv:1812.01031 [astro-ph.HE].
Acciari, V.A., et al., MAGIC Collaboration. Measurement of the extragalactic background light using MAGIC and Fermi-LAT gamma-ray observations of blazars up to z=1. Mon. Not. R. Astron. Soc. 486:3 (2019), 4233–4251 arXiv:1904.00134 [astro-ph.HE].
Domínguez, A., Wojtak, R., Finke, J., Ajello, M., Helgason, K., Prada, F., Desai, A., Paliya, V., Marcotulli, L., Hartmann, D., A new measurement of the Hubble constant and matter content of the universe using extragalactic background light γ-ray attenuation. Astrophys. J., 885(2), 2019, 137 arXiv:1903.12097 [astro-ph.CO].
Domínguez, A., et al. A new derivation of the Hubble constant from γ-ray attenuation using improved optical depths for the fermi and cta era. Mon. Not. R. Astron. Soc. 527:3 (2023), 4632–4642 arXiv:2306.09878 [astro-ph.HE].
Akutsu, T., et al., KAGRA Collaboration. Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. PTEP, 2021(5), 2021, 05A102 arXiv:2009.09305 [gr-qc].
Abbott, B.P., et al., LIGO Scientific, Virgo Collaboration. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett., 119(16), 2017, 161101 arXiv:1710.05832 [gr-qc].
Abbott, R., et al., LIGO Scientific, KAGRA, VIRGO Collaboration. Observation of gravitational waves from two neutron star–black hole coalescences. Astrophys. J. Lett., 915(1), 2021, L5 arXiv:2106.15163 [astro-ph.HE].
Abbott, B.P., et al., LIGO Scientific, Virgo Collaboration. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116(6), 2016, 061102 arXiv:1602.03837 [gr-qc].
Abbott, B.P., et al., KAGRA, LIGO Scientific, Virgo Collaboration. Prospects for observing and localizing gravitational-wave transients with advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Rel., 19, 2016, 1 arXiv:1304.0670 [gr-qc].
Fritschel, P., Kuns, K., Driggers, J., Effler, A., Lantz, B., Ottaway, D., Ballmer, S., Dooley, K., Adhikari, R., Evans, M., Farr, B., Gonzalez, G., Schmidt, P., Raja, S., Report from the LSC Post-O5 Study Group: Tech. Rep. T2200287., 2022, LIGO https://dcc.ligo.org/LIGO-T2200287/public.
Acernese, F., et al., VIRGO Collaboration. Advanced virgo plus: Future perspectives. J. Phys. Conf. Ser., 2429(1), 2023, 012040.
Reitze, D., et al. Cosmic explorer: The U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull. Am. Astron. Soc., 51(7), 2019, 035 arXiv:1907.04833 [astro-ph.IM].
Evans, M., et al. A horizon study for cosmic explorer: Science, observatories, and community. 2021 arXiv:2109.09882 [astro-ph.IM].
Evans, M., et al. Cosmic explorer: A submission to the NSF MPSAC ngGW subcommittee. 2023 arXiv:2306.13745 [astro-ph.IM].
E.T. Steering Committee, ET Design Report Update 2020: Tech. Rep. ET-0007A-20., 2020, Einstein Telescope https://apps.et-gw.eu/tds/?content=3&r=17245.
Amaro-Seoane, P., et al., LISA Collaboration. Laser interferometer space antenna. 2017 arXiv:1702.00786 [astro-ph.IM].
Schutz, B.F., Determining the Hubble constant from gravitational wave observations. Nature 323 (1986), 310–311.
Holz, D.E., Hughes, S.A., Using gravitational-wave standard sirens. Astrophys. J. 629 (2005), 15–22 arXiv:astro-ph/0504616.
Abbott, B.P., et al., LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT Collaboration. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett., 848(2), 2017, L12 arXiv:1710.05833 [astro-ph.HE].
Abbott, B.P., et al., LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE, MASTER Collaboration. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551:7678 (2017), 85–88 arXiv:1710.05835 [astro-ph.CO].
Nicolaou, C., Lahav, O., Lemos, P., Hartley, W., Braden, J., The impact of peculiar velocities on the estimation of the Hubble constant from gravitational wave standard sirens. Mon. Not. R. Astron. Soc. 495:1 (2020), 90–97 arXiv:1909.09609 [astro-ph.CO].
Mukherjee, S., Lavaux, G., Bouchet, F.c.R., Jasche, J., Wandelt, B.D., Nissanke, S.M., Leclercq, F., Hotokezaka, K., Velocity correction for Hubble constant measurements from standard sirens. Astron. Astrophys., 646, 2021, A65 arXiv:1909.08627 [astro-ph.CO].
Howlett, C., Davis, T.M., Standard siren speeds: improving velocities in gravitational-wave measurements of H0. Mon. Not. R. Astron. Soc. 492:3 (2020), 3803–3815 arXiv:1909.00587 [astro-ph.CO].
Guidorzi, C., et al. Improved constraints on H0 from a combined analysis of gravitational-wave and electromagnetic emission from GW170817. Astrophys. J. Lett., 851(2), 2017, L36 arXiv:1710.06426 [astro-ph.CO].
Hotokezaka, K., Nakar, E., Gottlieb, O., Nissanke, S., Masuda, K., Hallinan, G., Mooley, K.P., Deller, A.T., A Hubble constant measurement from superluminal motion of the jet in GW170817. Nat. Astron. 3:10 (2019), 940–944 arXiv:1806.10596 [astro-ph.CO].
Dhawan, S., Bulla, M., Goobar, A., Carracedo, A.S., Setzer, C.N., Constraining the observer angle of the kilonova AT2017gfo associated with GW170817: Implications for the Hubble constant. Astrophys. J., 888(2), 2020, 67 arXiv:1909.13810 [astro-ph.HE].
Palmese, A., Kaur, R., Hajela, A., Margutti, R., McDowell, A., MacFadyen, A., Standard siren measurement of the Hubble constant using GW170817 and the latest observations of the electromagnetic counterpart afterglow. Phys. Rev. D, 109(6), 2024, 063508 arXiv:2305.19914 [astro-ph.CO].
Palmese, A., Graur, O., Annis, J.T., BenZvi, S., Di Valentino, E., Garcia-Bellido, J., Gontcho, S.G.A., Keeley, R., Kim, A., Lahav, O., Nissanke, S., Paterson, K., Sako, M., Shafieloo, A., Tsai, Y.-D., Gravitational wave cosmology and astrophysics with large spectroscopic galaxy surveys. Bull. Am. Astron. Soc., 51(3), 2019, 310 arXiv:1903.04730 [astro-ph.CO].
Chen, H.-Y., Systematic uncertainty of standard sirens from the viewing angle of binary neutron star inspirals. Phys. Rev. Lett., 125(20), 2020, 201301 arXiv:2006.02779 [astro-ph.HE].
Chen, H.-Y., Talbot, C., Chase, E.A., Mitigating the counterpart selection effect for standard sirens. Phys. Rev. Lett., 132(19), 2024, 191003 arXiv:2307.10402 [astro-ph.CO].
Gianfagna, G., Piro, L., Pannarale, F., Van Eerten, H., Ricci, F., Ryan, G., Potential biases and prospects for the Hubble constant estimation via electromagnetic and gravitational-wave joint analyses. Mon. Not. R. Astron. Soc. 528:2 (2024), 2600–2613 arXiv:2309.17073 [astro-ph.HE].
Müller, M., Mukherjee, S., Ryan, G., Be careful in multimessenger inference of the Hubble constant: A path forward for robust inference. Astrophys. J. Lett., 977(2), 2024, L45 arXiv:2406.11965 [astro-ph.CO].
Vitale, S., Chen, H.-Y., Measuring the Hubble constant with neutron star black hole mergers. Phys. Rev. Lett., 121(2), 2018, 021303 arXiv:1804.07337 [astro-ph.CO].
Graham, M.J., et al. Candidate electromagnetic counterpart to the binary black hole merger gravitational wave event S190521g. Phys. Rev. Lett., 124(25), 2020, 251102 arXiv:2006.14122 [astro-ph.HE].
Graham, M.J., et al. A light in the dark: searching for electromagnetic counterparts to black hole–black hole mergers in LIGO/Virgo O3 with the Zwicky transient facility. Astrophys. J., 942(2), 2023, 99 arXiv:2209.13004 [astro-ph.HE].
Cabrera, T., et al. Searching for electromagnetic emission in an AGN from the gravitational wave binary black hole merger candidate S230922g. Phys. Rev. D, 110(12), 2024, 123029 arXiv:2407.10698 [astro-ph.HE].
Ashton, G., Ackley, K., Hernandez, I.M.n., Piotrzkowski, B., Current observations are insufficient to confidently associate the binary black hole merger GW190521 with AGN J124942.3 + 344929. Cl. Quant. Grav., 38(23), 2021, 235004 arXiv:2009.12346 [astro-ph.HE].
Palmese, A., Fishbach, M., Burke, C.J., Annis, J.T., Liu, X., Do LIGO/Virgo black hole mergers produce AGN flares? the case of GW190521 and prospects for reaching a confident association. Astrophys. J. Lett., 914(2), 2021, L34 arXiv:2103.16069 [astro-ph.HE].
Mukherjee, S., Ghosh, A., Graham, M.J., Karathanasis, C., Kasliwal, M.M., Magaña Hernandez, I., Nissanke, S.M., Silvestri, A., Wandelt, B.D., First measurement of the Hubble parameter from bright binary black hole GW190521. 2020 arXiv:2009.14199 [astro-ph.CO].
Gayathri, V., Healy, J., Lange, J., O'Brien, B., Szczepanczyk, M., Bartos, I., Campanelli, M., Klimenko, S., Lousto, C.O., O'Shaughnessy, R., Measuring the Hubble constant with GW190521 as an eccentric black hole merger and its potential electromagnetic counterpart. Astrophys. J. Lett., 908(2), 2021, L34 arXiv:2009.14247 [astro-ph.HE].
Chen, H.-Y., Haster, C.-J., Vitale, S., Farr, W.M., Isi, M., A standard siren cosmological measurement from the potential GW190521 electromagnetic counterpart ZTF19abanrhr. Mon. Not. R. Astron. Soc. 513:2 (2022), 2152–2157 arXiv:2009.14057 [astro-ph.CO].
Bom, C.R., Palmese, A., Standard siren cosmology with gravitational waves from binary black hole mergers in active galactic nuclei. Phys. Rev. D, 110(8), 2024, 083005 arXiv:2307.01330 [astro-ph.CO].
Alves, L.M.B., Sullivan, A.G., Yang, Y., V., G., Marka, Z., Marka, S., Bartos, I., Determining the Hubble constant with AGN-assisted black hole mergers. Mon. Not. R. Astron. Soc. 531:3 (2024), 3679–3683 arXiv:2009.13739 [astro-ph.HE].
Gair, J.R., et al. The Hitchhiker's guide to the galaxy catalog approach for dark siren gravitational-wave cosmology. Astron. J., 166(1), 2023, 22 arXiv:2212.08694 [gr-qc].
Gray, R., et al. Cosmological inference using gravitational wave standard sirens: A mock data analysis. Phys. Rev. D, 101(12), 2020, 122001 arXiv:1908.06050 [gr-qc].
Farr, W.M., Fishbach, M., Ye, J., Holz, D., A future percent-level measurement of the Hubble expansion at redshift 0.8 with advanced LIGO. Astrophys. J. Lett., 883(2), 2019, L42 arXiv:1908.09084 [astro-ph.CO].
Ezquiaga, J.M., Holz, D.E., Spectral sirens: Cosmology from the full mass distribution of compact binaries. Phys. Rev. Lett., 129(6), 2022, 061102 arXiv:2202.08240 [astro-ph.CO].
Mastrogiovanni, S., Laghi, D., Gray, R., Santoro, G.C., Ghosh, A., Karathanasis, C., Leyde, K., Steer, D.A., Perries, S., Pierra, G., Joint population and cosmological properties inference with gravitational waves standard sirens and galaxy surveys. Phys. Rev. D, 108(4), 2023, 042002 arXiv:2305.10488 [astro-ph.CO].
Gray, R., et al. Joint cosmological and gravitational-wave population inference using dark sirens and galaxy catalogues. JCAP, 12, 2023, 023 arXiv:2308.02281 [astro-ph.CO].
Borghi, N., Mancarella, M., Moresco, M., Tagliazucchi, M., Iacovelli, F., Cimatti, A., Maggiore, M., Cosmology and astrophysics with standard sirens and galaxy catalogs in view of future gravitational wave observations. Astrophys. J., 964(2), 2024, 191 arXiv:2312.05302 [astro-ph.CO].
Soares-Santos, M., et al., DES, LIGO Scientific, Virgo Collaboration. First measurement of the Hubble constant from a Dark Standard Siren using the dark energy survey galaxies and the LIGO/Virgo binary–black-hole merger GW170814. Astrophys. J. Lett., 876(1), 2019, L7 arXiv:1901.01540 [astro-ph.CO].
Abbott, B.P., et al., LIGO Scientific, Virgo, VIRGO Collaboration. A gravitational-wave measurement of the Hubble constant following the second observing run of advanced LIGO and Virgo. Astrophys. J., 909(2), 2021, 218 arXiv:1908.06060 [astro-ph.CO].
Abbott, R., et al., LIGO Scientific, Virgo Collaboration. GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys. J. Lett., 896(2), 2020, L44 arXiv:2006.12611 [astro-ph.HE].
Abbott, R., et al., LIGO Scientific, Virgo, KAGRA Collaboration. Constraints on the cosmic expansion history from GWTC–3. Astrophys. J., 949(2), 2023, 76 arXiv:2111.03604 [astro-ph.CO].
Palmese, A., Bom, C.R., Mucesh, S., Hartley, W.G., A standard siren measurement of the Hubble constant using gravitational-wave events from the first three ligo/virgo observing runs and the DESI legacy survey. Astrophys. J., 943(1), 2023, 56 arXiv:2111.06445 [astro-ph.CO].
Ballard, W., et al., DESI Collaboration. A dark siren measurement of the Hubble constant with the LIGO/Virgo gravitational wave event GW190412 and DESI Galaxies. Res. Notes AAS, 7(11), 2023, 250 arXiv:2311.13062 [astro-ph.CO].
Alfradique, V., et al. A dark siren measurement of the Hubble constant using gravitational wave events from the first three LIGO/Virgo observing runs and DELVE. Mon. Not. R. Astron. Soc. 528:2 (2024), 3249–3259 arXiv:2310.13695 [astro-ph.CO].
Bom, C.R., Alfradique, V., Palmese, A., Teixeira, G., Santana-Silva, L., Santos, A., Darc, P., A dark standard siren measurement of the Hubble constant following LIGO/Virgo/KAGRA O4a and previous runs. Mon. Not. R. Astro. Soc. 535:1 (2024), 961–975 arXiv:2404.16092 [astro-ph.CO].
Finke, A., Foffa, S., Iacovelli, F., Maggiore, M., Mancarella, M., Cosmology with LIGO/Virgo dark sirens: Hubble parameter and modified gravitational wave propagation. JCAP, 08, 2021, 026 arXiv:2101.12660 [astro-ph.CO].
Borhanian, S., Dhani, A., Gupta, A., Arun, K.G., Sathyaprakash, B.S., Dark sirens to resolve the Hubble–Lemaître tension. Astrophys. J. Lett., 905(2), 2020, L28 arXiv:2007.02883 [astro-ph.CO].
Diaz, C.C., Mukherjee, S., Mapping the cosmic expansion history from LIGO-Virgo-KAGRA in synergy with DESI and SPHEREx. Mon. Not. R. Astron. Soc. 511:2 (2022), 2782–2795 arXiv:2107.12787 [astro-ph.CO].
Bond, J.R., Arnett, W.D., Carr, B.J., The evolution and fate of very massive objects. Astrophys. J. 280 (1984), 825–847.
Zevin, M., Bavera, S.S., Berry, C.P.L., Kalogera, V., Fragos, T., Marchant, P., Rodriguez, C.L., Antonini, F., Holz, D.E., Pankow, C., One channel to rule them all? Constraining the origins of binary black holes using multiple formation pathways. Astrophys. J., 910(2), 2021, 152 arXiv:2011.10057 [astro-ph.HE].
Abbott, R., et al., KAGRA, VIRGO, LIGO Scientific Collaboration. Population of merging compact binaries inferred using gravitational waves through GWTC-3. Phys. Rev. X, 13(1), 2023, 011048 arXiv:2111.03634 [astro-ph.HE].
Magaña Hernandez, I., Palmese, A., Evidence of a new feature in the binary black hole mass distribution at 70M⊙ from gravitational-wave observations. Phys. Rev. D, 111(8), 2025, 083031 arXiv:2407.02460 [astro-ph.HE].
Mancarella, M., Genoud-Prachex, E., Maggiore, M., Cosmology and modified gravitational wave propagation from binary black hole population models. Phys. Rev. D, 105(6), 2022, 064030 arXiv:2112.05728 [gr-qc].
Leyde, K., Mastrogiovanni, S., Steer, D.A., Chassande-Mottin, E., Karathanasis, C., Current and future constraints on cosmology and modified gravitational wave friction from binary black holes. JCAP, 09, 2022, 012 arXiv:2202.00025 [gr-qc].
Palmese, A., et al., DES Collaboration. A statistical standard siren measurement of the Hubble constant from the LIGO/Virgo gravitational wave compact object merger GW190814 and dark energy survey galaxies. Astrophys. J. Lett., 900(2), 2020, L33 arXiv:2006.14961 [astro-ph.CO].
Turski, C., Bilicki, M., Dálya, G., Gray, R., Ghosh, A., Impact of modelling galaxy redshift uncertainties on the gravitational-wave dark standard siren measurement of the Hubble constant. Mon. Not. R. Astron. Soc. 526:4 (2023), 6224–6233 arXiv:2302.12037 [gr-qc].
Perna, G., Mastrogiovanni, S., Ricciardone, A., Investigating the impact of galaxies’ compact binary hosting probability for gravitational-wave cosmology. 2024 arXiv:2405.07904 [astro-ph.CO].
Hanselman, A.G., Vijaykumar, A., Fishbach, M., Holz, D.E., Gravitational-wave dark siren cosmology systematics from galaxy weighting. Astrophys. J., 979(1), 2025, 9 arXiv:2405.14818 [astro-ph.CO].
Chen, H.-Y., Ezquiaga, J.M., Gupta, I., Cosmography with next-generation gravitational wave detectors. Cl. Quant. Grav., 41(12), 2024, 125004 arXiv:2402.03120 [gr-qc].
Amati, L., et al., THESEUS Collaboration. The THESEUS space mission: science goals, requirements and mission concept. Exper. Astron. 52:3 (2021), 183–218 arXiv:2104.09531 [astro-ph.IM].
Califano, M., de Martino, I., Vernieri, D., Capozziello, S., Constraining ΛCDM cosmological parameters with Einstein telescope mock data. Mon. Not. R. Astron. Soc. 518 (2023), 3372–3385 arXiv:2205.11221 [astro-ph.CO].
Califano, M., de Martino, I., Vernieri, D., Capozziello, S., Exploiting the Einstein telescope to solve the Hubble tension. Phys. Rev. D, 107(12), 2023, 123519 arXiv:2208.13999 [astro-ph.CO].
Palmese, A., Kim, A.G., Probing gravity and growth of structure with gravitational waves and galaxies’ peculiar velocity. Phys. Rev. D, 103(10), 2021, 103507 arXiv:2005.04325 [astro-ph.CO].
Colpi, M., et al., LISA Collaboration. LISA Definition Study Report. 2024 arXiv:2402.07571 [astro-ph.CO].
Auclair, P., et al., LISA Cosmology Working Group Collaboration. Cosmology with the laser interferometer space antenna. Living Rev. Rel., 26(1), 2023, 5 arXiv:2204.05434 [astro-ph.CO].
Klein, A., et al. Science with the space-based interferometer eLISA: Supermassive black hole binaries. Phys. Rev. D, 93(2), 2016, 024003 arXiv:1511.05581 [gr-qc].
Mangiagli, A., Caprini, C., Volonteri, M., Marsat, S., Vergani, S., Tamanini, N., Inchauspé, H., Massive black hole binaries in LISA: Multimessenger prospects and electromagnetic counterparts. Phys. Rev. D, 106(10), 2022, 103017 arXiv:2207.10678 [astro-ph.HE].
Babak, S., Gair, J., Sesana, A., Barausse, E., Sopuerta, C.F., Berry, C.P.L., Berti, E., Amaro-Seoane, P., Petiteau, A., Klein, A., Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals. Phys. Rev. D, 95(10), 2017, 103012 arXiv:1703.09722 [gr-qc].
Tamanini, N., Caprini, C., Barausse, E., Sesana, A., Klein, A., Petiteau, A., Science with the space-based interferometer eLISA. III: Probing the expansion of the universe using gravitational wave standard sirens. JCAP, 04, 2016, 002 arXiv:1601.07112 [astro-ph.CO].
Belgacem, E., et al., LISA Cosmology Working Group Collaboration. Testing modified gravity at cosmological distances with LISA standard sirens. JCAP, 07, 2019, 024 arXiv:1906.01593 [astro-ph.CO].
Mangiagli, A., Caprini, C., Marsat, S., Speri, L., Caldwell, R.R., Tamanini, N., Massive black hole binaries in LISA: Constraining cosmological parameters at high redshifts. Phys. Rev. D, 111(8), 2025, 083043 arXiv:2312.04632 [astro-ph.CO].
MacLeod, C.L., Hogan, C.J., Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information. Phys. Rev. D, 77, 2008, 043512 arXiv:0712.0618 [astro-ph].
Laghi, D., Tamanini, N., Del Pozzo, W., Sesana, A., Gair, J., Babak, S., Izquierdo-Villalba, D., Gravitational-wave cosmology with extreme mass-ratio inspirals. Mon. Not. R. Astron. Soc. 508:3 (2021), 4512–4531 arXiv:2102.01708 [astro-ph.CO].
Tamanini, N., Late time cosmology with LISA: probing the cosmic expansion with massive black hole binary mergers as standard sirens. J. Phys. Conf. Ser., 840(1), 2017, 012029 arXiv:1612.02634 [astro-ph.CO].
Caprini, C., Tamanini, N., Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission. JCAP, 10, 2016, 006 arXiv:1607.08755 [astro-ph.CO].
Cai, R.-G., Tamanini, N., Yang, T., Reconstructing the dark sector interaction with LISA. JCAP, 05, 2017, 031 arXiv:1703.07323 [astro-ph.CO].
Corman, M., Ghosh, A., Escamilla-Rivera, C., Hendry, M.A., Marsat, S., Tamanini, N., Constraining cosmological extra dimensions with gravitational wave standard sirens: From theory to current and future multimessenger observations. Phys. Rev. D, 105(6), 2022, 064061 arXiv:2109.08748 [gr-qc].
Speri, L., Tamanini, N., Caldwell, R.R., Gair, J.R., Wang, B., Testing the quasar Hubble diagram with LISA standard sirens. Phys. Rev. D, 103(8), 2021, 083526 arXiv:2010.09049 [astro-ph.CO].
Fixsen, D.J., The temperature of the cosmic microwave background. Astrophys. J. 707 (2009), 916–920 arXiv:0911.1955 [astro-ph.CO].
Smoot, G.F., et al., COBE Collaboration. Structure in the COBE differential microwave radiometer first year maps. Astrophys. J. Lett. 396 (1992), L1–L5.
Mather, J.C., et al. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite. Astrophys. J. Lett. 354 (1990), L37–L40.
Bennett, C.L., et al., WMAP Collaboration. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results. Astrophys. J. Suppl. 148 (2003), 1–27 arXiv:astro-ph/0302207.
Allys, E., et al., LiteBIRD Collaboration. Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey. PTEP, 2023(4), 2023, 042F01 arXiv:2202.02773 [astro-ph.IM].
Ade, P., et al., Simons Observatory Collaboration. The Simons observatory: Science goals and forecasts. JCAP, 02, 2019, 056 arXiv:1808.07445 [astro-ph.CO].
Abazajian, K.N., et al., CMB-S4 Collaboration. CMB-S4 Science Book, first ed., 2016 arXiv:1610.02743 [astro-ph.CO].
Kamionkowski, M., Kovetz, E.D., The quest for B modes from inflationary gravitational waves. Ann. Rev. Astron. Astrophys. 54 (2016), 227–269 arXiv:1510.06042 [astro-ph.CO].
Guzzetti, M.C., Bartolo, N., Liguori, M., Matarrese, S., Gravitational waves from inflation. Riv. Nuovo Cimento 39:9 (2016), 399–495 arXiv:1605.01615 [astro-ph.CO].
Gerbino, M., Gruppuso, A., Natoli, P., Shiraishi, M., Melchiorri, A., Testing chirality of primordial gravitational waves with Planck and future CMB data: no hope from angular power spectra. JCAP, 07, 2016, 044 arXiv:1605.09357 [astro-ph.CO].
Ade, P.A.R., et al., BICEP2, Keck Arrary Collaboration. BICEP2 / Keck Array IX: New bounds on anisotropies of CMB polarization rotation and implications for axionlike particles and primordial magnetic fields. Phys. Rev. D, 96(10), 2017, 102003 arXiv:1705.02523 [astro-ph.CO].
Pogosian, L., Zucca, A., Searching for primordial magnetic fields with CMB B-modes. Cl. Quant. Grav., 35(12), 2018, 124004 arXiv:1801.08936 [astro-ph.CO].
Bartolo, N., Orlando, G., Shiraishi, M., Measuring chiral gravitational waves in chern-simons gravity with CMB bispectra. JCAP, 01, 2019, 050 arXiv:1809.11170 [astro-ph.CO].
Minami, Y., Komatsu, E., New extraction of the cosmic birefringence from the planck 2018 polarization data. Phys. Rev. Lett., 125(22), 2020, 221301 arXiv:2011.11254 [astro-ph.CO].
Namikawa, T., et al. Atacama cosmology telescope: constraints on cosmic birefringence. Phys. Rev. D, 101(8), 2020, 083527 arXiv:2001.10465 [astro-ph.CO].
Choi, G., Lin, W., Visinelli, L., Yanagida, T.T., Cosmic birefringence and electroweak axion dark energy. Phys. Rev. D, 104(10), 2021, L101302 arXiv:2106.12602 [hep-ph].
Greco, A., Bartolo, N., Gruppuso, A., Cosmic birefrigence: cross-spectra and cross-bispectra with CMB anisotropies. JCAP, 03(03), 2022, 050 arXiv:2202.04584 [astro-ph.CO].
Komatsu, E., New physics from the polarized light of the cosmic microwave background. Nat. Rev. Phys. 4:7 (2022), 452–469 arXiv:2202.13919 [astro-ph.CO].
Aghanim, N., et al., Planck Collaboration. Planck 2018 results. VIII. Gravitational lensing. Astron. Astrophys., 641, 2020, A8 arXiv:1807.06210 [astro-ph.CO].
Madhavacheril, M.S., et al., ACT Collaboration. The Atacama cosmology telescope: DR6 gravitational lensing map and cosmological parameters. Astrophys. J., 962(2), 2024, 113 arXiv:2304.05203 [astro-ph.CO].
Balkenhol, L., et al., SPT-3G Collaboration. Constraints on ΛCDM extensions from the SPT-3G 2018 EE and TE power spectra. Phys. Rev. D, 104(8), 2021, 083509 arXiv:2103.13618 [astro-ph.CO].
Joudaki, S., et al. KiDS-450: Testing extensions to the standard cosmological model. Mon. Not. R. Astron. Soc. 471:2 (2017), 1259–1279 arXiv:1610.04606 [astro-ph.CO].
Asgari, M., et al. KiDS+VIKING-450 and DES-Y1 combined: Mitigating baryon feedback uncertainty with COSEBIs. Astron. Astrophys., 634, 2020, A127 arXiv:1910.05336 [astro-ph.CO].
Adame, A.G., et al., DESI Collaboration. DESI 2024 VI: cosmological constraints from the measurements of baryon acoustic oscillations. JCAP, 02, 2025, 021 arXiv:2404.03002 [astro-ph.CO].
Rosenberg, E., Gratton, S., Efstathiou, G., CMB power spectra and cosmological parameters from Planck PR4 with CamSpec. Mon. Not. R. Astron. Soc. 517:3 (2022), 4620–4636 arXiv:2205.10869 [astro-ph.CO].
Tristram, M., et al. Cosmological parameters derived from the final Planck data release (PR4). Astron. Astrophys., 682, 2024, A37 arXiv:2309.10034 [astro-ph.CO].
Aiola, S., et al., ACT Collaboration. The Atacama Cosmology Telescope: DR4 maps and cosmological parameters. JCAP, 12, 2020, 047 arXiv:2007.07288 [astro-ph.CO].
Louis, T., et al., ACT Collaboration. The Atacama Cosmology Telescope: DR6 power spectra, likelihoods and ΛCDM parameters. 2025 arXiv:2503.14452 [astro-ph.CO].
Balkenhol, L., et al., SPT-3G Collaboration. Measurement of the CMB temperature power spectrum and constraints on cosmology from the SPT-3G 2018 TT, TE, and EE dataset. Phys. Rev. D, 108(2), 2023, 023510 arXiv:2212.05642 [astro-ph.CO].
Schöneberg, N., Lesgourgues, J., Hooper, D.C., The BAO+BBN take on the Hubble tension. JCAP, 10, 2019, 029 arXiv:1907.11594 [astro-ph.CO].
Calabrese, E., et al., ACT Collaboration. The Atacama cosmology telescope: DR6 constraints on extended cosmological models. 2025 arXiv:2503.14454 [astro-ph.CO].
Ge, F., et al., SPT-3G Collaboration. Cosmology from CMB lensing and delensed EE power spectra using 2019–2020 SPT-3G polarization data. Phys. Rev. D, 111(8), 2025, 083534 arXiv:2411.06000 [astro-ph.CO].
Prabhu, K., et al., SPT-3G Collaboration. Testing the ΛCDM cosmological model with forthcoming measurements of the cosmic microwave background with SPT-3G. Astrophys. J., 973(1), 2024, 4 arXiv:2403.17925 [astro-ph.CO].
Di Valentino, E., Mena, O., Pan, S., Visinelli, L., Yang, W., Melchiorri, A., Mota, D.F., Riess, A.G., Silk, J., In the realm of the Hubble tension—a review of solutions. Cl. Quant. Grav., 38(15), 2021, 153001 arXiv:2103.01183 [astro-ph.CO].
Schöneberg, N., Franco Abellán, G., Pérez Sánchez, A., Witte, S.J., Poulin, V., Lesgourgues, J., The H0 Olympics: A fair ranking of proposed models. Phys. Rep. 984 (2022), 1–55 arXiv:2107.10291 [astro-ph.CO].
Berryman, J.M., et al. Neutrino self-interactions: A white paper. Phys. Dark Univ., 42, 2023, 101267 arXiv:2203.01955 [hep-ph].
Bernal, J.L., Verde, L., Riess, A.G., The trouble with H0. JCAP, 10, 2016, 019 arXiv:1607.05617 [astro-ph.CO].
Efstathiou, G., Bond, J.R., Cosmic confusion: Degeneracies among cosmological parameters derived from measurements of microwave background anisotropies. Mon. Not. R. Astron. Soc. 304 (1999), 75–97 arXiv:astro-ph/9807103.
Aghanim, N., et al., Planck Collaboration. Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters. Astron. Astrophys., 607, 2017, A95 arXiv:1608.02487 [astro-ph.CO].
Eisenstein, D.J., Seo, H.-j., White, M.J., On the robustness of the acoustic scale in the low-redshift clustering of matter. Astrophys. J. 664 (2007), 660–674 arXiv:astro-ph/0604361.
Karim, M.A., et al., DESI Collaboration. DESI DR2 Results II: Measurements of baryon acoustic oscillations and cosmological constraints. 2025 arXiv:2503.14738 [astro-ph.CO].
Philcox, O.H.E., Farren, G.S., Sherwin, B.D., Baxter, E.J., Brout, D.J., Determining the Hubble constant without the sound horizon: A 3.6% constraint on H0 from galaxy surveys, CMB lensing, and supernovae. Phys. Rev. D, 106(6), 2022, 063530 arXiv:2204.02984 [astro-ph.CO].
Zhao, R., et al. A multitracer analysis for the eBOSS galaxy sample based on the effective field theory of large-scale structure. Mon. Not. R. Astron. Soc. 532:1 (2024), 783–804 arXiv:2308.06206 [astro-ph.CO].
D'Amico, G., Gleyzes, J., Kokron, N., Markovic, K., Senatore, L., Zhang, P., Beutler, F., Gil-Marín, H., The cosmological analysis of the SDSS/BOSS data from the effective field theory of large-scale structure. JCAP, 05, 2020, 005 arXiv:1909.05271 [astro-ph.CO].
Hahn, C., Eickenberg, M., Ho, S., Hou, J., Lemos, P., Massara, E., Modi, C., Moradinezhad Dizgah, A., Parker, L., Blancard, B.R.-S., SimBIG Collaboration. Cosmological constraints from the nonlinear galaxy bispectrum. Phys. Rev. D, 109(8), 2024, 083534 arXiv:2310.15243 [astro-ph.CO].
D'Amico, G., Donath, Y., Lewandowski, M., Senatore, L., Zhang, P., The BOSS bispectrum analysis at one loop from the effective field theory of large-scale structure. JCAP, 05, 2024, 059 arXiv:2206.08327 [astro-ph.CO].
de Cruz Perez, J., Park, C.-G., Ratra, B., Updated observational constraints on spatially flat and nonflat ΛCDM and XCDM cosmological models. Phys. Rev. D, 110(2), 2024, 023506 arXiv:2404.19194 [astro-ph.CO].
Calabrese, E., Slosar, A., Melchiorri, A., Smoot, G.F., Zahn, O., Cosmic microwave weak lensing data as a test for the dark universe. Phys. Rev. D, 77, 2008, 123531 arXiv:0803.2309 [astro-ph].
Dutcher, D., et al., SPT-3G Collaboration. Measurements of the E-mode polarization and temperature-E-mode correlation of the CMB from SPT-3G 2018 data. Phys. Rev. D, 104(2), 2021, 022003 arXiv:2101.01684 [astro-ph.CO].
Aghanim, N., et al., Planck Collaboration. Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters. Astron. Astrophys., 594, 2016, A11 arXiv:1507.02704 [astro-ph.CO].
Couchot, F., Henrot-Versillé, S., Perdereau, O., Plaszczynski, S., Rouillé d'Orfeuil, B., Spinelli, M., Tristram, M., Relieving tensions related to the lensing of the cosmic microwave background temperature power spectra. Astron. Astrophys., 597, 2017, A126 arXiv:1510.07600 [astro-ph.CO].
Addison, G.E., Huang, Y., Watts, D.J., Bennett, C.L., Halpern, M., Hinshaw, G., Weiland, J.L., Quantifying discordance in the 2015 planck CMB spectrum. Astrophys. J., 818(2), 2016, 132 arXiv:1511.00055 [astro-ph.CO].
Aghanim, N., et al., Planck Collaboration. Planck 2018 results. V. CMB power spectra and likelihoods. Astron. Astrophys., 641, 2020, A5 arXiv:1907.12875 [astro-ph.CO].
Akrami, Y., et al., Planck Collaboration. Planck 2018 results. II. Low frequency instrument data processing. Astron. Astrophys., 641, 2020, A2 arXiv:1807.06206 [astro-ph.CO].
Aghanim, N., et al., Planck Collaboration. Planck 2018 results. III. High frequency instrument data processing and frequency maps. Astron. Astrophys., 641, 2020, A3 arXiv:1807.06207 [astro-ph.CO].
Choi, S.K., et al., ACT Collaboration. The atacama cosmology telescope: a measurement of the cosmic microwave background power spectra at 98 and 150 GHz. JCAP, 12, 2020, 045 arXiv:2007.07289 [astro-ph.CO].
Giardiello, S., Duivenvoorden, A.J., Calabrese, E., Galloni, G., Hasselfield, M., Hill, J.C., La Posta, A., Louis, T., Madhavacheril, M., Pagano, L., Modeling beam chromaticity for high-resolution CMB analyses. Phys. Rev. D, 111(4), 2025, 043502 arXiv:2411.10124 [astro-ph.CO].
Giardiello, S., et al. The Simons observatory: impact of bandpass, polarization angle and calibration uncertainties on small-scale power spectrum analysis. JCAP, 09, 2024, 008 arXiv:2403.05242 [astro-ph.CO].
Di Valentino, E., Bridle, S., Exploring the tension between current cosmic microwave background and cosmic shear data. Symmetry, 10(11), 2018, 585.
Ade, P.A.R., et al., Planck Collaboration. Planck 2015 results. xxvii. The Second Planck catalogue of Sunyaev-Zeldovich sources. Astron. Astrophys., 594, 2016, A27 arXiv:1502.01598 [astro-ph.CO].
de Haan, T., et al., SPT Collaboration. Cosmological constraints from galaxy clusters in the 2500 square-degree SPT-SZ survey. Astrophys. J., 832(1), 2016, 95 arXiv:1603.06522 [astro-ph.CO].
Peebles, P.J.E., Yu, J.T., Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162 (1970), 815–836.
Sunyaev, R.A., Zeldovich, Y.B., Small-scale fluctuations of relic radiation. Astrophys. Space Sci. 7:1 (1970), 3–19.
Eisenstein, D.J., Hu, W., Baryonic features in the matter transfer function. Astrophys. J., 496, 1998, 605 arXiv:astro-ph/9709112.
Bassett, B.A., Hlozek, R., Baryon acoustic oscillations. 2009 arXiv:0910.5224 [astro-ph.CO].
Eisenstein, D.J., et al., SDSS Collaboration. Detection of the Baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633 (2005), 560–574 arXiv:astro-ph/0501171.
Adame, A.G., et al., DESI Collaboration. DESI 2024 IV: Baryon acoustic oscillations from the Lyman alpha forest. JCAP, 01, 2025, 124 arXiv:2404.03001 [astro-ph.CO].
Cole, S., et al., 2dFGRS Collaboration. The 2dF galaxy redshift survey: Power-spectrum analysis of the final dataset and cosmological implications. Mon. Not. R. Astron. Soc. 362 (2005), 505–534 arXiv:astro-ph/0501174.
Percival, W.J., et al., SDSS Collaboration. Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon. Not. R. Astron. Soc. 401 (2010), 2148–2168 arXiv:0907.1660 [astro-ph.CO].
Beutler, F., et al., BOSS Collaboration. The clustering of galaxies in the completed SDSS-III baryon oscillation spectroscopic survey: baryon acoustic oscillations in the fourier space. Mon. Not. R. Astron. Soc. 464:3 (2017), 3409–3430 arXiv:1607.03149 [astro-ph.CO].
Anderson, L., et al., BOSS Collaboration. The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: baryon acoustic oscillations in the data releases 10 and 11 galaxy samples. Mon. Not. R. Astron. Soc. 441:1 (2014), 24–62 arXiv:1312.4877 [astro-ph.CO].
Mehta, K.T., Seo, H.-J., Eckel, J., Eisenstein, D.J., Metchnik, M., Pinto, P., Xu, X., Galaxy bias and its effects on the baryon acoustic oscillations measurements. Astrophys. J., 734, 2011, 94 arXiv:1104.1178 [astro-ph.CO].
Padmanabhan, N., Xu, X., Eisenstein, D.J., Scalzo, R., Cuesta, A.J., Mehta, K.T., Kazin, E., A 2 per cent distance to z=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the sloan digital sky survey. Mon. Not. R. Astron. Soc. 427:3 (2012), 2132–2145 arXiv:1202.0090 [astro-ph.CO].
Eisenstein, D.J., Seo, H.-j., Sirko, E., Spergel, D., Improving cosmological distance measurements by reconstruction of the baryon acoustic peak. Astrophys. J. 664 (2007), 675–679 arXiv:astro-ph/0604362.
Bernal, J.L., Smith, T.L., Boddy, K.K., Kamionkowski, M., Robustness of baryon acoustic oscillation constraints for early-universe modifications of ΛCDM cosmology. Phys. Rev. D, 102(12), 2020, 123515 arXiv:2004.07263 [astro-ph.CO].
Sanz-Wuhl, S., Gil-Marín, H., Cuesta, A.J., Verde, L., BAO cosmology in non-spatially flat background geometry from BOSS+eBOSS and lessons for future surveys. JCAP, 05, 2024, 116 arXiv:2402.03427 [astro-ph.CO].
Pan, J., Huterer, D., Andrade-Oliveira, F., Avestruz, C., Compressed baryon acoustic oscillation analysis is robust to modified-gravity models. JCAP, 06, 2024, 051 arXiv:2312.05177 [astro-ph.CO].
Vargas-Magaña, M., et al., BOSS Collaboration. The clustering of galaxies in the completed SDSS-III Baryon oscillation spectroscopic survey: theoretical systematics and baryon acoustic oscillations in the galaxy correlation function. Mon. Not. R. Astron. Soc. 477:1 (2018), 1153–1188 arXiv:1610.03506 [astro-ph.CO].
Carter, P., Beutler, F., Percival, W.J., DeRose, J., Wechsler, R.H., Zhao, C., The impact of the fiducial cosmology assumption on BAO distance scale measurements. Mon. Not. R. Astron. Soc. 494:2 (2020), 2076–2089 arXiv:1906.03035 [astro-ph.CO].
Chen, S.-F., et al. Baryon acoustic oscillation theory and modelling systematics for the DESI 2024 results. Mon. Not. R. Astron. Soc. 534:1 (2024), 544–574 arXiv:2402.14070 [astro-ph.CO].
Baumann, D., Green, D., Zaldarriaga, M., Phases of new physics in the BAO spectrum. JCAP, 11, 2017, 007 arXiv:1703.00894 [astro-ph.CO].
Baumann, D., Beutler, F., Flauger, R., Green, D., Slosar, A., Vargas-Magaña, M., Wallisch, B., Yèche, C., First constraint on the neutrino-induced phase shift in the spectrum of baryon acoustic oscillations. Nat. Phys. 15 (2019), 465–469 arXiv:1803.10741 [astro-ph.CO].
Sanchez, E., Carnero, A., Garcia-Bellido, J., Gaztanaga, E., de Simoni, F., Crocce, M., Cabre, A., Fosalba, P., Alonso, D., Tracing the sound horizon scale with photometric redshift surveys. Mon. Not. R. Astron. Soc. 411 (2011), 277–288 arXiv:1006.3226 [astro-ph.CO].
Menote, R., Marra, V., Baryon acoustic oscillations in thin redshift shells from BOSS DR12 and eBOSS DR16 galaxies. Mon. Not. R. Astron. Soc. 513:2 (2022), 1600–1608 arXiv:2112.10000 [astro-ph.CO].
Carvalho, G.C., Bernui, A., Benetti, M., Carvalho, J.C., de Carvalho, E., Alcaniz, J.S., The transverse baryonic acoustic scale from the SDSS DR11 galaxies. Astropart. Phys., 119, 2020, 102432 arXiv:1709.00271 [astro-ph.CO].
Camarena, D., Marra, V., A new method to build the (inverse) distance ladder. Mon. Not. R. Astron. Soc. 495:3 (2020), 2630–2644 arXiv:1910.14125 [astro-ph.CO].
Nunes, R.C., Yadav, S.K., Jesus, J.F., Bernui, A., Cosmological parameter analyses using transversal BAO data. Mon. Not. R. Astron. Soc. 497:2 (2020), 2133–2141 arXiv:2002.09293 [astro-ph.CO].
Nunes, R.C., Bernui, A., BAO signatures in the 2-point angular correlations and the Hubble tension. Eur. Phys. J. C, 80(11), 2020, 1025 arXiv:2008.03259 [astro-ph.CO].
Arjona, R., Nesseris, S., Novel null tests for the spatial curvature and homogeneity of the universe and their machine learning reconstructions. Phys. Rev. D, 103(10), 2021, 103539 arXiv:2103.06789 [astro-ph.CO].
Bernui, A., Di Valentino, E., Giarè, W., Kumar, S., Nunes, R.C., Exploring the H0 tension and the evidence for dark sector interactions from 2D BAO measurements. Phys. Rev. D, 107(10), 2023, 103531 arXiv:2301.06097 [astro-ph.CO].
Gómez-Valent, A., Favale, A., Migliaccio, M., Sen, A.A., Late-time phenomenology required to solve the H0 tension in view of the cosmic ladders and the anisotropic and angular BAO datasets. Phys. Rev. D, 109(2), 2024, 023525 arXiv:2309.07795 [astro-ph.CO].
Benetti, M., Graef, L.L., Alcaniz, J.S., The H0 and σ8 tensions and the scale invariant spectrum. JCAP, 07, 2018, 066 arXiv:1712.00677 [astro-ph.CO].
Mena-Fernández, J., et al., DES Collaboration. Dark Energy Survey: Galaxy sample for the baryonic acoustic oscillation measurement from the final dataset. Phys. Rev. D, 110(6), 2024, 063514 arXiv:2402.10697 [astro-ph.CO].
Abbott, T.M.C., et al., DES Collaboration. Dark Energy Survey: A 2.1% measurement of the angular baryonic acoustic oscillation scale at redshift zeff=0.85 from the final dataset. Phys. Rev. D, 110(6), 2024, 063515 arXiv:2402.10696 [astro-ph.CO].
McDonald, P., Eisenstein, D., Dark energy and curvature from a future baryonic acoustic oscillation survey using the Lyman-alpha forest. Phys. Rev. D, 76, 2007, 063009 arXiv:astro-ph/0607122.
Percival, W.J., et al., 2dFGRS Collaboration. The 2dF Galaxy redshift survey: The power spectrum and the matter content of the universe. Mon. Not. R. Astron. Soc., 327, 2001, 1297 arXiv:astro-ph/0105252.
Slosar, A., et al., BOSS Collaboration. Measurement of baryon acoustic oscillations in the Lyman-alpha forest fluctuations in BOSS data release 9. JCAP, 04, 2013, 026 arXiv:1301.3459 [astro-ph.CO].
Blake, C., et al. The WiggleZ dark energy survey: mapping the distance-redshift relation with baryon acoustic oscillations. Mon. Not. R. Astron. Soc. 418 (2011), 1707–1724 arXiv:1108.2635 [astro-ph.CO].
Beutler, F., Blake, C., Colless, M., Jones, D.H., Staveley-Smith, L., Campbell, L., Parker, Q., Saunders, W., Watson, F., The 6dF Galaxy Survey: Baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc. 416 (2011), 3017–3032 arXiv:1106.3366 [astro-ph.CO].
Anderson, L., et al., BOSS Collaboration. The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: measuring DA and H at z=0.57 from the baryon acoustic peak in the data release 9 spectroscopic galaxy sample. Mon. Not. R. Astron. Soc. 439:1 (2014), 83–101 arXiv:1303.4666 [astro-ph.CO].
Font-Ribera, A., et al., BOSS Collaboration. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon acoustic oscillations. JCAP, 05, 2014, 027 arXiv:1311.1767 [astro-ph.CO].
Ross, A.J., et al., BOSS Collaboration. The clustering of galaxies in the completed SDSS-III baryon oscillation spectroscopic survey: Observational systematics and baryon acoustic oscillations in the correlation function. Mon. Not. R. Astron. Soc. 464:1 (2017), 1168–1191 arXiv:1607.03145 [astro-ph.CO].
Neveux, R., et al., eBOSS Collaboration. The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from the anisotropic power spectrum of the quasar sample between redshift 0.8 and 2.2. Mon. Not. R. Astron. Soc. 499:1 (2020), 210–229 arXiv:2007.08999 [astro-ph.CO].
de Mattia, A., et al., eBOSS Collaboration. The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the emission line galaxy sample from the anisotropic power spectrum between redshift 0.6 and 1.1. Mon. Not. R. Astron. Soc. 501:4 (2021), 5616–5645 arXiv:2007.09008 [astro-ph.CO].
Adame, A.G., et al., DESI Collaboration. DESI 2024 III: baryon acoustic oscillations from galaxies and quasars. JCAP, 04, 2025, 012 arXiv:2404.03000 [astro-ph.CO].
Bianchi, D., Burden, A., Percival, W.J., Brooks, D., Cahn, R.N., Forero-Romero, J.E., Levi, M., Ross, A.J., Tarle, G., Unbiased clustering estimates with the DESI fibre assignment. Mon. Not. R. Astron. Soc. 481:2 (2018), 2338–2348 arXiv:1805.00951 [astro-ph.CO].
Carvalho, G.C., Bernui, A., Benetti, M., Carvalho, J.C., Alcaniz, J.S., Baryon Acoustic Oscillations from the SDSS DR10 galaxies angular correlation function. Phys. Rev. D, 93(2), 2016, 023530 arXiv:1507.08972 [astro-ph.CO].
Alcaniz, J.S., Carvalho, G.C., Bernui, A., Carvalho, J.C., Benetti, M., Measuring baryon acoustic oscillations with angular two-point correlation function. Fundam. Theor. Phys. 187 (2017), 11–19 arXiv:1611.08458 [astro-ph.CO].
de Carvalho, E., Bernui, A., Carvalho, G.C., Novaes, C.P., Xavier, H.S., Angular baryon acoustic oscillation measure at z=2.225 from the SDSS quasar survey. JCAP, 04, 2018, 064 arXiv:1709.00113 [astro-ph.CO].
de Carvalho, E., Bernui, A., Avila, F., Novaes, C.P., Nogueira-Cavalcante, J.P., BAO angular scale at zeff=0.11 with the SDSS blue galaxies. Astron. Astrophys., 649, 2021, A20 arXiv:2103.14121 [astro-ph.CO].
Aubourg, E., et al., BOSS Collaboration. Cosmological implications of baryon acoustic oscillation measurements. Phys. Rev. D, 92(12), 2015, 123516 arXiv:1411.1074 [astro-ph.CO].
Farren, G.S., Philcox, O.H.E., Sherwin, B.D., Determining the Hubble constant without the sound horizon: Perspectives with future galaxy surveys. Phys. Rev. D, 105(6), 2022, 063503 arXiv:2112.10749 [astro-ph.CO].
Philcox, O.H.E., Sherwin, B.D., Farren, G.S., Baxter, E.J., Determining the Hubble constant without the sound horizon: Measurements from galaxy surveys. Phys. Rev. D, 103(2), 2021, 023538 arXiv:2008.08084 [astro-ph.CO].
Baxter, E.J., Sherwin, B.D., Determining the Hubble constant without the sound horizon scale: Measurements from CMB lensing. Mon. Not. R. Astron. Soc. 501:2 (2021), 1823–1835 arXiv:2007.04007 [astro-ph.CO].
Brieden, S., Gil-Marín, H., Verde, L., A tale of two (or more) h's. JCAP, 04, 2023, 023 arXiv:2212.04522 [astro-ph.CO].
Krolewski, A., Percival, W.J., Woodfinden, A., New method to determine the Hubble parameter from cosmological energy-density measurements. Phys. Rev. Lett., 134(10), 2025, 101002 arXiv:2403.19227 [astro-ph.CO].
Arendse, N., et al. Cosmic dissonance: are new physics or systematics behind a short sound horizon?. Astron. Astrophys., 639, 2020, A57 arXiv:1909.07986 [astro-ph.CO].
Jiang, J.-Q., Piao, Y.-S., Can the sound horizon-free measurement of H0 constrain early new physics?. 2025 arXiv:2501.16883 [astro-ph.CO].
Alam, S., et al., eBOSS Collaboration. Completed SDSS-IV extended baryon oscillation spectroscopic survey: Cosmological implications from two decades of spectroscopic surveys at the apache point observatory. Phys. Rev. D, 103(8), 2021, 083533 arXiv:2007.08991 [astro-ph.CO].
Percival, W.J., Cole, S., Eisenstein, D.J., Nichol, R.C., Peacock, J.A., Pope, A.C., Szalay, A.S., Measuring the baryon acoustic oscillation scale using the SDSS and 2dFGRS. Mon. Not. R. Astron. Soc. 381 (2007), 1053–1066 arXiv:0705.3323 [astro-ph].
Giarè, W., Sabogal, M.A., Nunes, R.C., Di Valentino, E., Interacting dark energy after DESI baryon acoustic oscillation measurements. Phys. Rev. Lett., 133(25), 2024, 251003 arXiv:2404.15232 [astro-ph.CO].
Akarsu, O., Kumar, S., Özülker, E., Vazquez, J.A., Yadav, A., Relaxing cosmological tensions with a sign switching cosmological constant: improved results with planck, BAO, and Pantheon data. Phys. Rev. D, 108(2), 2023, 023513 arXiv:2211.05742 [astro-ph.CO].
Akarsu, O., De Felice, A., Di Valentino, E., Kumar, S., Nunes, R.C., Özülker, E., Vazquez, J.A., Yadav, A., Cosmological constraints on ΛsCDM scenario in a Type II minimally modified gravity. Phys. Rev. D, 110(10), 2024, 103527 arXiv:2406.07526 [astro-ph.CO].
Smith, T.L., Poulin, V., Simon, T., Assessing the robustness of sound horizon-free determinations of the Hubble constant. Phys. Rev. D, 108(10), 2023, 103525 arXiv:2208.12992 [astro-ph.CO].
Jedamzik, K., Pogosian, L., Zhao, G.-B., Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension. Commun. Phys., 4, 2021, 123 arXiv:2010.04158 [astro-ph.CO].
Pogosian, L., Zhao, G.-B., Jedamzik, K., Recombination-independent determination of the sound horizon and the Hubble constant from BAO. Astrophys. J. Lett., 904(2), 2020, L17 arXiv:2009.08455 [astro-ph.CO].
Benisty, D., Staicova, D., Testing late-time cosmic acceleration with uncorrelated baryon acoustic oscillation dataset. Astron. Astrophys., 647, 2021, A38 arXiv:2009.10701 [astro-ph.CO].
Staicova, D., De models with combined H0 ⋅ rd from BAO and CMB dataset and friends. Universe, 8(12), 2022, 631 arXiv:2211.08139 [astro-ph.CO].
Staicova, D., Benisty, D., Constraining the dark energy models using baryon acoustic oscillations: An approach independent of H0 ⋅ rd. Astron. Astrophys., 668, 2022, A135 arXiv:2107.14129 [astro-ph.CO].
Calderon, R., et al., DESI Collaboration. DESI 2024: reconstructing dark energy using crossing statistics with DESI DR1 BAO data. JCAP, 10, 2024, 048 arXiv:2405.04216 [astro-ph.CO].
Sinigaglia, F., Kitaura, F.-S., Nagamine, K., Oku, Y., The negative baryon acoustic oscillation shift in the Lyα forest from cosmological simulations. Astrophys. J. Lett., 971(1), 2024, L22 arXiv:2407.03918 [astro-ph.CO].
Akarsu, O., Kumar, S., Özülker, E., Vazquez, J.A., Relaxing cosmological tensions with a sign switching cosmological constant. Phys. Rev. D, 104(12), 2021, 123512 arXiv:2108.09239 [astro-ph.CO].
Akarsu, O., Di Valentino, E., Kumar, S., Nunes, R.C., Vazquez, J.A., Yadav, A., ΛsCDM model: A promising scenario for alleviation of cosmological tensions. 2023 arXiv:2307.10899 [astro-ph.CO].
Adil, S.A., Akarsu, O., Di Valentino, E., Nunes, R.C., Özülker, E., Sen, A.A., Specogna, E., Omnipotent dark energy: A phenomenological answer to the Hubble tension. Phys. Rev. D, 109(2), 2024, 023527 arXiv:2306.08046 [astro-ph.CO].
Aghamousa, A., et al., DESI Collaboration. The DESI Experiment Part I: Science,targeting, and survey design. 2016 arXiv:1611.00036 [astro-ph.IM].
Schlegel, D.J., et al. The MegaMapper: A stage-5 spectroscopic instrument concept for the study of inflation and dark energy. 2022 arXiv:2209.04322 [astro-ph.IM].
Schlegel, D.J., et al. Astro2020 APC White Paper: The MegaMapper: a z > 2 spectroscopic instrument for the study of inflation and dark energy. Bull. Am. Astron. Soc., 51(7), 2019, 229 arXiv:1907.11171 [astro-ph.IM].
Ellis, R., et al. SpecTel: A 10-12 meter class spectroscopic survey telescope. 2019 arXiv:1907.06797 [astro-ph.IM].
Adame, A.G., et al., DESI Collaboration. Validation of the scientific program for the dark energy spectroscopic instrument. Astron. J., 167(2), 2024, 62 arXiv:2306.06307 [astro-ph.CO].
Jain, B., Seljak, U., Cosmological model predictions for weak lensing: Linear and nonlinear regimes. Astrophys. J., 484, 1997, 560 arXiv:astro-ph/9611077.
Kaiser, N., Weak lensing by galaxy clusters. 1999 arXiv:astro-ph/9912569.
Miralda-Escude, J., The correlation function of galaxy ellipticities produced by gravitational lensing. Astrophys. J., 380, 1991, 1.
Blandford, R.D., Saust, A.B., Brainerd, T.G., Villumsen, J.V., The distortion of distant galaxy images by large-scale structure. Mon. Not. R. Astron. Soc. 251:4 (1991), 600–627.
Van Waerbeke, L., Bernardeau, F., Mellier, Y., Efficiency of weak lensing surveys to probe cosmological models. Astron. Astrophys. 342 (1999), 15–33 arXiv:astro-ph/9807007.
Bartelmann, M., Maturi, M., Weak gravitational lensing. Ground-based and Airborne Telescopes VII, vol. 12, 2017, 32440 arXiv:1612.06535 [astro-ph.CO].
Kilbinger, M., Cosmology with cosmic shear observations: a review. Rep. Progr. Phys., 78, 2015, 086901 arXiv:1411.0115 [astro-ph.CO].
Prat, J., Bacon, D., Weak gravitational lensing. 2025 arXiv:2501.07938 [astro-ph.CO].
Schneider, P., van Waerbeke, L., Kilbinger, M., Mellier, Y., Analysis of two-point statistics of cosmic shear: I. Estimators and covariances. Astron. Astrophys. 396 (2002), 1–20 arXiv:astro-ph/0206182.
Ajani, V., et al., Euclid Collaboration. Euclid preparation. XXVIII. Forecasts for ten different higher-order weak lensing statistics. Astron. Astrophys., 675, 2023, A120 arXiv:2301.12890 [astro-ph.CO].
Porth, L., Heydenreich, S., Burger, P., Linke, L., Schneider, P., A road map to cosmological parameter analysis with third-order shear statistics - III. Efficient estimation of third-order shear correlation functions and an application to the KiDS-1000 data. Astron. Astrophys., 689, 2024, A227 arXiv:2309.08601 [astro-ph.CO].
Takada, M., Jain, B., The Three - point correlation function in cosmology. Mon. Not. R. Astron. Soc. 340 (2003), 580–608 arXiv:astro-ph/0209167.
Heydenreich, S., Linke, L., Burger, P., Schneider, P., A roadmap to cosmological parameter analysis with third-order shear statistics - I. Modelling and validation. Astron. Astrophys., 672, 2023, A44 arXiv:2208.11686 [astro-ph.CO].
Halder, A., Friedrich, O., Seitz, S., Varga, T.N., The integrated three-point correlation function of cosmic shear. Mon. Not. R. Astron. Soc. 506:2 (2021), 2780–2803 arXiv:2102.10177 [astro-ph.CO].
Coulton, W.R., Liu, J., Madhavacheril, M.S., Böhm, V., Spergel, D.N., Constraining neutrino mass with the tomographic weak lensing bispectrum. JCAP, 05, 2019, 043 arXiv:1810.02374 [astro-ph.CO].
Kayo, I., Takada, M., Jain, B., Information content of weak lensing power spectrum and bispectrum: including the non-Gaussian error covariance matrix. Mon. Not. R. Astron. Soc. 429 (2013), 344–371 arXiv:1207.6322 [astro-ph.CO].
Castiblanco, L., Uhlemann, C., Harnois-Déraps, J., Barthelemy, A., Unleashing cosmic shear information with the tomographic weak lensing PDF. 2024, 10.33232/001c.121302 arXiv:2405.09651 [astro-ph.CO].
Thiele, L., Marques, G.A., Liu, J., Shirasaki, M., Cosmological constraints from the Subaru Hyper Suprime-Cam year 1 shear catalogue lensing convergence probability distribution function. Phys. Rev. D, 108(12), 2023, 123526 arXiv:2304.05928 [astro-ph.CO].
Giblin, B., Cai, Y.-C., Harnois-Déraps, J., Enhancing cosmic shear with the multiscale lensing probability density function. Mon. Not. R. Astron. Soc. 520:2 (2023), 1721–1737 arXiv:2211.05708 [astro-ph.CO].
Liu, J., Madhavacheril, M.S., Constraining neutrino mass with the tomographic weak lensing one-point probability distribution function and power spectrum. Phys. Rev. D, 99(8), 2019, 083508 arXiv:1809.10747 [astro-ph.CO].
Gatti, M., et al., DES Collaboration. Dark energy survey year 3 results: Cosmology with moments of weak lensing mass maps. Phys. Rev. D, 106(8), 2022, 083509 arXiv:2110.10141 [astro-ph.CO].
Harnois-Deraps, J., et al. KiDS-1000 and DES-Y1 combined: cosmology from peak count statistics. Mon. Not. R. Astron. Soc. 534:4 (2024), 3305–3330 arXiv:2405.10312 [astro-ph.CO].
Marques, G.A., Liu, J., Shirasaki, M., Thiele, L., Grandón, D., Huffenberger, K.M., Cheng, S., Harnois-Déraps, J., Osato, K., Coulton, W.R., Cosmology from weak lensing peaks and minima with Subaru Hyper Suprime-Cam Survey first-year data. Mon. Not. R. Astron. Soc. 528:3 (2024), 4513–4527 arXiv:2308.10866 [astro-ph.CO].
Liu, J., Petri, A., Haiman, Z., Hui, L., Kratochvil, J.M., May, M., Cosmology constraints from the weak lensing peak counts and the power spectrum in CFHTLenS data. Phys. Rev. D, 91(6), 2015, 063507 arXiv:1412.0757 [astro-ph.CO].
Gruen, D., et al., DES Collaboration. Density split statistics: Cosmological constraints from counts and lensing in cells in DES Y1 and SDSS data. Phys. Rev. D, 98(2), 2018, 023507 arXiv:1710.05045 [astro-ph.CO].
Cheng, S., Marques, G.A., Grandón, D., Thiele, L., Shirasaki, M., Ménard, B., Liu, J., Cosmological constraints from weak lensing scattering transform using HSC Y1 data. JCAP, 01, 2025, 006 arXiv:2404.16085 [astro-ph.CO].
Grandón, D., Marques, G.A., Thiele, L., Cheng, S., Shirasaki, M., Liu, J., Impact of baryonic feedback on HSC-Y1 weak lensing non-Gaussian statistics. Phys. Rev. D, 110(10), 2024, 103539 arXiv:2403.03807 [astro-ph.CO].
Armijo, J., Marques, G.A., Novaes, C.P., Thiele, L., Cowell, J.A., Grandón, D., Shirasaki, M., Liu, J., Cosmological constraints using Minkowski functionals from the first year data of the Hyper Suprime-Cam. Mon. Not. R. Astron. Soc. 537:4 (2025), 3553–3560 arXiv:2410.00401 [astro-ph.CO].
Grandón, D., Sellentin, E., Stage IV baryonic feedback correction for non-Gaussianity inference. Mon. Not. R. Astron. Soc. 536 (2025), 2064–2071 arXiv:2407.20448 [astro-ph.CO].
Kuijken, K., et al. Gravitational lensing analysis of the kilo degree survey. Mon. Not. R. Astron. Soc. 454:4 (2015), 3500–3532 arXiv:1507.00738 [astro-ph.CO].
Kuijken, K., et al. The fourth data release of the Kilo-Degree Survey: ugri imaging and nine-band optical-IR photometry over 1000 square degrees. Astron. Astrophys., 625, 2019, A2 arXiv:1902.11265 [astro-ph.GA].
Gatti, M., et al., DES Collaboration. Dark energy survey year 3 results: weak lensing shape catalogue. Mon. Not. R. Astron. Soc. 504:3 (2021), 4312–4336 arXiv:2011.03408 [astro-ph.CO].
Abbott, T.M.C., et al., DES, NOAO Data Lab Collaboration. The dark energy survey data release 1. Astrophys. J. Suppl., 239(2), 2018, 18 arXiv:1801.03181 [astro-ph.IM].
Aihara, H., et al. The hyper suprime-cam SSP survey: Overview and survey design. Publ. Astron. Soc. Jap., 70, 2018, S4 arXiv:1704.05858 [astro-ph.IM].
Hikage, C., et al., HSC Collaboration. Cosmology from cosmic shear power spectra with Subaru hyper suprime-cam first-year data. Publ. Astron. Soc. Jap., 71(2), 2019, 43 arXiv:1809.09148 [astro-ph.CO].
Anbajagane, D., et al. The DECADE cosmic shear project iv: cosmological constraints from 107 million galaxies across 5,400 deg2 of the sky. 2025 arXiv:2502.17677 [astro-ph.CO].
Hildebrandt, H., et al. KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing. Mon. Not. R. Astron. Soc., 465, 2017, 1454 arXiv:1606.05338 [astro-ph.CO].
Hildebrandt, H., et al. KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data. Astron. Astrophys., 633, 2020, A69 arXiv:1812.06076 [astro-ph.CO].
Asgari, M., et al., KiDS Collaboration. KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics. Astron. Astrophys., 645, 2021, A104 arXiv:2007.15633 [astro-ph.CO].
Secco, L.F., et al., DES Collaboration. Dark energy survey year 3 results: Cosmology from cosmic shear and robustness to modeling uncertainty. Phys. Rev. D, 105(2), 2022, 023515 arXiv:2105.13544 [astro-ph.CO].
Amon, A., et al., DES Collaboration. Dark energy survey year 3 results: Cosmology from cosmic shear and robustness to data calibration. Phys. Rev. D, 105(2), 2022, 023514 arXiv:2105.13543 [astro-ph.CO].
Troxel, M.A., et al., DES Collaboration. Dark energy survey year 1 results: Cosmological constraints from cosmic shear. Phys. Rev. D, 98(4), 2018, 043528 arXiv:1708.01538 [astro-ph.CO].
Dalal, R., et al. Hyper suprime-cam year 3 results: Cosmology from cosmic shear power spectra. Phys. Rev. D, 108(12), 2023, 123519 arXiv:2304.00701 [astro-ph.CO].
Erben, T., Hildebrandt, H., Miller, L., van Waerbeke, L., Heymans, C., Hoekstra, H., Kitching, T.D., Mellier, Y., Benjamin, J., Blake, C., Bonnett, C., Cordes, O., Coupon, J., Fu, L., Gavazzi, R., Gillis, B., Grocutt, E., Gwyn, S.D.J., Holhjem, K., Hudson, M.J., Kilbinger, M., Kuijken, K., Milkeraitis, M., Rowe, B.T.P., Schrabback, T., Semboloni, E., Simon, P., Smit, M., Toader, O., Vafaei, S., van Uitert, E., Velander, M., CFHTLenS: the Canada-France-Hawaii Telescope Lensing Survey - imaging data and catalogue products. Mon. Not. R. Astro. Soc. 433:3 (2013), 2545–2563 arXiv:1210.8156 [astro-ph.CO].
Ade, P.A.R., et al., Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys., 571, 2014, A16 arXiv:1303.5076 [astro-ph.CO].
Abbott, T.M.C., et al., Kilo-Degree Survey, DES Collaboration. DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys. Open J. Astrophys., 6, 2023, 2305.17173 arXiv:2305.17173 [astro-ph.CO].
Wright, A.H., et al. KiDS-Legacy: Cosmological constraints from cosmic shear with the complete kilo-degree survey. 2025 arXiv:2503.19441 [astro-ph.CO].
Abbott, T.M.C., et al., DES Collaboration. Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D, 105(2), 2022, 023520 arXiv:2105.13549 [astro-ph.CO].
Doux, C., et al., DES Collaboration. Dark energy survey year 3 results: cosmological constraints from the analysis of cosmic shear in harmonic space. Mon. Not. R. Astron. Soc. 515:2 (2022), 1942–1972 arXiv:2203.07128 [astro-ph.CO].
Li, X., et al. Hyper Suprime-Cam Year 3 results: Cosmology from cosmic shear two-point correlation functions. Phys. Rev. D, 108(12), 2023, 123518 arXiv:2304.00702 [astro-ph.CO].
Sugiyama, S., et al. Hyper Suprime-Cam Year 3 results: Cosmology from galaxy clustering and weak lensing with HSC and SDSS using the minimal bias model. Phys. Rev. D, 108(12), 2023, 123521 arXiv:2304.00705 [astro-ph.CO].
Miyatake, H., et al. Hyper Suprime-Cam Year 3 results: Cosmology from galaxy clustering and weak lensing with HSC and SDSS using the emulator based halo model. Phys. Rev. D, 108(12), 2023, 123517 arXiv:2304.00704 [astro-ph.CO].
Loureiro, A., et al., KiDS, Euclid Collaboration. KiDS and Euclid: Cosmological implications of a pseudo angular power spectrum analysis of KiDS-1000 cosmic shear tomography. Astron. Astrophys., 665, 2022, A56 arXiv:2110.06947 [astro-ph.CO].
Bianchini, F., et al., SPT Collaboration. Constraints on Cosmological Parameters from the 500 deg2 SPTpol Lensing Power Spectrum. Astrophys. J., 888, 2020, 119 arXiv:1910.07157 [astro-ph.CO].
Zürcher, D., et al., DES Collaboration. Dark energy survey year 3 results: Cosmology with peaks using an emulator approach. Mon. Not. R. Astron. Soc. 511:2 (2022), 2075–2104 arXiv:2110.10135 [astro-ph.CO].
McCullough, J., et al., DES Collaboration. Dark Energy Survey Year 3: Blue Shear. 2024 arXiv:2410.22272 [astro-ph.CO].
Gatti, M., et al., DES Collaboration. Dark Energy Survey Year 3 results: Simulation-based cosmological inference with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps. Validation on simulations. Phys. Rev. D, 109(6), 2024, 063534 arXiv:2310.17557 [astro-ph.CO].
von Wietersheim-Kramsta, M., Lin, K., Tessore, N., Joachimi, B., Loureiro, A., Reischke, R., Wright, A.H., KiDS-SBI: Simulation-based inference analysis of KiDS-1000 cosmic shear. Astron. Astrophys., 694, 2025, A223 arXiv:2404.15402 [astro-ph.CO].
Novaes, C.P., Thiele, L., Armijo, J., Cheng, S., Cowell, J.A., Marques, G.A., Ferreira, E.G.M., Shirasaki, M., Osato, K., Liu, J., Cosmology from HSC Y1 weak lensing data with combined higher-order statistics and simulation-based inference. Phys. Rev. D, 111(8), 2025, 083510 arXiv:2409.01301 [astro-ph.CO].
Reischke, R., et al. KiDS-Legacy: Covariance validation and the unified OneCovariance framework for projected large-scale structure observables. 2024 arXiv:2410.06962 [astro-ph.CO].
Sellentin, E., Heavens, A.F., Parameter inference with estimated covariance matrices. Mon. Not. R. Astron. Soc. 456:1 (2016), L132–L136 arXiv:1511.05969 [astro-ph.CO].
Sellentin, E., Heymans, C., Harnois-Déraps, J., The skewed weak lensing likelihood: why biases arise, despite data and theory being sound. Mon. Not. R. Astron. Soc. 477:4 (2018), 4879–4895 arXiv:1712.04923 [astro-ph.CO].
Chisari, N.E., Richardson, M.L.A., Devriendt, J., Dubois, Y., Schneider, A., Brun, A.L., Beckmann, R.S., Peirani, S., Slyz, A., Pichon, C., The impact of baryons on the matter power spectrum from the Horizon-AGN cosmological hydrodynamical simulation. Mon. Not. R. Astron. Soc. 480:3 (2018), 3962–3977 arXiv:1801.08559 [astro-ph.CO].
Knabenhans, M., et al., Euclid Collaboration. Euclid preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations. Mon. Not. R. Astron. Soc. 505:2 (2021), 2840–2869 arXiv:2010.11288 [astro-ph.CO].
Aricò, G., Angulo, R.E., Contreras, S., Ondaro-Mallea, L., Pellejero-Ibañez, M., Zennaro, M., The BACCO simulation project: a baryonification emulator with neural networks. Mon. Not. R. Astron. Soc. 506:3 (2021), 4070–4082 arXiv:2011.15018 [astro-ph.CO].
Asgari, M., Mead, A.J., Heymans, C., The halo model for cosmology: a pedagogical review. 2023, 10.21105/astro.2303.08752 arXiv:2303.08752 [astro-ph.CO].
Smith, R.E., Peacock, J.A., Jenkins, A., White, S.D.M., Frenk, C.S., Pearce, F.R., Thomas, P.A., Efstathiou, G., Couchmann, H.M.P., VIRGO Consortium Collaboration. Stable clustering, the halo model and nonlinear cosmological power spectra. Mon. Not. R. Astron. Soc., 341, 2003, 1311 arXiv:astro-ph/0207664.
Takahashi, R., Sato, M., Nishimichi, T., Taruya, A., Oguri, M., Revising the halofit model for the nonlinear matter power spectrum. Astrophys. J., 761, 2012, 152 arXiv:1208.2701 [astro-ph.CO].
Mead, A., Brieden, S., Tröster, T., Heymans, C., hmcode-2020: improved modelling of non-linear cosmological power spectra with baryonic feedback. Mon. Not. R. Astron. Soc. 502:1 (2021), 1401–1422 arXiv:2009.01858 [astro-ph.CO].
Mead, A., Heymans, C., Lombriser, L., Peacock, J., Steele, O., Winther, H., Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces. Mon. Not. R. Astron. Soc. 459:2 (2016), 1468–1488 arXiv:1602.02154 [astro-ph.CO].
Bernardeau, F., Nishimichi, T., Taruya, A., Cosmic shear full nulling: sorting out dynamics, geometry and systematics. Mon. Not. R. Astron. Soc. 445:2 (2014), 1526–1537 arXiv:1312.0430 [astro-ph.CO].
Taylor, P.L., Bernardeau, F., Kitching, T.D., k-cut cosmic shear: Tunable power spectrum sensitivity to test gravity. Phys. Rev. D, 98(8), 2018, 083514 arXiv:1809.03515 [astro-ph.CO].
Barthelemy, A., Codis, S., Uhlemann, C., Bernardeau, F., Gavazzi, R., A nulling strategy for modelling lensing convergence in cones with large deviation theory. Mon. Not. R. Astron. Soc. 492:3 (2020), 3420–3439 arXiv:1909.02615 [astro-ph.CO].
Spergel, D., et al. Wide-field infrarred survey telescope-astrophysics focused telescope assets WFIRST-AFTA 2015 report. 2015 arXiv:1503.03757 [astro-ph.IM].
Ivezić, v., et al., LSST Collaboration. LSST: from science drivers to reference design and anticipated data products. Astrophys. J., 873(2), 2019, 111 arXiv:0805.2366 [astro-ph].
Massey, R., et al. Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation). Mon. Not. R. Astron. Soc., 429, 2013, 661 arXiv:1210.7690 [astro-ph.CO].
Kaiser, N., Squires, G., Broadhurst, T.J., A method for weak lensing observations. Astrophys. J. 449 (1995), 460–475 arXiv:astro-ph/9411005.
Miller, L., Kitching, T.D., Heymans, C., Heavens, A.F., Van Waerbeke, L., Bayesian galaxy shape measurement for weak lensing surveys. 1. Methodology and a fast fitting algorithm. Mon. Not. R. Astron. Soc., 382, 2007, 315 arXiv:0708.2340 [astro-ph].
Bernstein, G.M., Armstrong, R., Bayesian lensing shear measurement. Mon. Not. R. Astron. Soc. 438:2 (2014), 1880–1893 arXiv:1304.1843 [astro-ph.CO].
Mandelbaum, R., Weak lensing for precision cosmology. Ann. Rev. Astron. Astrophys. 56 (2018), 393–433 arXiv:1710.03235 [astro-ph.CO].
Fenech Conti, I., Herbonnet, R., Hoekstra, H., Merten, J., Miller, L., Viola, M., Calibration of weak-lensing shear in the kilo-degree survey. Mon. Not. R. Astron. Soc. 467:2 (2017), 1627–1651 arXiv:1606.05337 [astro-ph.CO].
Huff, E., Mandelbaum, R., Metacalibration: Direct self-calibration of biases in shear measurement. 2017 arXiv:1702.02600 [astro-ph.CO].
MacCrann, N., et al., DES Collaboration. Dark energy survey y3 results: blending shear and redshift biases in image simulations. Mon. Not. R. Astron. Soc. 509:3 (2021), 3371–3394 arXiv:2012.08567 [astro-ph.CO].
Li, X., et al. The three-year shear catalog of the subaru hyper suprime-cam ssp survey. Publ. Astron. Soc. Jap. 74:2 (2022), 421–459–459 arXiv:2107.00136 [astro-ph.CO].
Li, S.-S., et al. KiDS-Legacy calibration: unifying shear and redshift calibration with the SKiLLS multi-band image simulations. Astron. Astrophys., 670, 2023, A100 arXiv:2210.07163 [astro-ph.CO].
Hoekstra, H., Kannawadi, A., Kitching, T.D., Accounting for object detection bias in weak gravitational lensing studies. Astron. Astrophys., 646, 2021, A124 arXiv:2010.04178 [astro-ph.CO].
Kaiser, N., A new shear estimator for weak lensing observations. Astrophys. J., 537, 2000, 555 arXiv:astro-ph/9904003.
Bernstein, G.M., Jarvis, M., Shapes and shears, stars and smears: optimal measurements for weak lensing. Astron. J. 123 (2002), 583–618 arXiv:astro-ph/0107431.
Hirata, C.M., Seljak, U., Shear calibration biases in weak lensing surveys. Mon. Not. R. Astron. Soc. 343 (2003), 459–480 arXiv:astro-ph/0301054.
Hartlap, J., Hilbert, S., Schneider, P., Hildebrandt, H., A bias in cosmic shear from galaxy selection: results from ray-tracing simulations. Astron. Astrophys., 528, 2011, A51 arXiv:1010.0010 [astro-ph.CO].
Heymans, C., et al. The shear Testing programme. 1. Weak lensing analysis of simulated ground-based observations. Mon. Not. R. Astron. Soc. 368 (2006), 1323–1339 arXiv:astro-ph/0506112.
Massey, R., et al. The Shear TEsting Programme 2: Factors affecting high precision weak lensing analyses. Mon. Not. R. Astron. Soc. 376 (2007), 13–38 arXiv:astro-ph/0608643.
Bridle, S., et al. Results of the GREAT08 Challenge: An image analysis competition for cosmological lensing. Mon. Not. R. Astron. Soc., 405, 2010, 2044 arXiv:0908.0945 [astro-ph.CO].
Kitching, T.D., et al. Image analysis for cosmology: results from the GREAT10 star challenge. Astrophys. J. Supp., 205, 2013, 12 arXiv:1210.1979 [astro-ph.IM].
Mandelbaum, R., et al. The third gravitational lensing accuracy testing (GREAT3) challenge handbook. Astrophys. J. Suppl., 212, 2014, 5 arXiv:1308.4982 [astro-ph.CO].
Li, S.-S., et al. KiDS-1000: Cosmology with improved cosmic shear measurements. Astron. Astrophys., 679, 2023, A133 arXiv:2306.11124 [astro-ph.CO].
Newman, J.A., Gruen, D., Photometric redshifts for next-generation surveys. Ann. Rev. Astron. Astrophys. 60 (2022), 363–414 arXiv:2206.13633 [astro-ph.CO].
Salvato, M., Ilbert, O., Hoyle, B., The many flavours of photometric redshifts. Nat. Astron. 3 (2019), 212–222 arXiv:1805.12574 [astro-ph.GA].
Tagliaferri, R., Longo, G., Andreon, S., Capozziello, S., Donalek, C., Giordano, G., Neural networks for photometric redshifts evaluation. Neural Nets. Lecture Notes in Computer Science, Volume 2859. ISBN 978-3-540-20227-1. Springer Berlin Heidelberg, 2003. p. 226-234, 2003, Springer Berlin Heidelberg, Berlin, Heidelberg, 226–234.
Carrasco Kind, M., Brunner, R.J., TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests. Mon. Not. R. Astro. Soc. 432:2 (2013), 1483–1501 arXiv:1303.7269 [astro-ph.CO].
Bonnett, C., Using neural networks to estimate redshift distributions. An application to CFHTLenS. Mon. Not. R. Astro. Soc. 449 (2015), 1043–1056 arXiv:1312.1287 [astro-ph.CO].
Rau, M.M., Seitz, S., Brimioulle, F., Frank, E., Friedrich, O., Gruen, D., Hoyle, B., Accurate photometric redshift probability density estimation - method comparison and application. Mon. Not. R. Astro. Soc. 452:4 (2015), 3710–3725 arXiv:1503.08215 [astro-ph.CO].
Hoyle, B., Measuring photometric redshifts using galaxy images and deep neural networks. Astron. Comput. 16 (2016), 34–40 arXiv:1504.07255 [astro-ph.IM].
Arnouts, S., Cristiani, S., Moscardini, L., Matarrese, S., Lucchin, F., Fontana, A., Giallongo, E., Measuring and modelling the redshift evolution of clustering: the Hubble deep field north. Mon. Not. R. Astro. Soc. 310 (1999), 540–556 arXiv:astro-ph/9902290 [astro-ph].
Ilbert, O., et al. Accurate photometric redshifts for the cfht legacy survey calibrated using the vimos vlt deep survey. Astron. Astrophys. 457 (2006), 841–856 arXiv:astro-ph/0603217.
Feldmann, R., Carollo, C.M., Porciani, C., Lilly, S.J., Capak, P., Taniguchi, Y., Le Fèvre, O., Renzini, A., Scoville, N., Ajiki, M., Aussel, H., Contini, T., McCracken, H., Mobasher, B., Murayama, T., Sanders, D., Sasaki, S., Scarlata, C., Scodeggio, M., Shioya, Y., Silverman, J., Takahashi, M., Thompson, D., Zamorani, G., The Zurich extragalactic bayesian redshift analyzer and its first application: COSMOS. Mon. Not. R. Astro. Soc. 372 (2006), 565–577 arXiv:astro-ph/0609044 [astro-ph].
Greisel, N., Seitz, S., Drory, N., Bender, R., Saglia, R.P., Snigula, J., Photometric redshifts and model spectral energy distributions of galaxies from the SDSS-III BOSS DR10 data. Mon. Not. R. Astro. Soc. 451 (2015), 1848–1867 arXiv:1505.01157.
Leistedt, B., Mortlock, D.J., Peiris, H.V., Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys. Mon. Not. R. Astro. Soc. 460 (2016), 4258–4267 arXiv:1602.05960.
Malz, A.I., Hogg, D.W., How to obtain the redshift distribution from probabilistic redshift estimates. Astrophys. J., 928(2), 2022, 127 arXiv:2007.12178 [astro-ph.CO].
Cunha, C.E., Huterer, D., Lin, H., Busha, M.T., Wechsler, R.H., Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements. Mon. Not. R. Astro. Soc. 444 (2014), 129–146 arXiv:1207.3347 [astro-ph.CO].
Newman, J.A., et al. Spectroscopic needs for imaging dark energy experiments. Astropart. Phys. 63 (2015), 81–100 arXiv:1309.5384 [astro-ph.CO] Erratum: Astropart. Phys. 65 (2015), 112–113.
Masters, D.C., Stern, D.K., Cohen, J.G., Capak, P.L., Rhodes, J.D., Castander, F.J., Paltani, S., The complete calibration of the color-redshift relation (C3R2) survey: Survey overview and data release 1. Astrophys. J., 841(2), 2017, 111 arXiv:1704.06665 [astro-ph.CO].
Masters, D.C., Stern, D.K., Cohen, J.G., Capak, P.L., Stanford, S.A., Hernitschek, N., Galametz, A., Davidzon, I., Rhodes, J.D., Sanders, D., Mobasher, B., Castander, F., Pruett, K., Fotopoulou, S., The complete calibration of the color-redshift relation (C3R2) survey: Analysis and data release 2. Astrophys. J., 877(2), 2019, 81 arXiv:1904.06394 [astro-ph.GA].
Hartley, W.G., et al. The impact of spectroscopic incompleteness in direct calibration of redshift distributions for weak lensing surveys. Mon. Not. R. Astro. Soc. 496:4 (2020), 4769–4786 arXiv:2003.10454 [astro-ph.GA].
Ma, Z., Hu, W., Huterer, D., Effects of photometric redshift uncertainties on weak-lensing tomography. Astrophys. J. 636:1 (2006), 21–29 arXiv:astro-ph/0506614 [astro-ph].
Masters, D., Capak, P., Stern, D., Ilbert, O., Salvato, M., Schmidt, S., Longo, G., Rhodes, J., Paltani, S., Mobasher, B., Hoekstra, H., Hildebrandt, H., Coupon, J., Steinhardt, C., Speagle, J., Faisst, A., Kalinich, A., Brodwin, M., Brescia, M., Cavuoti, S., Mapping the galaxy color-redshift relation: Optimal photometric redshift calibration strategies for cosmology surveys. Astrophys. J., 813, 2015, 53 arXiv:1509.03318 [astro-ph.CO].
Jee, M.J., Tyson, J.A., Schneider, M.D., Wittman, D., Schmidt, S., Hilbert, S., Cosmic shear results from the deep lens survey - I: Joint constraints on omega_m and sigma_8 with a two-dimensional analysis. Astrophys. J., 765, 2013, 74 arXiv:1210.2732 [astro-ph.CO].
Benjamin, J., Van Waerbeke, L., Heymans, C., Kilbinger, M., Erben, T., Hildebrandt, H., Hoekstra, H., Kitching, T.D., Mellier, Y., Miller, L., Rowe, B., Schrabback, T., Simpson, F., Coupon, J., Fu, L., Harnois-Déraps, J., Hudson, M.J., Kuijken, K., Semboloni, E., Vafaei, S., Velander, M., CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions. Mon. Not. R. Astro. Soc. 431 (2013), 1547–1564 arXiv:1212.3327 [astro-ph.CO].
Lima, M., Cunha, C.E., Oyaizu, H., Frieman, J., Lin, H., Sheldon, E.S., Estimating the redshift distribution of photometric galaxy samples. Mon. Not. R. Astro. Soc. 390:1 (2008), 118–130 arXiv:0801.3822 [astro-ph].
Hoyle, B., et al., DES Collaboration. Dark energy survey year 1 results: Redshift distributions of the weak lensing source galaxies. Mon. Not. R. Astron. Soc. 478:1 (2018), 592–610 arXiv:1708.01532 [astro-ph.CO].
Wright, A.H., Hildebrandt, H., van den Busch, J.L., Heymans, C., Photometric redshift calibration with self-organising maps. Astron. Astrophys., 637, 2020, A100 arXiv:1909.09632 [astro-ph.CO].
Hildebrandt, H., van den Busch, J.L., Wright, A.H., Blake, C., Joachimi, B., Kuijken, K., Tröster, T., Asgari, M., Bilicki, M., de Jong, J.T.A., Dvornik, A., Erben, T., Getman, F., Giblin, B., Heymans, C., Kannawadi, A., Lin, C.A., Shan, H.Y., KiDS-1000 catalogue: Redshift distributions and their calibration. Astron. Astrophys., 647, 2021, A124 arXiv:2007.15635 [astro-ph.CO].
Wright, A.H., et al. The fifth data release of the kilo degree survey: Multi-epoch optical/NIR imaging covering wide and legacy-calibration fields. Astron. Astrophys., 686, 2024, A170.
Myles, J., et al. Dark energy survey year 3 results: redshift calibration of the weak lensing source galaxies. Mon. Not. R. Astro. Soc. 505:3 (2021), 4249–4277 arXiv:2012.08566 [astro-ph.CO].
Cawthon, R., et al. Dark energy survey year 3 results: calibration of lens sample redshift distributions using clustering redshifts with BOSS/eBOSS. Mon. Not. R. Astro. Soc. 513:4 (2022), 5517–5539 arXiv:2012.12826 [astro-ph.CO].
Gatti, M., et al. Dark energy survey year 3 results: clustering redshifts - calibration of the weak lensing source redshift distributions with redMaGiC and BOSS/eBOSS. Mon. Not. R. Astro. Soc. 510:1 (2022), 1223–1247 arXiv:2012.08569 [astro-ph.CO].
Rau, M.M., Dalal, R., Zhang, T., Li, X., Nishizawa, A.J., More, S., Mandelbaum, R., Miyatake, H., Strauss, M.A., Takada, M., Weak lensing tomographic redshift distribution inference for the Hyper Suprime-Cam Subaru Strategic Program three-year shape catalogue. Mon. Not. R. Astron. Soc. 524:4 (2023), 5109–5131 arXiv:2211.16516 [astro-ph.CO].
Schneider, M., Knox, L., Zhan, H., Connolly, A., Using galaxy two-point correlation functions to determine the redshift distributions of galaxies binned by photometric redshift. Astrophys. J. 651:1 (2006), 14–23 arXiv:astro-ph/0606098 [astro-ph].
Newman, J.A., Calibrating redshift distributions beyond spectroscopic limits with cross-correlations. Astrophys. J. 684 (2008), 88–101 arXiv:0805.1409 [astro-ph].
Busch, J.L.v.d., et al. KiDS-1000: Cosmic shear with enhanced redshift calibration. Astron. Astrophys., 664, 2022, A170 arXiv:2204.02396 [astro-ph.CO].
Moskowitz, I., Gawiser, E., Crenshaw, J.F., Andrews, B.H., Malz, A.I., Schmidt, S., LSST Dark Energy Science Collaboration. Improving photometric redshift estimates with training sample augmentation. Astrophys. J. Lett., 967(1), 2024, L6 arXiv:2402.15551 [astro-ph.IM].
Zhang, T., Rau, M.M., Mandelbaum, R., Li, X., Moews, B., Photometric redshift uncertainties in weak gravitational lensing shear analysis: models and marginalization. Mon. Not. R. Astron. Soc. 518:1 (2022), 709–723 arXiv:2206.10169 [astro-ph.CO].
van Daalen, M.P., Schaye, J., Booth, C.M., Vecchia, C.D., The effects of galaxy formation on the matter power spectrum: A challenge for precision cosmology. Mon. Not. R. Astron. Soc. 415 (2011), 3649–3665 arXiv:1104.1174 [astro-ph.CO].
Sunseri, J., Li, Z., Liu, J., Effects of baryonic feedback on the cosmic web. Phys. Rev. D, 107(2), 2023, 023514 arXiv:2212.05927 [astro-ph.CO].
Schneider, A., Teyssier, R., Stadel, J., Chisari, N.E., Le Brun, A.M.C., Amara, A., Refregier, A., Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation. J. Cosmol. Astropart. Phys., 2019(3), 2019, 020 arXiv:1810.08629 [astro-ph.CO].
Aricò, G., Angulo, R.E., Hernández-Monteagudo, C., Contreras, S., Zennaro, M., Pellejero-Ibañez, M., Rosas-Guevara, Y., Modelling the large-scale mass density field of the universe as a function of cosmology and baryonic physics. Mon. Not. R. Astro. Soc. 495:4 (2020), 4800–4819 arXiv:1911.08471 [astro-ph.CO].
Schneider, A., Stoira, N., Refregier, A., Weiss, A.J., Knabenhans, M., Stadel, J., Teyssier, R., Baryonic effects for weak lensing. Part I. Power spectrum and covariance matrix. J. Cosmol. Astropart. Phys., 2020(4), 2020, 019 arXiv:1910.11357 [astro-ph.CO].
Sullivan, J.M., Seljak, U.s., Singh, S., An analytic hybrid halo + perturbation theory model for small-scale correlators: baryons, halos, and galaxies. J. Cosmol. Astropart. Phys., 2021(11), 2021, 026 arXiv:2104.10676 [astro-ph.CO].
Le Brun, A.M.C., McCarthy, I.G., Schaye, J., Ponman, T.J., Towards a realistic population of simulated galaxy groups and clusters. Mon. Not. R. Astro. Soc. 441:2 (2014), 1270–1290 arXiv:1312.5462 [astro-ph.CO].
McCarthy, I.G., Bird, S., Schaye, J., Harnois-Deraps, J., Font, A.S., van Waerbeke, L., The BAHAMAS project: the CMB-large-scale structure tension and the roles of massive neutrinos and galaxy formation. Mon. Not. R. Astro. Soc. 476:3 (2018), 2999–3030 arXiv:1712.02411 [astro-ph.CO].
Kaviraj, S., Laigle, C., Kimm, T., Devriendt, J.E.G., Dubois, Y., Pichon, C., Slyz, A., Chisari, E., Peirani, S., The Horizon-AGN simulation: evolution of galaxy properties over cosmic time. Mon. Not. R. Astro. Soc. 467:4 (2017), 4739–4752 arXiv:1605.09379 [astro-ph.GA].
van Daalen, M.P., McCarthy, I.G., Schaye, J., Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra. Mon. Not. R. Astron. Soc. 491:2 (2020), 2424–2446 arXiv:1906.00968 [astro-ph.CO].
Schaye, J., Kugel, R., Schaller, M., Helly, J.C., Braspenning, J., Elbers, W., McCarthy, I.G., van Daalen, M.P., Vandenbroucke, B., Frenk, C.S., Kwan, J., Salcido, J., Bahé, Y.M., Borrow, J., Chaikin, E., Hahn, O., Huško, F., Jenkins, A., Lacey, C.G., Nobels, F.S.J., The FLAMINGO project: cosmological hydrodynamical simulations for large-scale structure and galaxy cluster surveys. Mon. Not. R. Astro. Soc. 526:4 (2023), 4978–5020 arXiv:2306.04024 [astro-ph.CO].
Chisari, N.E., et al. Modelling baryonic feedback for survey cosmology. Open J. Astrophys., 2(1), 2019, 4 arXiv:1905.06082 [astro-ph.CO].
Schneider, A., Teyssier, R., A new method to quantify the effects of baryons on the matter power spectrum. J. Cosmol. Astropart. Phys., 2015(12), 2015 049–049, arXiv:1510.06034 [astro-ph.CO].
Moran, K.R., Heitmann, K., Lawrence, E., Habib, S., Bingham, D., Upadhye, A., Kwan, J., Higdon, D., Payne, R., The Mira–Titan Universe – IV. High-precision power spectrum emulation. Mon. Not. R. Astron. Soc. 520:3 (2023), 3443–3458 arXiv:2207.12345 [astro-ph.CO].
Chisari, N.E., et al., LSST Dark Energy Science Collaboration. Core cosmology library: precision cosmological predictions for LSST. Astrophys. J. Suppl., 242(1), 2019, 2 arXiv:1812.05995 [astro-ph.CO].
Šarčević, N., Modelling and mitigating the systematics in weak lensing measurements. 2024, 10.5281/zenodo.14602273.
Aricò, G., Angulo, R.E., Zennaro, M., Contreras, S., Chen, A., Hernández-Monteagudo, C., DES Y3 cosmic shear down to small scales: Constraints on cosmology and baryons. Astron. Astrophys., 678, 2023, A109 arXiv:2303.05537 [astro-ph.CO].
Fedeli, C., The clustering of baryonic matter. I: a halo-model approach. J. Cosmol. Astropart. Phys., 2014(4), 2014, 028 arXiv:1401.2997 [astro-ph.CO].
Huang, H.-J., Eifler, T., Mandelbaum, R., Dodelson, S., Modelling baryonic physics in future weak lensing surveys. Mon. Not. R. Astron. Soc. 488:2 (2019), 1652–1678 arXiv:1809.01146 [astro-ph.CO].
Broxterman, J.C., et al. The FLAMINGO project: baryonic impact on weak gravitational lensing convergence peak counts. Mon. Not. R. Astron. Soc. 529:3 (2024), 2309–2326 arXiv:2312.08450 [astro-ph.CO].
Foreman, S., Coulton, W., Villaescusa-Navarro, F., Barreira, A., Baryonic effects on the matter bispectrum. Mon. Not. R. Astron. Soc. 498:2 (2020), 2887–2911 arXiv:1910.03597 [astro-ph.CO].
Martinet, N., Castro, T., Harnois-Déraps, J., Jullo, E., Giocoli, C., Dolag, K., Impact of baryons in cosmic shear analyses with tomographic aperture mass statistics. Astron. Astrophys., 648, 2021, A115 arXiv:2012.09614 [astro-ph.CO].
Lu, T., Haiman, Z., The impact of baryons on cosmological inference from weak lensing statistics. Mon. Not. R. Astron. Soc. 506:3 (2021), 3406–3417 arXiv:2104.04165 [astro-ph.CO].
Semboloni, E., Hoekstra, H., Schaye, J., Effect of baryonic feedback on two- and three-point shear statistics: prospects for detection and improved modelling. Mon. Not. R. Astron. Soc., 434, 2013, 148 arXiv:1210.7303 [astro-ph.CO].
Elbers, W., et al. The FLAMINGO project: the coupling between baryonic feedback and cosmology in light of the S8 tension. Mon. Not. R. Astron. Soc. 537:2 (2025), 2160–2178 arXiv:2403.12967 [astro-ph.CO].
Bigwood, L., et al., DES Collaboration. Weak lensing combined with the kinetic Sunyaev–Zel'dovich effect: a study of baryonic feedback. Mon. Not. R. Astron. Soc. 534:1 (2024), 655–682 arXiv:2404.06098 [astro-ph.CO].
Khrykin, I.S., et al. FLIMFLAM DR1: The first constraints on the cosmic baryon distribution from eight fast radio burst sight lines. Astrophys. J., 973(2), 2024, 151 arXiv:2402.00505 [astro-ph.GA].
Amon, A., et al. Consistent lensing and clustering in a low-S8 universe with BOSS, DES Year 3, HSC Year 1, and KiDS-1000. Mon. Not. R. Astro. Soc. 518:1 (2023), 477–503 arXiv:2202.07440 [astro-ph.CO].
Lee, K.-G., Ata, M., Khrykin, I.S., Huang, Y., Prochaska, J.X., Cooke, J., Zhang, J., Batten, A., Constraining the cosmic baryon distribution with fast radio burst foreground mapping. Astrophys. J., 928(1), 2022, 9 arXiv:2109.00386 [astro-ph.CO].
García-García, C., Zennaro, M., Aricò, G., Alonso, D., Angulo, R.E., Cosmic shear with small scales: DES-Y3, KiDS-1000 and HSC-DR1. JCAP, 08, 2024, 024 arXiv:2403.13794 [astro-ph.CO].
Terasawa, R., et al. Exploring the baryonic effect signature in the hyper suprime-cam year 3 cosmic shear two-point correlations on small scales: The S8 tension remains present. Phys. Rev. D, 111(6), 2025, 063509 arXiv:2403.20323 [astro-ph.CO].
Amon, A., Efstathiou, G., A non-linear solution to the S8 tension?. Mon. Not. R. Astron. Soc. 516:4 (2022), 5355–5366 arXiv:2206.11794 [astro-ph.CO].
Nishimichi, T., et al. Dark Quest. I. Fast and accurate emulation of halo clustering statistics and its application to galaxy clustering. Astrophys. J., 884, 2019, 29 arXiv:1811.09504 [astro-ph.CO].
Amodeo, S., et al. Atacama cosmology telescope: modeling the gas thermodynamics in BOSS CMASS galaxies from kinematic and thermal Sunyaev-Zel'dovich measurements. Phys. Rev. D, 103(6), 2021, 063514 arXiv:Amodeo:2020mmu [astro-ph.CO] Erratum: Phys. Rev. D, 107, 2023, 063514.
Lamman, C., Tsaprazi, E., Shi, J., Šarčević, N.N., Pyne, S., Legnani, E., Ferreira, T., The Ia guide: A breakdown of intrinsic alignment formalisms. 2023, 10.21105/astro.2309.08605 arXiv:2309.08605 [astro-ph.CO].
Troxel, M.A., Ishak, M., The intrinsic alignment of galaxies and its impact on weak gravitational lensing in an era of precision cosmology. Phys. Rep. 558 (2014), 1–59 arXiv:1407.6990 [astro-ph.CO].
Prat, J., Zuntz, J., Chang, C., Tröster, T., Pedersen, E., García-García, C., Phillips-Longley, E., Sanchez, J., Alonso, D., Fang, X., Gawiser, E., Heitmann, K., Ishak, M., Jarvis, M., Kovacs, E., Larsen, P., Mao, Y.Y., Medina Varela, L., Paterno, M., Vitenti, S.D., Zhang, Z., LSST Dark Energy Science Collaboration, The catalog-to-cosmology framework for weak lensing and galaxy clustering for LSST. Open J. Astrophys., 6, 2023, 13 arXiv:2212.09345 [astro-ph.CO].
Sánchez, C., et al., DES Collaboration. Dark energy survey year 3 results: Exploiting small-scale information with lensing shear ratios. Phys. Rev. D, 105(8), 2022, 083529 arXiv:2105.13542 [astro-ph.CO].
Bridle, S., King, L., Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements. New J. Phys., 9, 2007, 444 arXiv:0705.0166 [astro-ph].
Samuroff, S., Mandelbaum, R., Blazek, J., Advances in constraining intrinsic alignment models with hydrodynamic simulations. Mon. Not. R. Astron. Soc. 508:1 (2021), 637–664 arXiv:2009.10735 [astro-ph.CO].
Samuroff, S., et al., DES Collaboration. The Dark Energy Survey Year 3 and eBOSS: constraining galaxy intrinsic alignments across luminosity and colour space. Mon. Not. R. Astron. Soc. 524:2 (2023), 2195–2223 arXiv:2212.11319 [astro-ph.CO].
Hoffmann, K., et al., DES Collaboration. Modeling intrinsic galaxy alignment in the MICE simulation. Phys. Rev. D, 106(12), 2022, 123510 arXiv:2206.14219 [astro-ph.CO].
Fortuna, M.C., Hoekstra, H., Joachimi, B., Johnston, H., Chisari, N.E., Georgiou, C., Mahony, C., The halo model as a versatile tool to predict intrinsic alignments. Mon. Not. R. Astron. Soc. 501:2 (2021), 2983–3002 arXiv:2003.02700 [astro-ph.CO].
Bakx, T., Kurita, T., Chisari, N.E., Vlah, Z., Schmidt, F., Effective field theory of intrinsic alignments at one loop order: a comparison to dark matter simulations. J. Cosmol. Astropart. Phys., 10, 2023, 005 arXiv:2303.15565 [astro-ph.CO].
Leonard, C.D., Rau, M.M., Mandelbaum, R., Photometric redshifts and intrinsic alignments: Degeneracies and biases in the 3×2pt analysis. Phys. Rev. D, 109(8), 2024, 083528 arXiv:2401.06060 [astro-ph.CO].
Šarčević, N., Leonard, C.D., Rau, M.M., LSST Dark Energy Science Collaboration. Joint modelling of astrophysical systematics for cosmology with LSST cosmic shear. 2024 arXiv:2406.03352 [astro-ph.CO].
Campos, A., Samuroff, S., Mandelbaum, R., An empirical approach to model selection: weak lensing and intrinsic alignments. Mon. Not. R. Astron. Soc. 525:2 (2023), 1885–1901 arXiv:2211.02800 [astro-ph.CO].
Merkel, P.M., Schäfer, B.M., A theoretical estimate of intrinsic ellipticity bispectra induced by angular momenta alignments. Mon. Not. R. Astron. Soc. 445:3 (2014), 2918–2929 arXiv:1409.5197 [astro-ph.CO].
Burger, P.A., et al. KiDS-1000 cosmology: Combined second- and third-order shear statistics. Astron. Astrophys., 683, 2024, A103 arXiv:2309.08602 [astro-ph.CO].
Barthelemy, A., Halder, A., Gong, Z., Uhlemann, C., Making the leap. Part I. Modelling the reconstructed lensing convergence PDF from cosmic shear with survey masks and systematics. J. Cosmol. Astropart. Phys., 03, 2024, 060 arXiv:2307.09468 [astro-ph.CO].
Harnois-Déraps, J., Martinet, N., Reischke, R., Cosmic shear beyond 2-point statistics: Accounting for galaxy intrinsic alignment with projected tidal fields. Mon. Not. R. Astron. Soc., 509, 2022 3868–3868, arXiv:2107.08041 [astro-ph.CO].
Gatti, M., et al., DES Collaboration. Detection of the significant impact of source clustering on higher order statistics with DES Year 3 weak gravitational lensing data. Mon. Not. R. Astron. Soc. 527:1 (2024), L115–L121 arXiv:2307.13860 [astro-ph.CO].
Linke, L., et al., KiDS-1000, Euclid Collaboration. Euclid and KiDS-1000: Quantifying the impact of source-lens clustering on cosmic shear analyses. Astron. Astrophys., 693, 2025, A210 arXiv:2407.09810 [astro-ph.CO].
Krause, E., Eifler, T., Blazek, J., The impact of intrinsic alignment on current and future cosmic shear surveys. Mon. Not. R. Astron. Soc. 456:1 (2016), 207–222 arXiv:1506.08730 [astro-ph.CO].
Samuroff, S., et al., DES Collaboration. Dark energy survey year 1 results: constraints on intrinsic alignments and their colour dependence from galaxy clustering and weak lensing. Mon. Not. R. Astron. Soc. 489:4 (2019), 5453–5482 arXiv:1811.06989 [astro-ph.CO].
Muir, J., et al., DES Collaboration. Blinding multiprobe cosmological experiments. Mon. Not. R. Astron. Soc. 494:3 (2020), 4454–4470 arXiv:1911.05929 [astro-ph.CO].
Allen, S.W., Evrard, A.E., Mantz, A.B., Cosmological parameters from observations of galaxy clusters. Ann. Rev. Astron. Astrophys. 49 (2011), 409–470 arXiv:1103.4829 [astro-ph.CO].
Press, W.H., Schechter, P., Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation. Astrophys. J. 187 (1974), 425–438.
Sheth, R.K., Tormen, G., Large scale bias and the peak background split. Mon. Not. R. Astron. Soc., 308, 1999, 119 arXiv:astro-ph/9901122.
Jenkins, A., Frenk, C.S., White, S.D.M., Colberg, J.M., Cole, S., Evrard, A.E., Couchman, H.M.P., Yoshida, N., The Mass function of dark matter halos. Mon. Not. R. Astron. Soc., 321, 2001, 372 arXiv:astro-ph/0005260.
Tinker, J.L., Kravtsov, A.V., Klypin, A., Abazajian, K., Warren, M.S., Yepes, G., Gottlober, S., Holz, D.E., Toward a halo mass function for precision cosmology: The Limits of universality. Astrophys. J. 688 (2008), 709–728 arXiv:0803.2706 [astro-ph].
Watson, W.A., Iliev, I.T., D'Aloisio, A., Knebe, A., Shapiro, P.R., Yepes, G., The halo mass function through the cosmic ages. Mon. Not. R. Astron. Soc., 433, 2013, 1230 arXiv:1212.0095 [astro-ph.CO].
Despali, G., Giocoli, C., Angulo, R.E., Tormen, G., Sheth, R.K., Baso, G., Moscardini, L., The universality of the virial halo mass function and models for non-universality of other halo definitions. Mon. Not. R. Astron. Soc. 456:3 (2016), 2486–2504 arXiv:1507.05627 [astro-ph.CO].
Kaiser, N., Evolution and clustering of rich clusters. Mon. Not. R. Astron. Soc. 222 (1986), 323–345.
Truong, N., et al. Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution. Mon. Not. R. Astron. Soc. 474:3 (2018), 4089–4111 arXiv:1607.00019 [astro-ph.CO].
Pop, A.-R., et al. Sunyaev-Zel'dovich effect and X-ray scaling relations of galaxies, groups and clusters in the IllustrisTNG simulations. 2022 arXiv:2205.11528 [astro-ph.GA].
Pellissier, A., Hahn, O., Ferrari, C., Rhapsody-C simulations – Anisotropic thermal conduction, black hole physics, and the robustness of massive galaxy cluster scaling relations. Mon. Not. R. Astron. Soc. 522:1 (2023), 721–749 arXiv:2301.02684 [astro-ph.CO].
Braspenning, J., et al. The FLAMINGO project: galaxy clusters in comparison to X-ray observations. Mon. Not. R. Astron. Soc. 533:3 (2024), 2656–2676 arXiv:2312.08277 [astro-ph.GA].
Mantz, A.B., et al. Weighing the giants – IV. Cosmology and neutrino mass. Mon. Not. R. Astron. Soc. 446 (2015), 2205–2225 arXiv:1407.4516 [astro-ph.CO].
Bocquet, S., et al., SPT Collaboration. Mass calibration and cosmological analysis of the SPT-SZ galaxy cluster sample using velocity dispersion σv and X-ray YX measurements. Astrophys. J., 799(2), 2015, 214 arXiv:1407.2942 [astro-ph.CO].
Bocquet, S., et al., SPT Collaboration. Cluster cosmology constraints from the 2500 deg2 SPT-SZ survey: inclusion of weak gravitational lensing data from magellan and the hubble space telescope. Astrophys. J., 878(1), 2019, 55 arXiv:1812.01679 [astro-ph.CO].
Chiu, I.-N., Klein, M., Mohr, J., Bocquet, S., Cosmological constraints from galaxy clusters and groups in the eROSITA final equatorial depth survey. Mon. Not. R. Astron. Soc. 522:2 (2023), 1601–1642 arXiv:2207.12429 [astro-ph.CO].
Bocquet, S., et al., DES, SPT Collaboration. SPT clusters with DES and HST weak lensing. I. Cluster lensing and Bayesian population modeling of multiwavelength cluster datasets. Phys. Rev. D, 110(8), 2024, 083509 arXiv:2310.12213 [astro-ph.CO].
Bocquet, S., et al., SPT, DES Collaboration. SPT clusters with DES and HST weak lensing. II. Cosmological constraints from the abundance of massive halos. Phys. Rev. D, 110(8), 2024, 083510 arXiv:2401.02075 [astro-ph.CO].
Ghirardini, V., et al. The SRG/eROSITA all-sky survey: Cosmology constraints from cluster abundances in the western Galactic hemisphere. Astron. Astrophys., 689, 2024, A298 arXiv:2402.08458 [astro-ph.CO].
Pacaud, F., et al., XXL Collaboration. The XXL Survey: XXV. Cosmological analysis of the C1 cluster number counts. Astron. Astrophys., 620, 2018, A10 arXiv:1810.01624 [astro-ph.CO].
Costanzi, M., et al., DES Collaboration. Modelling projection effects in optically selected cluster catalogues. Mon. Not. R. Astron. Soc. 482:1 (2019), 490–505 arXiv:1807.07072 [astro-ph.CO].
Abbott, T.M.C., et al., DES Collaboration. Dark Energy Survey Year 1 Results: Cosmological constraints from cluster abundances and weak lensing. Phys. Rev. D, 102(2), 2020, 023509 arXiv:2002.11124 [astro-ph.CO].
To, C., et al., DES Collaboration. Dark energy survey year 1 results: cosmological constraints from cluster abundances, weak lensing, and galaxy correlations. Phys. Rev. Lett., 126, 2021, 141301 arXiv:2010.01138 [astro-ph.CO].
Garrel, C., et al. The XXL survey - XLVI. Forward cosmological analysis of the C1 cluster sample. Astron. Astrophys., 663, 2022, A3 arXiv:2109.13171 [astro-ph.CO].
Lesci, G.F., et al. AMICO galaxy clusters in KiDS-DR3: Cosmological constraints from counts and stacked weak lensing. Astron. Astrophys., 659, 2022, A88 arXiv:2012.12273 [astro-ph.CO].
Park, Y., Sunayama, T., Takada, M., Kobayashi, Y., Miyatake, H., More, S., Nishimichi, T., Sugiyama, S., Cluster cosmology with anisotropic boosts: validation of a novel forward modelling analysis and application on SDSS redMaPPer clusters. Mon. Not. R. Astron. Soc. 518:4 (2022), 5171–5189 arXiv:2112.09059 [astro-ph.CO].
Sunayama, T., et al. Optical cluster cosmology with SDSS redMaPPer clusters and HSC-Y3 lensing measurements. Phys. Rev. D, 110(8), 2024, 083511 arXiv:2309.13025 [astro-ph.CO].
Voges, W., et al. The ROSAT all - sky survey bright source catalogue. Astron. Astrophys., 349, 1999, 389 arXiv:astro-ph/9909315.
Borgani, S., Rosati, P., Tozzi, P., Norman, C., Cosmological constraints from the rosat deep cluster survey. Astrophys. J., 517, 1999, 40 arXiv:astro-ph/9901017.
Piffaretti, R., Arnaud, M., Pratt, G.W., Pointecouteau, E., Melin, J.B., The MCXC: a Meta-Catalogue of X-ray detected Clusters of galaxies. Astron. Astrophys., 534, 2011, A109 arXiv:1007.1916 [astro-ph.CO].
Borgani, S., Rosati, P., Tozzi, P., Stanford, S.A., Eisenhardt, P.E., Lidman, C., Holden, B., Della Ceca, R., Norman, C., Squires, G., Measuring omega_m with the rosat deep cluster survey. Astrophys. J. 561 (2001), 13–21 arXiv:astro-ph/0106428.
Bohringer, H., et al. The representative XMM-newton cluster structure survey (REXCESS) of an X-ray luminosity selected galaxy cluster sample. Astron. Astrophys. 469 (2007), 363–377 arXiv:astro-ph/0703553.
Reiprich, T.H., Boehringer, H., The Mass function of an X-ray flux-limited sample of galaxy clusters. Astrophys. J. 567 (2002), 716–740 arXiv:astro-ph/0111285.
Schellenberger, G., Reiprich, T.H., HICOSMO – cosmology with a complete sample of galaxy clusters – I. Data analysis, sample selection and luminosity–mass scaling relation. Mon. Not. R. Astron. Soc. 469:3 (2017), 3738–3761 arXiv:1705.05842 [astro-ph.CO].
Vikhlinin, A., et al. Chandra cluster cosmology project III: cosmological parameter constraints. Astrophys. J. 692 (2009), 1060–1074 arXiv:0812.2720 [astro-ph].
Pierre, M., et al. The XXL Survey - I. Scientific motivations − XMM-Newton observing plan − Follow-up observations and simulation programme. Astron. Astrophys., 592, 2016, A1 arXiv:1512.04317 [astro-ph.CO].
Sunyaev, R.A., Zeldovich, Y.B., The Observations of relic radiation as a test of the nature of X-Ray radiation from the clusters of galaxies. Comments Astrophys. Space Phys. 4 (1972), 173–178.
Mroczkowski, T., et al. Astrophysics with the spatially and spectrally resolved sunyaev-zeldovich effects: a millimetre/submillimetre probe of the warm and hot universe. Space Sci. Rev., 215(1), 2019, 17 arXiv:1811.02310 [astro-ph.CO].
Kravtsov, A.V., Vikhlinin, A., Nagai, D., A new robust low-scatter x-ray mass indicator for clusters of galaxies. Astrophys. J. 650 (2006), 128–136 arXiv:astro-ph/0603205.
Nagai, D., Kravtsov, A.V., Vikhlinin, A., Effects of galaxy formation on thermodynamics of the intracluster medium. Astrophys. J. 668 (2007), 1–14 arXiv:astro-ph/0703661.
Arnaud, M., Pointecouteau, E., Pratt, G.W., Calibration of the galaxy cluster M_500-Y_X relation with XMM-Newton. Astron. Astrophys., 474, 2007, L37 arXiv:0709.1561 [astro-ph].
Marrone, D.P., et al. LoCuSS: the Sunyaev-Zel'dovich effect and weak lensing mass scaling relation. Astrophys. J., 754, 2012, 119 arXiv:1107.5115 [astro-ph.CO].
Ade, P.A.R., et al., Planck Collaboration. Planck Early Results XI: Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations. Astron. Astrophys., 536, 2011, A11 arXiv:1101.2026 [astro-ph.CO].
Ade, P.A.R., et al., Planck Collaboration. Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources. Astron. Astrophys., 571, 2014, A29 arXiv:1303.5089 [astro-ph.CO].
Williamson, R., et al. An SZ-selected sample of the most massive galaxy clusters in the 2500-square-degree South Pole Telescope survey. Astrophys. J., 738, 2011, 139 arXiv:1101.1290 [astro-ph.CO].
Bleem, L.E., et al., SPT Collaboration. Galaxy Clusters Discovered via the Sunyaev-Zel'dovich Effect in the 2500-square-degree SPT-SZ survey. Astrophys. J. Suppl., 216(2), 2015, 27 arXiv:1409.0850 [astro-ph.CO].
Bleem, L.E., et al., SPT, DES Collaboration. Galaxy clusters discovered via the thermal Sunyaev-Zel'dovich effect in the 500-square-degree SPTpol survey. Open J. Astrophys., 7, 2024 astro.2311.07512, arXiv:2311.07512 [astro-ph.CO].
Hasselfield, M., et al. The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxyclusters at 148 GHz from three seasons of data. J. Cosmol. Astropart. Phys., 07, 2013, 008 arXiv:1301.0816 [astro-ph.CO].
Hilton, M., et al., ACT, DES Collaboration. The atacama cosmology telescope: a catalog of >4000 Sunyaev–Zel'dovich galaxy clusters. Astrophys. J. Suppl., 253(1), 2021, 3 arXiv:2009.11043 [astro-ph.CO].
Abell, G.O., Corwin, H.G. Jr., Olowin, R.P., A Catalog of rich clusters of galaxies. Astrophys. J. Suppl., 70, 1989, 1.
Koester, B., et al., SDSS Collaboration. A MaxBCG catalog of 13,823 galaxy clusters from the sloan digital sky survey. Astrophys. J. 660 (2007), 239–255 arXiv:astro-ph/0701265.
Rykoff, E.S., et al., SDSS Collaboration. REDMAPPER I: algorithm and SDSS DR8 catalog. Astrophys. J., 785, 2014, 104 arXiv:1303.3562 [astro-ph.CO].
Oguri, M., A cluster finding algorithm based on the multiband identification of red sequence galaxies. Mon. Not. R. Astron. Soc. 444:1 (2014), 147–161 arXiv:1407.4693 [astro-ph.CO].
Haines, C.P., et al. LoCuSS: The slow quenching of star formation in cluster galaxies and the need for pre-processing. Astrophys. J., 806(1), 2015, 101 arXiv:1504.05604 [astro-ph.GA].
Lopes, P.A.A., Ribeiro, A.L.B., Rembold, S.B., NoSOCS in SDSS – IV. The role of environment beyond the extent of galaxy clusters. Mon. Not. R. Astron. Soc. 437:3 (2014), 2430–2447 arXiv:1310.6309 [astro-ph.CO].
Sarron, F., Martinet, N., Durret, F., Adami, C., Evolution of the cluster optical galaxy luminosity function in the CFHTLS: breaking the degeneracy between mass and redshift. Astron. Astrophys., 613, 2018, A67 arXiv:1712.09481 [astro-ph.GA].
Adam, R., et al., Euclid Collaboration. Euclid preparation. III. Galaxy cluster detection in the wide photometric survey, performance and algorithm selection. Astron. Astrophys., 627(627), 2019, A23 arXiv:1906.04707 [astro-ph.CO].
Costanzi, M., et al., DES Collaboration. Methods for cluster cosmology and application to the SDSS in preparation for DES Year 1 release. Mon. Not. R. Astron. Soc. 488:4 (2019), 4779–4800 arXiv:1810.09456 [astro-ph.CO].
Wen, Z.L., Han, J.L., Clusters of galaxies up to z=1.5 identified from photometric data of the Dark Energy Survey and unWISE. Mon. Not. R. Astron. Soc. 513:3 (2022), 3946–3959 arXiv:2204.11215 [astro-ph.CO].
Maturi, M., Bellagamba, F., Radovich, M., Roncarelli, M., Sereno, M., Moscardini, L., Bardelli, S., Puddu, E., AMICO galaxy clusters in KiDS-DR3: sample properties and selection function. Mon. Not. R. Astron. Soc., 485, 2019, 498 arXiv:1810.02811 [astro-ph.CO].
Oguri, M., et al. An optically-selected cluster catalog at redshift 0.1< z< 1.1 from the Hyper Suprime-Cam Subaru Strategic Program S16A data. Publ. Astron. Soc. Jap., 70, 2018, S20 arXiv:1701.00818 [astro-ph.CO].
Wen, Z.L., Han, J.L., A catalog of 1.58 million clusters of galaxies identified from the DESI legacy imaging surveys. Astrophys. J. Suppl., 272(2), 2024, 39 arXiv:2404.02002 [astro-ph.CO].
Simet, M., McClintock, T., Mandelbaum, R., Rozo, E., Rykoff, E., Sheldon, E., Wechsler, R.H., Weak lensing measurement of the mass–richness relation of SDSS redMaPPer clusters. Mon. Not. R. Astron. Soc. 466:3 (2017), 3103–3118 arXiv:1603.06953 [astro-ph.CO].
McClintock, T., et al., DES Collaboration. Dark energy survey year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters. Mon. Not. R. Astron. Soc. 482:1 (2019), 1352–1378 arXiv:1805.00039 [astro-ph.CO].
Ge, C., Sun, M., Rozo, E., Sehgal, N., Vikhlinin, A., Forman, W., Jones, C., Nagai, D., X-ray scaling relations from a complete sample of the richest maxBCG clusters. Mon. Not. R. Astron. Soc. 484:2 (2019), 1946–1971 arXiv:1803.05007 [astro-ph.GA].
Wetzell, V., et al., DES Collaboration. Velocity dispersions of clusters in the Dark Energy Survey Y3 redMaPPer catalogue. Mon. Not. R. Astron. Soc. 514:4 (2022), 4696–4717 arXiv:2107.07631 [astro-ph.CO].
Miyazaki, S., et al. A large sample of shear selected clusters from the Hyper Suprime-Cam Subaru Strategic Program S16A wide field mass maps. Publ. Astron. Soc. Jap., 70, 2018, S27 arXiv:1802.10290 [astro-ph.CO].
Chen, K.-F., et al. Weak-lensing shear-selected galaxy clusters from the hyper suprime-cam subaru strategic program: I. Cluster catalog, selection function and mass–observable relation. 2024 arXiv:2406.11966 [astro-ph.CO].
Leroy, G., Pires, S., Pratt, G.W., Giocoli, C., Fast multi-scale galaxy cluster detection with weak lensing: Towards a mass-selected sample. Astron. Astrophys., 678, 2023, A125 arXiv:2304.01812 [astro-ph.CO].
Ramos-Ceja, M.E., et al. The eROSITA Final Equatorial-Depth Survey (eFEDS) - A complete census of X-ray properties of Subaru Hyper Suprime-Cam weak lensing shear-selected clusters in the eFEDS footprint. Astron. Astrophys., 661, 2022, A14 arXiv:2109.07836 [astro-ph.CO].
Chiu, I.-N., et al. Weak-lensing shear-selected galaxy clusters from the hyper suprime-cam subaru strategic program: II. Cosmological constraints from the cluster abundance. 2024 arXiv:2406.11970 [astro-ph.CO].
Chen, K.-F., Oguri, M., Lin, Y.-T., Miyazaki, S., Mass bias of weak lensing shear-selected galaxy cluster samples. Astrophys. J., 891(2), 2020, 139 arXiv:1911.11480 [astro-ph.GA].
Wu, H.-Y., et al., DES Collaboration. Optical selection bias and projection effects in stacked galaxy cluster weak lensing. Mon. Not. R. Astron. Soc. 515:3 (2022), 4471–4486 arXiv:2203.05416 [astro-ph.CO].
Grandis, S., et al., DES, eROSITA-DE Collaboration. The SRG/eROSITA All-Sky Survey - Dark Energy Survey year 3 weak gravitational lensing by eRASS1 selected galaxy clusters. Astron. Astrophys., 687, 2024, A178 arXiv:2402.08455 [astro-ph.CO].
Hoekstra, H., How well can we determine cluster mass profiles from weak lensing?. Mon. Not. R. Astron. Soc., 339, 2003, 1155 arXiv:astro-ph/0208351.
Gruen, D., Seitz, S., Becker, M.R., Friedrich, O., Mana, A., Cosmic variance of the galaxy cluster weak lensing signal. Mon. Not. R. Astron. Soc. 449:4 (2015), 4264–4276 arXiv:1501.01632 [astro-ph.CO].
Applegate, D.E., von der Linden, A., Kelly, P.L., Allen, M.T., Allen, S.W., Burchat, P.R., Burke, D.L., Ebeling, H., Mantz, A., Morris, R.G., Weighing the Giants – III. Methods and measurements of accurate galaxy cluster weak-lensing masses. Mon. Not. R. Astron. Soc. 439:1 (2014), 48–72 arXiv:1208.0605 [astro-ph.CO].
Dietrich, J.P., et al., SPT Collaboration. Sunyaev–Zel'dovich effect and X-ray scaling relations from weak lensing mass calibration of 32 South Pole Telescope selected galaxy clusters. Mon. Not. R. Astron. Soc. 483:3 (2019), 2871–2906 arXiv:1711.05344 [astro-ph.CO].
Grandis, S., Bocquet, S., Mohr, J.J., Klein, M., Dolag, K., Calibration of bias and scatter involved in cluster mass measurements using optical weak gravitational lensing. Mon. Not. R. Astron. Soc. 507:4 (2021), 5671–5689 arXiv:2103.16212 [astro-ph.CO].
Becker, M.R., Kravtsov, A.V., On the accuracy of weak lensing cluster mass reconstructions. Astrophys. J., 740, 2011, 25 arXiv:1011.1681 [astro-ph.CO].
Bahe, Y.M., McCarthy, I.G., King, L.J., Mock weak lensing analysis of simulated galaxy clusters: bias and scatter in mass and concentration. Mon. Not. R. Astron. Soc. 421 (2012), 1073–1088 arXiv:1106.2046 [astro-ph.CO].
Giocoli, C., et al., Euclid Collaboration. Euclid preparation - XXXII. Evaluating the weak-lensing cluster mass biases using the Three Hundred Project hydrodynamical simulations. Astron. Astrophys., 681, 2024, A67 arXiv:2302.00687 [astro-ph.CO].
Chiu, I.-N., et al. The eROSITA Final Equatorial-Depth Survey (eFEDS) - X-ray observable-to-mass-and-redshift relations of galaxy clusters and groups with weak-lensing mass calibration from the Hyper Suprime-Cam Subaru Strategic Program survey. Astron. Astrophys., 661, 2022, A11 arXiv:2107.05652 [astro-ph.CO].
Kleinebreil, F., et al. The SRG/eROSITA All-Sky Survey - Weak lensing of eRASS1 galaxy clusters in KiDS-1000 and consistency checks with DES Y3 and HSC-Y3. Astron. Astrophys., 695, 2025, A216 arXiv:2402.08456 [astro-ph.CO].
Bellagamba, F., et al. AMICO galaxy clusters in KiDS-DR3: weak-lensing mass calibration. Mon. Not. R. Astron. Soc. 484:2 (2019), 1598–1615 arXiv:1810.02827 [astro-ph.CO].
Cui, W., Borgani, S., Dolag, K., Murante, G., Tornatore, L., The effects of baryons on the halo mass function. Mon. Not. R. Astron. Soc., 423, 2012, 2279 arXiv:1111.3066 [astro-ph.CO].
Bocquet, S., Saro, A., Dolag, K., Mohr, J.J., Halo mass function: Baryon impact, fitting formulae and implications for cluster cosmology. Mon. Not. R. Astron. Soc. 456:3 (2016), 2361–2373 arXiv:1502.07357 [astro-ph.CO].
Castro, T., Borgani, S., Dolag, K., Marra, V., Quartin, M., Saro, A., Sefusatti, E., On the impact of baryons on the halo mass function, bias, and cluster cosmology. Mon. Not. R. Astron. Soc. 500:2 (2020), 2316–2335 arXiv:2009.01775 [astro-ph.CO].
Costanzi, M., et al., DES, SPT Collaboration. Cosmological constraints from DES Y1 cluster abundances and SPT multiwavelength data. Phys. Rev. D, 103(4), 2021, 043522 arXiv:2010.13800 [astro-ph.CO].
Mpetha, C.T., et al. Cosmology from UNIONS weak lensing profiles of galaxy clusters. 2025 arXiv:2501.09147 [astro-ph.CO].
Mantz, A.B., et al., SPT Collaboration. Cosmological constraints from gas mass fractions of massive, relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 510:1 (2021), 131–145 arXiv:2111.09343 [astro-ph.CO].
Kopp, M., Appleby, S.A., Achitouv, I., Weller, J., Spherical collapse and halo mass function in f(R) theories. Phys. Rev. D, 88(8), 2013, 084015 arXiv:1306.3233 [astro-ph.CO].
Hagstotz, S., Costanzi, M., Baldi, M., Weller, J., Joint halo-mass function for modified gravity and massive neutrinos – I. Simulations and cosmological forecasts. Mon. Not. R. Astron. Soc. 486:3 (2019), 3927–3941 arXiv:1806.07400 [astro-ph.CO].
Gupta, S., Hellwing, W.A., Bilicki, M., García-Farieta, J.E., Universality of the halo mass function in modified gravity cosmologies. Phys. Rev. D, 105(4), 2022, 043538 arXiv:2112.03699 [astro-ph.CO].
Sereno, M., Veropalumbo, A., Marulli, F., Covone, G., Moscardini, L., Cimatti, A., New constraints on σ8 from a joint analysis of stacked gravitational lensing and clustering of galaxy clusters. Mon. Not. R. Astron. Soc. 449:4 (2015), 4147–4161 arXiv:1410.5438 [astro-ph.CO].
Marulli, F., Veropalumbo, A., García-Farieta, J.E., Moresco, M., Moscardini, L., Cimatti, A., C3 cluster clustering cosmology I. New constraints on the cosmic growth rate at z ∼ 0.3 from redshift-space clustering anisotropies. Astrophys. J., 920(1), 2021, 13 arXiv:2010.11206 [astro-ph.CO].
Lesci, G.F., et al. AMICO galaxy clusters in KiDS-DR3: Constraints on cosmological parameters and on the normalisation of the mass-richness relation from clustering. Astron. Astrophys., 665, 2022, A100 arXiv:2203.07398 [astro-ph.CO].
Romanello, M., et al. AMICO galaxy clusters in KiDS-DR3: Cosmological constraints from the angular power spectrum and correlation function. Astron. Astrophys., 682, 2024, A72 arXiv:2310.12224 [astro-ph.CO].
Cerbolini, M.C.A., Sartoris, B., Xia, J.-Q., Biviano, A., Borgani, S., Viel, M., Constraining neutrino properties with a Euclid-like galaxy cluster survey. J. Cosmol. Astropart. Phys., 06, 2013, 020 arXiv:1303.4550 [astro-ph.CO].
Sartoris, B., et al. Next generation cosmology: constraints from the euclid galaxy cluster survey. Mon. Not. R. Astron. Soc. 459:2 (2016), 1764–1780 arXiv:1505.02165 [astro-ph.CO].
Moscardini, L., Matarrese, S., Mo, H.J., Constraining cosmological parameters with the clustering properties of galaxy clusters in optical and x-ray bands. Mon. Not. R. Astron. Soc., 327, 2001, 422 arXiv:astro-ph/0009006.
Sheth, R.K., Mo, H.J., Tormen, G., Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. Mon. Not. R. Astron. Soc., 323, 2001, 1 arXiv:astro-ph/9907024.
Branchini, E., Camera, S., Cuoco, A., Fornengo, N., Regis, M., Viel, M., Xia, J.-Q., Cross-correlating the γ-ray sky with catalogs of galaxy clusters. Astrophys. J. Suppl., 228(1), 2017, 8 arXiv:1612.05788 [astro-ph.CO].
Paech, K., Hamaus, N., Hoyle, B., Costanzi, M., Giannantonio, T., Hagstotz, S., Sauerwein, G., Weller, J., Cross-correlation of galaxies and galaxy clusters in the Sloan Digital Sky Survey and the importance of non-Poissonian shot noise. Mon. Not. R. Astron. Soc. 470:3 (2017), 2566–2577 arXiv:1612.02018 [astro-ph.CO].
Tinker, J.L., Robertson, B.E., Kravtsov, A.V., Klypin, A., Warren, M.S., Yepes, G., Gottlober, S., The large scale bias of dark matter halos: numerical calibration and model tests. Astrophys. J. 724 (2010), 878–886 arXiv:1001.3162 [astro-ph.CO].
Okabe, N., Zhang, Y.-Y., Finoguenov, A., Takada, M., Smith, G.P., Umetsu, K., Futamase, T., LoCuSS: calibrating mass-observables scaling relations for cluster cosmology with subaru weak lensing observations. Astrophys. J. 721 (2010), 875–885 arXiv:1007.3816 [astro-ph.CO].
Giodini, S., Lovisari, L., Pointecouteau, E., Ettori, S., Reiprich, T.H., Hoekstra, H., Scaling relations for galaxy clusters: properties and evolution. Space Sci. Rev. 177 (2013), 247–282 arXiv:1305.3286 [astro-ph.CO].
Veropalumbo, A., Marulli, F., Moscardini, L., Moresco, M., Cimatti, A., An improved measurement of baryon acoustic oscillations from the correlation function of galaxy clusters at z ∼ 0.3. Mon. Not. R. Astron. Soc. 442:4 (2014), 3275–3283 arXiv:1311.5895 [astro-ph.CO].
Marulli, F., Veropalumbo, A., Moscardini, L., Cimatti, A., Dolag, K., Redshift-space distortions of galaxies, clusters and AGN: testing how the accuracy of growth rate measurements depends on scales and sample selections. Astron. Astrophys., 599, 2017, A106 arXiv:1505.01170 [astro-ph.CO].
Moresco, M., Veropalumbo, A., Marulli, F., Moscardini, L., Cimatti, A., C3: cluster clustering cosmology. II. First detection of the baryon acoustic oscillations peak in the three-point correlation function of galaxy clusters. Astrophys. J., 919(2), 2021, 144 arXiv:2011.04665 [astro-ph.CO].
Alcock, C., Paczynski, B., An evolution free test for non-zero cosmological constant. Nature 281 (1979), 358–359.
Marulli, F., Bianchi, D., Branchini, E., Guzzo, L., Moscardini, L., Angulo, R.E., Cosmology with clustering anisotropies: disentangling dynamic and geometric distortions in galaxy redshift surveys. Mon. Not. R. Astron. Soc., 426, 2012, 2566 arXiv:1203.1002 [astro-ph.CO].
Beutler, F., et al., BOSS Collaboration. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles. Mon. Not. R. Astron. Soc. 443:2 (2014), 1065–1089 arXiv:1312.4611 [astro-ph.CO].
Marulli, F., et al. The XXL Survey: XVI. The clustering of X-ray selected galaxy clusters at z 0.3. Astron. Astrophys., 620, 2018, A1 arXiv:1807.04760 [astro-ph.CO].
Veropalumbo, A., Marulli, F., Moscardini, L., Moresco, M., Cimatti, A., Measuring the distance–redshift relation with the baryon acoustic oscillations of galaxy clusters. Mon. Not. R. Astron. Soc. 458:2 (2016), 1909–1920 arXiv:1510.08852 [astro-ph.CO].
Lesci, G.F., Veropalumbo, A., Sereno, M., Marulli, F., Moscardini, L., Giocoli, C., Mass bias and cosmological constraints from Planck cluster clustering. Astron. Astrophys., 674, 2023, A80 arXiv:2302.14074 [astro-ph.CO].
Peebles, P.J.E., Statistical analysis of catalogs of extragalactic objects. I. Theory. Astrophys. J. 185 (1973), 413–440.
Tamone, A., et al., eBOSS Collaboration. The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Growth rate of structure measurement from anisotropic clustering analysis in configuration space between redshift 0.6 and 1.1 for the Emission Line Galaxy sample. Mon. Not. R. Astron. Soc. 499:4 (2020), 5527–5546 arXiv:2007.09009 [astro-ph.CO].
Li, Z., Jing, Y.P., Zhang, P., Cheng, D., Measurement of redshift-space power spectrum for BOSS galaxies and the growth rate at redshift 0.57. Astrophys. J., 833(2), 2016, 287 arXiv:1609.03697 [astro-ph.CO].
Alam, S., Ho, S., Vargas-Magaña, M., Schneider, D.P., Testing general relativity with growth rate measurement from Sloan Digital Sky Survey – III. Baryon Oscillations Spectroscopic Survey galaxies. Mon. Not. R. Astron. Soc. 453:2 (2015), 1754–1767 arXiv:1504.02100 [astro-ph.CO].
Farren, G.S., et al., ACT Collaboration. The atacama cosmology telescope: cosmology from cross-correlations of unWISE galaxies and ACT DR6 CMB lensing. Astrophys. J., 966(2), 2024, 157 arXiv:2309.05659 [astro-ph.CO].
Piccirilli, G., Fabbian, G., Alonso, D., Storey-Fisher, K., Carron, J., Lewis, A., García-García, C., Growth history and quasar bias evolution at z < 3 from Quaia. J. Cosmol. Astropart. Phys., 06, 2024, 012 arXiv:2402.05761 [astro-ph.CO].
Alonso, D., Fabbian, G., Storey-Fisher, K., Eilers, A.-C., García-García, C., Hogg, D.W., Rix, H.-W., Constraining cosmology with the Gaia-unWISE Quasar Catalog and CMB lensing: structure growth. J. Cosmol. Astropart. Phys., 11, 2023, 043 arXiv:2306.17748 [astro-ph.CO].
Alam, S., et al., BOSS Collaboration. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 470:3 (2017), 2617–2652 arXiv:1607.03155 [astro-ph.CO].
Dey, A., et al., DESI Collaboration. Overview of the DESI legacy imaging surveys. Astron. J., 157(5), 2019, 168 arXiv:1804.08657 [astro-ph.IM].
Saraf, C.S., Bielewicz, P., Chodorowski, M., Effect of redshift bin mismatch on the cross correlation between the DESI Legacy Imaging Survey and the Planck CMB lensing potential. Astron. Astrophys., 690, 2024, A338 arXiv:2406.02857 [astro-ph.CO].
Nakoneczny, S.J., et al. Cosmology from LOFAR Two-metre Sky Survey Data Release 2: Cross-correlation with the cosmic microwave background. Astron. Astrophys., 681, 2024, A105 arXiv:2310.07642 [astro-ph.CO] Astron. Astrophys., 686, 2024, C2 (erratum).
Chang, C., et al., DES, SPT Collaboration. Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. II. Cross-correlation measurements and cosmological constraints. Phys. Rev. D, 107(2), 2023, 023530 arXiv:2203.12440 [astro-ph.CO].
White, M., et al. Cosmological constraints from the tomographic cross-correlation of DESI Luminous Red Galaxies and Planck CMB lensing. J. Cosmol. Astropart. Phys., 02(02), 2022, 007 arXiv:2111.09898 [astro-ph.CO].
Krolewski, A., Ferraro, S., White, M., Cosmological constraints from unWISE and Planck CMB lensing tomography. J. Cosmol. Astropart. Phys., 12(12), 2021, 028 arXiv:2105.03421 [astro-ph.CO].
Hang, Q., Alam, S., Peacock, J.A., Cai, Y.-C., Galaxy clustering in the DESI Legacy Survey and its imprint on the CMB. Mon. Not. R. Astron. Soc. 501:1 (2021), 1481–1498 arXiv:2010.00466 [astro-ph.CO].
Peacock, J.A., Bilicki, M., Wide-area tomography of CMB lensing and the growth of cosmological density fluctuations. Mon. Not. R. Astron. Soc. 481:1 (2018), 1133–1148 arXiv:1805.11525 [astro-ph.CO].
Giannantonio, T., et al., DES Collaboration. CMB lensing tomography with the DES Science Verification galaxies. Mon. Not. R. Astron. Soc. 456:3 (2016), 3213–3244 arXiv:1507.05551 [astro-ph.CO].
Sailer, N., et al. Cosmological constraints from the cross-correlation of DESI Luminous Red Galaxies with CMB lensing from Planck PR4 and ACT DR6. 2024 arXiv:2407.04607 [astro-ph.CO].
Saraf, C.S., Bielewicz, P., Tomographic cross correlations between galaxy surveys and the CMB gravitational lensing potential - Effect of the redshift bin mismatch. Astron. Astrophys., 687, 2024, A150 arXiv:2311.15261 [astro-ph.CO].
Simon, T., Zhang, P., Poulin, V., Cosmological inference from the EFTofLSS: the eBOSS QSO full-shape analysis. J. Cosmol. Astropart. Phys., 07, 2023, 041 arXiv:2210.14931 [astro-ph.CO].
Kobayashi, Y., Nishimichi, T., Takada, M., Miyatake, H., Full-shape cosmology analysis of the SDSS-III BOSS galaxy power spectrum using an emulator-based halo model: A 5% determination of σ8. Phys. Rev. D, 105(8), 2022, 083517 arXiv:2110.06969 [astro-ph.CO].
Chen, S.-F., Vlah, Z., White, M., A new analysis of galaxy 2-point functions in the BOSS survey, including full-shape information and post-reconstruction BAO. J. Cosmol. Astropart. Phys., 02(02), 2022, 008 arXiv:2110.05530 [astro-ph.CO].
Ivanov, M.M., Philcox, O.H.E., Cabass, G., Nishimichi, T., Simonović, M., Zaldarriaga, M., Cosmology with the galaxy bispectrum multipoles: Optimal estimation and application to BOSS data. Phys. Rev. D, 107(8), 2023, 083515 arXiv:2302.04414 [astro-ph.CO].
Philcox, O.H.E., Ivanov, M.M., BOSS DR12 full-shape cosmology: ΛCDM constraints from the large-scale galaxy power spectrum and bispectrum monopole. Phys. Rev. D, 105(4), 2022, 043517 arXiv:2112.04515 [astro-ph.CO].
Joudaki, S., et al. KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering. Mon. Not. R. Astron. Soc. 474:4 (2018), 4894–4924 arXiv:1707.06627 [astro-ph.CO].
van Uitert, E., et al. KiDS+GAMA: cosmology constraints from a joint analysis of cosmic shear, galaxy–galaxy lensing, and angular clustering. Mon. Not. R. Astron. Soc. 476:4 (2018), 4662–4689 arXiv:1706.05004 [astro-ph.CO].
Abbott, T.M.C., et al., DES Collaboration. Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D, 98(4), 2018, 043526 arXiv:1708.01530 [astro-ph.CO].
Ross, A.J., et al., BOSS Collaboration. The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: analysis of potential systematics. Mon. Not. R. Astron. Soc., 424, 2012, 564 arXiv:1203.6499 [astro-ph.CO].
Hahn, C., Scoccimarro, R., Blanton, M.R., Tinker, J.L., Rodríguez-Torres, S.A., The effect of fibre collisions on the galaxy power spectrum multipoles. Mon. Not. R. Astron. Soc. 467:2 (2017), 1940–1956 arXiv:1609.01714 [astro-ph.CO].
de Mattia, A., Ruhlmann-Kleider, V., Integral constraints in spectroscopic surveys. J. Cosmol. Astropart. Phys., 08, 2019, 036 arXiv:1904.08851 [astro-ph.CO].
Saraf, C.S., Bielewicz, P., Chodorowski, M., Cross-correlation between Planck CMB lensing potential and galaxy catalogues from HELP. Mon. Not. R. Astron. Soc. 515:2 (2022), 1993–2007 arXiv:2106.02551 [astro-ph.CO].
Pullen, A.R., Alam, S., He, S., Ho, S., Constraining gravity at the largest scales through CMB lensing and galaxy velocities. Mon. Not. R. Astron. Soc. 460:4 (2016), 4098–4108 arXiv:1511.04457 [astro-ph.CO].
Joudaki, S., et al. CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics. Mon. Not. R. Astron. Soc. 465:2 (2017), 2033–2052 arXiv:1601.05786 [astro-ph.CO].
Ivanov, M.M., Simonović, M., Zaldarriaga, M., Cosmological parameters from the BOSS galaxy power spectrum. J. Cosmol. Astropart. Phys., 05, 2020, 042 arXiv:1909.05277 [astro-ph.CO].
Gsponer, R., Zhao, R., Donald-McCann, J., Bacon, D., Koyama, K., Crittenden, R., Simon, T., Mueller, E.-M., Cosmological constraints on early dark energy from the full shape analysis of eBOSS DR16. Mon. Not. R. Astron. Soc. 530:3 (2024), 3075–3099 arXiv:2312.01977 [astro-ph.CO].
Chen, S.-F., Vlah, Z., Castorina, E., White, M., Redshift-space distortions in lagrangian perturbation theory. J. Cosmol. Astropart. Phys., 03, 2021, 100 arXiv:2012.04636 [astro-ph.CO].
Ramirez-Solano, S., et al., DESI Collaboration. Full Modeling and parameter compression methods in configuration space for DESI 2024 and beyond. J. Cosmol. Astropart. Phys., 01, 2025, 129 arXiv:2404.07268 [astro-ph.CO].
Maus, M., et al. A comparison of effective field theory models of redshift space galaxy power spectra for DESI 2024 and future surveys. J. Cosmol. Astropart. Phys., 01, 2025, 134 arXiv:2404.07272 [astro-ph.CO].
Baumann, D., Nicolis, A., Senatore, L., Zaldarriaga, M., Cosmological non-linearities as an effective fluid. J. Cosmol. Astropart. Phys., 07, 2012, 051 arXiv:1004.2488 [astro-ph.CO].
Carrasco, J.J.M., Hertzberg, M.P., Senatore, L., The effective field theory of cosmological large scale structures. JHEP, 09, 2012, 082 arXiv:1206.2926 [astro-ph.CO].
Porto, R.A., Senatore, L., Zaldarriaga, M., The lagrangian-space effective field theory of large scale structures. J. Cosmol. Astropart. Phys., 05, 2014, 022 arXiv:1311.2168 [astro-ph.CO].
Lewandowski, M., Senatore, L., Prada, F., Zhao, C., Chuang, C.-H., EFT of large scale structures in redshift space. Phys. Rev. D, 97(6), 2018, 063526 arXiv:1512.06831 [astro-ph.CO].
Lewis, A., Challinor, A., Weak gravitational lensing of the CMB. Phys. Rep. 429 (2006), 1–65 arXiv:astro-ph/0601594.
Carron, J., Mirmelstein, M., Lewis, A., CMB lensing from Planck PR4 maps. J. Cosmol. Astropart. Phys., 09, 2022, 039 arXiv:2206.07773 [astro-ph.CO].
Qu, F.J., et al., ACT Collaboration. The atacama cosmology telescope: a measurement of the DR6 CMB lensing power spectrum and its implications for structure growth. Astrophys. J., 962(2), 2024, 112 arXiv:2304.05202 [astro-ph.CO].
Pan, Z., et al., SPT Collaboration. Measurement of gravitational lensing of the cosmic microwave background using SPT-3G 2018 data. Phys. Rev. D, 108(12), 2023, 122005 arXiv:2308.11608 [astro-ph.CO].
Di Valentino, E., Melchiorri, A., Silk, J., Planck evidence for a closed Universe and a possible crisis for cosmology. Nat. Astron. 4:2 (2019), 196–203 arXiv:1911.02087 [astro-ph.CO].
Handley, W., Curvature tension: evidence for a closed universe. Phys. Rev. D, 103(4), 2021, L041301 arXiv:1908.09139 [astro-ph.CO].
Efstathiou, G., Gratton, S., The evidence for a spatially flat Universe. Mon. Not. R. Astron. Soc. 496:1 (2020), L91–L95 arXiv:2002.06892 [astro-ph.CO].
Glanville, A., Howlett, C., Davis, T.M., Full-shape galaxy power spectra and the curvature tension. Mon. Not. R. Astron. Soc. 517:2 (2022), 3087–3100 arXiv:2205.05892 [astro-ph.CO].
Vagnozzi, S., Loeb, A., Moresco, M., Eppur è piatto? The cosmic chronometers take on spatial curvature and cosmic concordance. Astrophys. J., 908(1), 2021, 84 arXiv:2011.11645 [astro-ph.CO].
Vagnozzi, S., Di Valentino, E., Gariazzo, S., Melchiorri, A., Mena, O., Silk, J., The galaxy power spectrum take on spatial curvature and cosmic concordance. Phys. Dark Univ., 33, 2021, 100851 arXiv:2010.02230 [astro-ph.CO].
Park, C.-G., Ratra, B., Using the tilted flat-ΛCDM and the untilted non-flat ΛCDM inflation models to measure cosmological parameters from a compilation of observational data. Astrophys. J., 882, 2019, 158 arXiv:1801.00213 [astro-ph.CO].
Park, C.-G., Ratra, B., Measuring the Hubble constant and spatial curvature from supernova apparent magnitude, baryon acoustic oscillation, and Hubble parameter data. Astrophys. Space Sci., 364(8), 2019, 134 arXiv:1809.03598 [astro-ph.CO].
Bennett, C.L., et al., WMAP Collaboration. Nine-year wilkinson microwave anisotropy probe (WMAP) observations: final maps and results. Astrophys. J. Suppl., 208, 2013, 20 arXiv:1212.5225 [astro-ph.CO].
Adam, R., et al., Planck Collaboration. Planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys., 594, 2016, A1 arXiv:1502.01582 [astro-ph.CO].
Hinshaw, G., et al., WMAP Collaboration. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: The Angular power spectrum. Astrophys. J. Suppl., 148, 2003, 135 arXiv:astro-ph/0302217.
Contaldi, C.R., Peloso, M., Kofman, L., Linde, A.D., Suppressing the lower multipoles in the CMB anisotropies. J. Cosmol. Astropart. Phys., 07, 2003, 002 arXiv:astro-ph/0303636.
Cline, J.M., Crotty, P., Lesgourgues, J., Does the small CMB quadrupole moment suggest new physics?. J. Cosmol. Astropart. Phys., 09, 2003, 010 arXiv:astro-ph/0304558.
Schwarz, D.J., Starkman, G.D., Huterer, D., Copi, C.J., Is the low-l microwave background cosmic?. Phys. Rev. Lett., 93, 2004, 221301 arXiv:astro-ph/0403353.
Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D., On the large-angle anomalies of the microwave sky. Mon. Not. R. Astron. Soc. 367 (2006), 79–102 arXiv:astro-ph/0508047.
de Oliveira-Costa, A., Tegmark, M., Cmb multipole measurements in the presence of foregrounds. Phys. Rev. D, 74, 2006, 023005 arXiv:astro-ph/0603369.
Slosar, A., Seljak, U., Assessing the effects of foregrounds and sky removal in WMAP. Phys. Rev. D, 70, 2004, 083002 arXiv:astro-ph/0404567.
Hajian, A., Analysis of the apparent lack of power in the cosmic microwave background anisotropy at large angular scales. 2007 arXiv:astro-ph/0702723.
Ade, P.A.R., et al., Planck Collaboration. Planck 2013 results. XXIII. Isotropy and statistics of the CMB. Astron. Astrophys., 571, 2014, A23 arXiv:1303.5083 [astro-ph.CO].
Eriksen, H.K., Hansen, F.K., Banday, A.J., Gorski, K.M., Lilje, P.B., Asymmetries in the cosmic microwave background anisotropy field. Astrophys. J. 605 (2004), 14–20 arXiv:astro-ph/0307507 Astrophys. J., 609, 2004, 1198 (erratum).
Ade, P.A.R., et al., Planck Collaboration. Planck 2015 results. XVI. Isotropy and statistics of the CMB. Astron. Astrophys., 594, 2016, A16 arXiv:1506.07135 [astro-ph.CO].
Erickcek, A.L., Kamionkowski, M., Carroll, S.M., A hemispherical power asymmetry from inflation. Phys. Rev. D, 78, 2008, 123520 arXiv:0806.0377 [astro-ph].
Gordon, C., Hu, W., A Low CMB quadrupole from dark energy isocurvature perturbations. Phys. Rev. D, 70, 2004, 083003 arXiv:astro-ph/0406496.
Land, K., Magueijo, J., The axis of evil. Phys. Rev. Lett., 95, 2005, 071301 arXiv:astro-ph/0502237.
Kim, J., Naselsky, P., Lack of angular correlation and odd-parity preference in CMB data. Astrophys. J., 739, 2011, 79 arXiv:1011.0377 [astro-ph.CO].
Lue, A., Wang, L.-M., Kamionkowski, M., Cosmological signature of new parity violating interactions. Phys. Rev. Lett. 83 (1999), 1506–1509 arXiv:astro-ph/9812088.
Alexander, S.H.S., Is cosmic parity violation responsible for the anomalies in the WMAP data?. Phys. Lett. B 660 (2008), 444–448 arXiv:hep-th/0601034.
Vielva, P., Martinez-Gonzalez, E., Barreiro, R.B., Sanz, J.L., Cayon, L., Detection of non-Gaussianity in the WMAP 1 - year data using spherical wavelets. Astrophys. J. 609 (2004), 22–34 arXiv:astro-ph/0310273.
Cruz, M., Cayon, L., Martinez-Gonzalez, E., Vielva, P., Jin, J., The non-gaussian cold spot in the 3-year wmap data. Astrophys. J. 655 (2007), 11–20 arXiv:astro-ph/0603859.
Nadathur, S., Lavinto, M., Hotchkiss, S., Räsänen, S., Can a supervoid explain the Cold Spot?. Phys. Rev. D, 90(10), 2014, 103510 arXiv:1408.4720 [astro-ph.CO].
Inoue, K.T., Silk, J., Local voids as the origin of large-angle cosmic microwave background anomalies I. Astrophys. J. 648 (2006), 23–30 arXiv:astro-ph/0602478.
Holman, R., Mersini-Houghton, L., Takahashi, T., Cosmological avatars of the landscape I: Bracketing the SUSY breaking scale. Phys. Rev. D, 77, 2008, 063510 arXiv:hep-th/0611223.
Cruz, M., Tucci, M., Martinez-Gonzalez, E., Vielva, P., The non-gaussian cold spot in wmap: significance, morphology and foreground contribution. Mon. Not. R. Astron. Soc. 369 (2006), 57–67 arXiv:astro-ph/0601427.
Rudnick, L., Brown, S., Williams, L.R., Extragalactic radio sources and the WMAP cold spot. Astrophys. J. 671 (2007), 40–44 arXiv:0704.0908 [astro-ph].
Lambas, D.G., Hansen, F.K., Toscano, F., Luparello, H.E., Boero, E.F., The CMB Cold Spot as predicted by foregrounds around nearby galaxies. Astron. Astrophys., 681, 2024, A2 arXiv:2310.13755 [astro-ph.CO].
Szapudi, I., et al. Detection of a supervoid aligned with the cold spot of the cosmic microwave background. Mon. Not. R. Astron. Soc. 450:1 (2015), 288–294 arXiv:1405.1566 [astro-ph.CO].
Mackenzie, R., Shanks, T., Bremer, M.N., Cai, Y.-C., Gunawardhana, M.L.P., Kovács, A., Norberg, P., Szapudi, I., Evidence against a supervoid causing the CMB Cold Spot. Mon. Not. R. Astron. Soc. 470:2 (2017), 2328–2338 arXiv:1704.03814 [astro-ph.CO].
Courtois, H.M., Tully, R.B., Hoffman, Y., Pomarede, D., Graziani, R., Dupuy, A., Cosmicflows-3: cold spot repeller?. Astrophys. J. Lett., 847(1), 2017, L6 arXiv:1708.07547 [astro-ph.CO].
Kovács, A., et al., DES Collaboration. The DES view of the Eridanus supervoid and the CMB cold spot. Mon. Not. R. Astron. Soc. 510:1 (2022), 216–229 arXiv:2112.07699 [astro-ph.CO].
Luparello, H.E., Boero, E.F., Lares, M., Sánchez, A.G., Lambas, D.G., The cosmic shallows – I. Interaction of CMB photons in extended galaxy haloes. Mon. Not. R. Astron. Soc. 518:4 (2022), 5643–5652 arXiv:2206.14217 [astro-ph.CO].
Hansen, F.K., Boero, E.F., Luparello, H.E., Lambas, D.G., A possible common explanation for several cosmic microwave background (CMB) anomalies: A strong impact of nearby galaxies on observed large-scale CMB fluctuations. Astron. Astrophys., 675, 2023, L7 arXiv:2305.00268 [astro-ph.CO].
Huchra, J.P., et al. The 2MASS redshift survey - description and data release. Astrophys. J. Suppl., 199, 2012, 26 arXiv:1108.0669 [astro-ph.CO].
Cruz, M., Martínez-González, E., Gimeno-Amo, C., Kavanagh, B.J., Tucci, M., Unexplained correlation between the Cosmic Microwave Background temperature and the local matter density distribution. J. Cosmol. Astropart. Phys., 04, 2025, 079 arXiv:2407.17599 [astro-ph.CO].
Hansen, F.K., Lambas, D.G., Luparello, H.E., Toscano, F., Pereyra, L.A., A 5.7σ detection confirming the existence of a possibly dark matter related CMB foreground in nearby cosmic filaments. 2024 arXiv:2411.15307 [astro-ph.CO].
Toscano, F., Hansen, F.K., Lambas, D.G., Luparello, H., Fosalba, P., Gaztañaga, E., Are CMB derived cosmological parameters affected by foregrounds associated to nearby galaxies?. Phys. Rev. D, 111(8), 2025, 083528 arXiv:2410.24026 [astro-ph.CO].
Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D., No large-angle correlations on the non-Galactic microwave sky. Mon. Not. R. Astron. Soc. 399 (2009), 295–303 arXiv:0808.3767 [astro-ph].
Sarkar, D., Huterer, D., Copi, C.J., Starkman, G.D., Schwarz, D.J., Missing power vs low-l alignments in the cosmic microwave background: no correlation in the standard cosmological model. Astropart. Phys. 34 (2011), 591–594 arXiv:1004.3784 [astro-ph.CO].
Luminet, J.P., Weeks, J., Riazuelo, A., Lehoucq, R., Uzan, J.P., Dodecahedral space topology as an explanation for weak wide - angle temperature correlations in the cosmic microwave background. Nature, 425, 2003, 593 arXiv:astro-ph/0310253.
Aurich, R., Janzer, H.S., Lustig, S., Steiner, F., Do we live in a small universe?. Cl. Quant. Grav., 25, 2008, 125006 arXiv:0708.1420 [astro-ph].
Copi, C., Huterer, D., Schwarz, D., Starkman, G., The uncorrelated universe: statistical anisotropy and the vanishing angular correlation function in WMAP years 1-3. Phys. Rev. D, 75, 2007, 023507 arXiv:astro-ph/0605135.
Hogan, C.J., Gravitational waves from light cosmic strings: backgrounds and bursts with large loops. Phys. Rev. D, 74, 2006, 043526 arXiv:astro-ph/0605567.
Tsujikawa, S., Sami, M., Maartens, R., Observational constraints on braneworld inflation: the effect of a gauss-bonnet term. Phys. Rev. D, 70, 2004, 063525 arXiv:astro-ph/0406078.
Delabrouille, J., et al. The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths. Astron. Astrophys., 553, 2013, A96 arXiv:1207.3675 [astro-ph.CO].
Mersini-Houghton, L., Cosmological implications of the string theory landscape. AIP Conf. Proc. 878:1 (2006), 315–322 arXiv:hep-ph/0609157.
Mersini-Houghton, L., Can we predict Lambda for the non-SUSY sector of the landscape. Cl. Quant. Grav. 22 (2005), 3481–3490 arXiv:hep-th/0504026.
Kobakhidze, A., Mersini-Houghton, L., Birth of the universe from the landscape of string theory. Eur. Phys. J. C 49 (2007), 869–873 arXiv:hep-th/0410213.
Holman, R., Mersini-Houghton, L., Why the universe started from a low entropy state. Phys. Rev. D, 74, 2006, 123510 arXiv:hep-th/0511102.
Holman, R., Mersini-Houghton, L., Takahashi, T., Cosmological avatars of the landscape. II. CMB and LSS signatures. Phys. Rev. D, 77, 2008, 063511 arXiv:hep-th/0612142.
Di Valentino, E., Mersini-Houghton, L., Testing predictions of the quantum landscape multiverse 1: the starobinsky inflationary potential. J. Cosmol. Astropart. Phys., 03, 2017, 002 arXiv:1612.09588 [astro-ph.CO].
Di Valentino, E., Mersini-Houghton, L., Testing predictions of the quantum landscape multiverse 2: the exponential inflationary potential. J. Cosmol. Astropart. Phys., 03, 2017, 020 arXiv:1612.08334 [astro-ph.CO].
Di Valentino, E., Mersini-Houghton, L., Testing predictions of the quantum landscape multiverse 3: the hilltop inflationary potential. Symmetry, 11(4), 2019, 520 arXiv:1807.10833 [astro-ph.CO].
Mersini-Houghton, L., Predictions of the quantum landscape multiverse. Cl. Quant. Grav., 34(4), 2017, 047001 arXiv:1612.07129 [hep-th].
Lodha, K., et al., DESI Collaboration. DESI 2024: Constraints on physics-focused aspects of dark energy using DESI DR1 BAO data. Phys. Rev. D, 111(2), 2025, 023532 arXiv:2405.13588 [astro-ph.CO].
Karim, M.A., et al., DESI Collaboration. DESI DR2 results I: baryon acoustic oscillations from the lyman alpha forest. 2025 arXiv:2503.14739 [astro-ph.CO].
Andrade, U., et al., DESI Collaboration. Validation of the DESI DR2 measurements of baryon acoustic oscillations from galaxies and quasars. 2025 arXiv:2503.14742 [astro-ph.CO].
Brodzeller, A., et al. Construction of the damped Lyα absorber catalog for DESI DR2 Lyα BAO. 2025 arXiv:2503.14740 [astro-ph.CO].
Lodha, K., et al., DESI Collaboration. Extended dark energy analysis using DESI DR2 BAO measurements. 2025 arXiv:2503.14743 [astro-ph.CO].
Rubin, D., et al. Union through UNITY: cosmology with 2,000 SNe using a unified Bayesian framework. 2023 arXiv:2311.12098 [astro-ph.CO].
Abbott, T.M.C., et al., DES Collaboration. The dark energy survey: cosmology results with ∼1500 new high-redshift type ia supernovae using the full 5 yr data set. Astrophys. J. Lett., 973(1), 2024, L14 arXiv:2401.02929 [astro-ph.CO].
Sánchez, B.O., et al., DES Collaboration. The dark energy survey supernova program: light curves and 5 yr data release. Astrophys. J., 975(1), 2024, 5 arXiv:2406.05046 [astro-ph.CO].
Vincenzi, M., et al., DES Collaboration. The dark energy survey supernova program: cosmological analysis and systematic uncertainties. Astrophys. J., 975(1), 2024, 86 arXiv:2401.02945 [astro-ph.CO].
Lodha, K., et al., DESI Collaboration. Extended dark energy analysis using DESI DR2 BAO measurements. 2025 arXiv:2503.14743 [astro-ph.CO].
Vikman, A., Can dark energy evolve to the phantom?. Phys. Rev. D, 71, 2005, 023515 arXiv:astro-ph/0407107.
Carroll, S.M., Hoffman, M., Trodden, M., Can the dark energy equation-of-state parameter w be less than −1?. Phys. Rev. D, 68, 2003, 023509 arXiv:astro-ph/0301273.
Hu, W., Crossing the phantom divide: Dark energy internal degrees of freedom. Phys. Rev. D, 71, 2005, 047301 arXiv:astro-ph/0410680.
Creminelli, P., D'Amico, G., Norena, J., Vernizzi, F., The effective theory of quintessence: the w<-1 side unveiled. J. Cosmol. Astropart. Phys., 02, 2009, 018 arXiv:0811.0827 [astro-ph].
Chudaykin, A., Kunz, M., Modified gravity interpretation of the evolving dark energy in light of DESI data. Phys. Rev. D, 110(12), 2024, 123524 arXiv:2407.02558 [astro-ph.CO].
Ye, G., Martinelli, M., Hu, B., Silvestri, A., Non-minimally coupled gravity as a physically viable fit to DESI 2024 BAO. 2024 arXiv:2407.15832 [astro-ph.CO].
Ishak, M., et al. Modified gravity constraints from the full shape modeling of clustering measurements from DESI 2024. 2024 arXiv:2411.12026 [astro-ph.CO].
Chudaykin, A., Kunz, M., Carron, J., Modified gravity constraints with Planck ISW-lensing bispectrum. 2025 arXiv:2503.09893 [astro-ph.CO].
Wolf, W.J., Ferreira, P.G., García-García, C., Matching current observational constraints with nonminimally coupled dark energy. Phys. Rev. D, 111(4), 2025, L041303 arXiv:2409.17019 [astro-ph.CO].
Hernández-Almada, A., Mendoza-Martínez, M.L., García-Aspeitia, M.A., Motta, V., Phenomenological emergent dark energy in the light of DESI Data Release 1. Phys. Dark Univ., 46, 2024, 101668 arXiv:2407.09430 [astro-ph.CO].
Malekjani, M., Davari, Z., Pourojaghi, S., DESI Collaboration. Cosmological constraints on dark energy parametrizations after DESI 2024: Persistent deviation from standard ΛCDM cosmology. Phys. Rev. D, 111(8), 2025, 083547 arXiv:2407.09767 [astro-ph.CO].
Ramadan, O.F., Sakstein, J., Rubin, D., DESI constraints on exponential quintessence. Phys. Rev. D, 110(4), 2024, L041303 arXiv:2405.18747 [astro-ph.CO].
Carloni, Y., Luongo, O., Muccino, M., Does dark energy really revive using DESI 2024 data?. Phys. Rev. D, 111(2), 2025, 023512 arXiv:2404.12068 [astro-ph.CO].
Berghaus, K.V., Kable, J.A., Miranda, V., Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements. Phys. Rev. D, 110(10), 2024, 103524 arXiv:2404.14341 [astro-ph.CO].
Qu, F.J., Surrao, K.M., Bolliet, B., Hill, J.C., Sherwin, B.D., Jense, H.T., Accelerated inference on accelerated cosmic expansion: New constraints on axion-like early dark energy with DESI BAO and ACT DR6 CMB lensing. 2024 arXiv:2404.16805 [astro-ph.CO].
Notari, A., Redi, M., Tesi, A., Consistent theories for the DESI dark energy fit. J. Cosmol. Astropart. Phys., 11, 2024, 025 arXiv:2406.08459 [astro-ph.CO].
Adolf, P., Hirsch, M., Krieg, S., Päs, H., Tabet, M., Fitting the DESI BAO data with dark energy driven by the Cohen-Kaplan-Nelson bound. J. Cosmol. Astropart. Phys., 08, 2024, 048 arXiv:2406.09964 [astro-ph.CO].
Jiang, J.-Q., Pedrotti, D., da Costa, S.S., Vagnozzi, S., Nonparametric late-time expansion history reconstruction and implications for the Hubble tension in light of recent DESI and type Ia supernovae data. Phys. Rev. D, 110(12), 2024, 123519 arXiv:2408.02365 [astro-ph.CO].
Dinda, B.R., Maartens, R., Model-agnostic assessment of dark energy after DESI DR1 BAO. J. Cosmol. Astropart. Phys., 01, 2025, 120 arXiv:2407.17252 [astro-ph.CO].
Wolf, W.J., García-García, C., Ferreira, P.G., Robustness of dark energy phenomenology across different parameterizations. 2025 arXiv:2502.04929 [astro-ph.CO].
Sousa-Neto, A., Bengaly, C., González, J.E., Alcaniz, J., No evidence for dynamical dark energy from DESI and SN data: a symbolic regression analysis. 2025 arXiv:2502.10506 [astro-ph.CO].
de Putter, R., Linder, E.V., Calibrating dark energy. J. Cosmol. Astropart. Phys., 10, 2008, 042 arXiv:0808.0189 [astro-ph].
Giarè, W., Najafi, M., Pan, S., Di Valentino, E., Firouzjaee, J.T., Robust preference for dynamical dark energy in DESI BAO and SN measurements. J. Cosmol. Astropart. Phys., 10, 2024, 035 arXiv:2407.16689 [astro-ph.CO].
Wang, Z., Lin, S., Ding, Z., Hu, B., The role of LRG1 and LRG2’s monopole in inferring the DESI 2024 BAO cosmology. Mon. Not. R. Astron. Soc. 534:4 (2024), 3869–3875 arXiv:2405.02168 [astro-ph.CO].
Colgáin, E.O., Dainotti, M.G., Capozziello, S., Pourojaghi, S., Sheikh-Jabbari, M.M., Stojkovic, D., Does DESI 2024 confirm ΛCDM?. 2024 arXiv:2404.08633 [astro-ph.CO].
Naredo-Tuero, D., Escudero, M., Fernández-Martínez, E., Marcano, X., Poulin, V., Critical look at the cosmological neutrino mass bound. Phys. Rev. D, 110(12), 2024, 123537 arXiv:2407.13831 [astro-ph.CO].
Sapone, D., Nesseris, S., Outliers in DESI BAO: robustness and cosmological implications. 2024 arXiv:2412.01740 [astro-ph.CO].
Giarè, W., Mahassen, T., Di Valentino, E., Pan, S., An overview of what current data can (and cannot yet) say about evolving dark energy. Phys. Dark Univ., 48, 2025, 101906 arXiv:2502.10264 [astro-ph.CO].
Abbott, T.M.C., et al., DES Collaboration. Dark Energy Survey: implications for cosmological expansion models from the final DES Baryon Acoustic Oscillation and Supernova data. 2025 arXiv:2503.06712 [astro-ph.CO].
Colgáin, E.O., Sheikh-Jabbari, M.M., Solomon, R., Dainotti, M.G., Stojkovic, D., Putting flat ΛCDM in the (Redshift) bin. Phys. Dark Univ., 44, 2024, 101464 arXiv:2206.11447 [astro-ph.CO].
Malekjani, M., Conville, R.M., Colgáin, E.O., Pourojaghi, S., Sheikh-Jabbari, M.M., On redshift evolution and negative dark energy density in Pantheon + Supernovae. Eur. Phys. J. C, 84(3), 2024, 317 arXiv:2301.12725 [astro-ph.CO].
Colgáin, E.O., Pourojaghi, S., Sheikh-Jabbari, M.M., Implications of DES 5YR SNe dataset for ΛCDM. Eur. Phys. J. C, 85(3), 2025, 286 arXiv:2406.06389 [astro-ph.CO].
Colgáin, E.O., Sheikh-Jabbari, M.M., DESI and SNe: dynamical dark energy, Ωm tension or systematics?. 2024 arXiv:2412.12905 [astro-ph.CO].
Notari, A., Redi, M., Tesi, A., BAO vs. SN evidence for evolving dark energy. J. Cosmol. Astropart. Phys., 04, 2025, 048 arXiv:2411.11685 [astro-ph.CO].
Efstathiou, G., Evolving dark energy or supernovae systematics?. Mon. Not. R. Astron. Soc. 538:2 (2025), 875–882 arXiv:2408.07175 [astro-ph.CO].
Vincenzi, M., et al., DES Collaboration. Comparing the DES-SN5YR and Pantheon+ SN cosmology analyses: Investigation based on ”Evolving Dark Energy or Supernovae systematics?”. 2025 arXiv:2501.06664 [astro-ph.CO].
Giarè, W., Dynamical dark energy beyond planck? Constraints from multiple CMB probes, DESI BAO and type-ia supernovae. 2024 arXiv:2409.17074 [astro-ph.CO].
Escamilla, L.A., Giarè, W., Di Valentino, E., Nunes, R.C., Vagnozzi, S., The state of the dark energy equation of state circa 2023. J. Cosmol. Astropart. Phys., 05, 2024, 091 arXiv:2307.14802 [astro-ph.CO].
Giarè, W., Di Valentino, E., Melchiorri, A., Measuring the reionization optical depth without large-scale CMB polarization. Phys. Rev. D, 109(10), 2024, 103519 arXiv:2312.06482 [astro-ph.CO].
Ben-Dayan, I., Kumar, U., Shimon, M., Verma, A., Impact of low ell's on large scale structure anomalies. J. Cosmol. Astropart. Phys., 02, 2025, 069 arXiv:2409.15457 [astro-ph.CO].
Peng, Z.-Y., Piao, Y.-S., Dark energy and lensing anomaly in Planck CMB data. 2025 arXiv:2502.04641 [astro-ph.CO].
Park, C.-G., Ratra, B., Is excess smoothing of Planck CMB ansiotropy data partially responsible for evidence for dark energy dynamics in other w(z)CDM parametrizations?. 2025 arXiv:2501.03480 [astro-ph.CO].
Park, C.-G., de Cruz Perez, J., Ratra, B., Is the w0waCDM cosmological parameterization evidence for dark energy dynamics partially caused by the excess smoothing of Planck CMB anisotropy data?. 2024 arXiv:2410.13627 [astro-ph.CO].
Di Valentino, E., Gariazzo, S., Mena, O., Most constraining cosmological neutrino mass bounds. Phys. Rev. D, 104(8), 2021, 083504 arXiv:2106.15267 [astro-ph.CO].
Jiang, J.-Q., Giarè, W., Gariazzo, S., Dainotti, M.G., Di Valentino, E., Mena, O., Pedrotti, D., da Costa, S.S., Vagnozzi, S., Neutrino cosmology after DESI: tightest mass upper limits, preference for the normal ordering, and tension with terrestrial observations. J. Cosmol. Astropart. Phys., 01, 2025, 153 arXiv:2407.18047 [astro-ph.CO].
Di Valentino, E., Gariazzo, S., Giarè, W., Mena, O., Impact of the damping tail on neutrino mass constraints. Phys. Rev. D, 108(8), 2023, 083509 arXiv:2305.12989 [astro-ph.CO].
Wang, D., Mena, O., Di Valentino, E., Gariazzo, S., Updating neutrino mass constraints with background measurements. Phys. Rev. D, 110(10), 2024, 103536 arXiv:2405.03368 [astro-ph.CO].
Hamann, J., Hasenkamp, J., A new life for sterile neutrinos: resolving inconsistencies using hot dark matter. J. Cosmol. Astropart. Phys., 10, 2013, 044 arXiv:1308.3255 [astro-ph.CO].
de Salas, P.F., Forero, D.V., Gariazzo, S., Martínez-Miravé, P., Mena, O., Ternes, C.A., Tórtola, M., Valle, J.W.F., 2020 global reassessment of the neutrino oscillation picture. JHEP, 02, 2021, 071 arXiv:2006.11237 [hep-ph].
Esteban, I., Gonzalez-Garcia, M.C., Maltoni, M., Schwetz, T., Zhou, A., The fate of hints: updated global analysis of three-flavor neutrino oscillations. JHEP, 09, 2020, 178 arXiv:2007.14792 [hep-ph].
Gariazzo, S., Mena, O., Schwetz, T., Quantifying the tension between cosmological and terrestrial constraints on neutrino masses. Phys. Dark Univ., 40, 2023, 101226 arXiv:2302.14159 [hep-ph].
di Valentino, E., Gariazzo, S., Mena, O., Model marginalized constraints on neutrino properties from cosmology. Phys. Rev. D, 106(4), 2022, 043540 arXiv:2207.05167 [astro-ph.CO].
Lorenz, C.S., Funcke, L., Calabrese, E., Hannestad, S., Time-varying neutrino mass from a supercooled phase transition: current cosmological constraints and impact on the Ωm-σ8 plane. Phys. Rev. D, 99(2), 2019, 023501 arXiv:1811.01991 [astro-ph.CO].
Escudero, M., Lopez-Pavon, J., Rius, N., Sandner, S., Relaxing cosmological neutrino mass bounds with unstable neutrinos. JHEP, 12, 2020, 119 arXiv:2007.04994 [hep-ph].
Chacko, Z., Dev, A., Du, P., Poulin, V., Tsai, Y., Determining the neutrino lifetime from cosmology. Phys. Rev. D, 103(4), 2021, 043519 arXiv:2002.08401 [astro-ph.CO].
Chacko, Z., Dev, A., Du, P., Poulin, V., Tsai, Y., Cosmological Limits on the Neutrino Mass and Lifetime. JHEP, 04, 2020, 020 arXiv:1909.05275 [hep-ph].
Franco Abellán, G., Chacko, Z., Dev, A., Du, P., Poulin, V., Tsai, Y., Improved cosmological constraints on the neutrino mass and lifetime. JHEP, 08, 2022, 076 arXiv:2112.13862 [hep-ph].
Camarena, D., Cyr-Racine, F.-Y., Strong constraints on a simple self-interacting neutrino cosmology. Phys. Rev. D, 111(2), 2025, 023504 arXiv:2403.05496 [astro-ph.CO].
Esteban, I., Salvado, J., Long range interactions in cosmology: implications for neutrinos. J. Cosmol. Astropart. Phys., 05, 2021, 036 arXiv:2101.05804 [hep-ph].
Oldengott, I.M., Barenboim, G., Kahlen, S., Salvado, J., Schwarz, D.J., How to relax the cosmological neutrino mass bound. J. Cosmol. Astropart. Phys., 04, 2019, 049 arXiv:1901.04352 [astro-ph.CO].
Dvali, G., Funcke, L., Small neutrino masses from gravitational θ-term. Phys. Rev. D, 93(11), 2016, 113002 arXiv:1602.03191 [hep-ph].
Barenboim, G., Sanchis, H., Kinney, W.H., Rios, D., Bound on thermal y distortion of the cosmic neutrino background. Phys. Rev. D, 110(12), 2024, 123535 arXiv:2407.18102 [astro-ph.CO].
Craig, N., Green, D., Meyers, J., Rajendran, S., No νs is good news. JHEP, 09, 2024, 097 arXiv:2405.00836 [astro-ph.CO].
Yadav, A., Kumar, S., Kibris, C., Akarsu, O., Λ sCDM cosmology: alleviating major cosmological tensions by predicting standard neutrino properties. J. Cosmol. Astropart. Phys., 01, 2025, 042 arXiv:2406.18496 [astro-ph.CO].
Aker, M., et al., KATRIN Collaboration. Direct neutrino-mass measurement based on 259 days of KATRIN data. Science, 388(6743), 2025, adq9592 arXiv:2406.13516 [nucl-ex].
Drexlin, G., Hannen, V., Mertens, S., Weinheimer, C., Current direct neutrino mass experiments. Adv. High Energy Phys., 2013, 2013, 293986 arXiv:1307.0101 [physics.ins-det].
Aluri, P.K., et al. Is the observable Universe consistent with the cosmological principle?. Cl. Quant. Grav., 40(9), 2023, 094001 arXiv:2207.05765 [astro-ph.CO].
Ellis, G., Maartens, R., MacCallum, M., Relativistic Cosmology. 2012, Cambridge University Press https://books.google.it/books?id=IgkhAwAAQBAJ.
Schwarz, D.J., Copi, C.J., Huterer, D., Starkman, G.D., CMB Anomalies after Planck. Cl. Quant. Grav., 33(18), 2016, 184001 arXiv:1510.07929 [astro-ph.CO].
Fleury, P., Clarkson, C., Maartens, R., How does the cosmic large-scale structure bias the Hubble diagram?. J. Cosmol. Astropart. Phys., 03, 2017, 062 arXiv:1612.03726 [astro-ph.CO].
Jones, J., Copi, C.J., Starkman, G.D., Akrami, Y., The Universe is not statistically isotropic. 2023 arXiv:2310.12859 [astro-ph.CO].
Fosalba, P., Gaztanaga, E., Explaining cosmological anisotropy: evidence for causal horizons from CMB data. Mon. Not. R. Astron. Soc. 504:4 (2021), 5840–5862 arXiv:2011.00910 [astro-ph.CO].
Yeung, S., Chu, M.-C., Directional variations of cosmological parameters from the Planck CMB data. Phys. Rev. D, 105(8), 2022, 083508 arXiv:2201.03799 [astro-ph.CO].
Kashlinsky, A., et al., Euclid Collaboration. Euclid preparation - XLVI. The near-infrared background dipole experiment with Euclid. Astron. Astrophys., 689, 2024, A294 arXiv:2401.17945 [astro-ph.CO].
Plionis, M., Large-scale optical dipole anisotropy. Mon. Not. R. Astro. Soc. 234 (1988), 401–416.
Plionis, M., Valdarnini, R., Evidence for large-scale structure on scales ≡300 h−1Mpc. Mon. Not. R. Astro. Soc., 249, 1991, 46.
Scaramella, R., Vettolani, G., Zamorani, G., The distribution of clusters of galaxies within 300 MPC H -1 and the crossover to an isotropic and homogeneous universe. Astrophys. J. Lett., 376, 1991, L1.
Branchini, E., Plionis, M., Reconstructing positions and peculiar velocities of galaxy clusters within 20000 km/sec. I: the cluster 3-D dipole. Astrophys. J., 460, 1996, 569 arXiv:astro-ph/9501028.
Plionis, M., Kolokotronis, E., The x-ray cluster dipole. Astrophys. J., 500, 1998, 1 arXiv:astro-ph/9707147.
Rowan-Robinson, M., et al. The IRAS PSCz dipole. Mon. Not. R. Astron. Soc., 314, 2000, 375 arXiv:astro-ph/9912223.
Kocevksi, D.D., Ebeling, H., Tully, B., Mullis, C.R., The dipole anisotropy of the first all-sky X-ray cluster sample. Fairall, A.P., Woudt, P.A., (eds.) Nearby Large-Scale Structures and the Zone of Avoidance Astronomical Society of the Pacific Conference Series, vol. 329, 2005, 89.
Hoffman, Y., Pomarede, D., Brent Tully, R., Courtois, H., The dipole repeller. 2017, 10.1038/s41550-016-0036 arXiv:1702.02483 [astro-ph.CO].
Lopes, M., Bernui, A., Franco, C., Avila, F., Bulk flow motion detection in the local universe with pantheon+ type ia supernovae. Astrophys. J., 967(1), 2024, 47 arXiv:2405.11077 [astro-ph.CO].
Tsagas, C.G., Kadiltzoglou, M.I., Asvesta, K., The deceleration parameter in “tilted” Friedmann universes: Newtonian vs relativistic treatment. Astrophys. Space Sci., 366(9), 2021, 90 arXiv:2105.09267 [gr-qc].
Tsagas, C.G., The deceleration parameter in ‘tilted’ universes: generalising the Friedmann background. Eur. Phys. J. C, 82(6), 2022, 521 arXiv:2112.04313 [gr-qc].
Asvesta, K., Kazantzidis, L., Perivolaropoulos, L., Tsagas, C.G., Observational constraints on the deceleration parameter in a tilted universe. Mon. Not. R. Astron. Soc. 513:2 (2022), 2394–2406 arXiv:2202.00962 [astro-ph.CO].
Santiago, J., Tsagas, C.G., Timelike vs null deceleration parameter in tilted Friedmann universes. 2022 arXiv:2203.01126 [gr-qc].
Tsagas, C.G., Challinor, A., Maartens, R., Relativistic cosmology and large-scale structure. Phys. Rep. 465 (2008), 61–147 arXiv:0705.4397 [astro-ph].
Krishnan, C., Mondol, R., Sheikh-Jabbari, M.M., Dipole cosmology: the Copernican paradigm beyond FLRW. J. Cosmol. Astropart. Phys., 07, 2023, 020 arXiv:2209.14918 [astro-ph.CO].
Krishnan, C., Mondol, R., Sheikh-Jabbari, M.M., A tilt instability in the cosmological principle. Eur. Phys. J. C, 83(9), 2023, 874 arXiv:2211.08093 [astro-ph.CO].
Ebrahimian, E., Krishnan, C., Mondol, R., Sheikh-Jabbari, M.M., Towards a realistic dipole cosmology: the dipole ΛCDM model. Cl. Quant. Grav., 41(14), 2024, 145007 arXiv:2305.16177 [astro-ph.CO].
Allahyari, A., Ebrahimian, E., Mondol, R., Sheikh-Jabbari, M.M., Big Bang in dipole cosmology. Eur. Phys. J. C, 85(2), 2025, 119 arXiv:2307.15791 [astro-ph.CO].
Heinesen, A., Buchert, T., Solving the curvature and Hubble parameter inconsistencies through structure formation-induced curvature. Cl. Quant. Grav., 37(16), 2020, 164001 arXiv:2002.10831 [gr-qc] Class. Quant. Grav., 37, 2020, 229601 (erratum).
Heinesen, A., Multipole decomposition of the general luminosity distance ’Hubble law’ – a new framework for observational cosmology. J. Cosmol. Astropart. Phys., 05, 2021, 008 arXiv:2010.06534 [astro-ph.CO].
Heinesen, A., Macpherson, H.J., A prediction for anisotropies in the nearby Hubble flow. J. Cosmol. Astropart. Phys., 03(03), 2022, 057 arXiv:2111.14423 [astro-ph.CO].
Guandalin, C., Piat, J., Clarkson, C., Maartens, R., Theoretical systematics in testing the cosmological principle with the kinematic quasar dipole. Astrophys. J., 953(2), 2023, 144 arXiv:2212.04925 [astro-ph.CO].
Maartens, R., Santiago, J., Clarkson, C., Kalbouneh, B., Marinoni, C., Covariant cosmography: the observer-dependence of the Hubble parameter. J. Cosmol. Astropart. Phys., 09, 2024, 070 arXiv:2312.09875 [astro-ph.CO].
Ellis, G.F.R., Baldwin, J.E., On the expected anisotropy of radio source counts. Mon. Not. R. Astro. Soc. 206 (1984), 377–381.
Perivolaropoulos, L., Skara, F., Challenges for ΛCDM: an update. New Astron. Rev., 95, 2022, 101659 arXiv:2105.05208 [astro-ph.CO].
Akarsu, O., Di Valentino, E., Kumar, S., Ozyigit, M., Sharma, S., Testing spatial curvature and anisotropic expansion on top of the ΛCDM model. Phys. Dark Univ., 39, 2023, 101162 arXiv:2112.07807 [astro-ph.CO].
Mariano, A., Perivolaropoulos, L., CMB Maximum temperature asymmetry Axis: Alignment with other cosmic asymmetries. Phys. Rev. D, 87(4), 2013, 043511 arXiv:1211.5915 [astro-ph.CO].
Webb, J.K., King, J.A., Murphy, M.T., Flambaum, V.V., Carswell, R.F., Bainbridge, M.B., Indications of a spatial variation of the fine structure constant. Phys. Rev. Lett., 107, 2011, 191101 arXiv:1008.3907 [astro-ph.CO].
Wilczynska, M.R., et al. Four direct measurements of the fine-structure constant 13 billion years ago. Sci. Adv., 6(17), 2020, eaay9672 arXiv:2003.07627 [astro-ph.CO].
Mohayaee, R., Rameez, M., Sarkar, S., Do supernovae indicate an accelerating universe?. Eur. Phys. J. ST 230:9 (2021), 2067–2076 arXiv:2106.03119 [astro-ph.CO].
Colin, J., Mohayaee, R., Rameez, M., Sarkar, S., Evidence for anisotropy of cosmic acceleration. Astron. Astrophys., 631, 2019, L13 arXiv:1808.04597 [astro-ph.CO].
Mohayaee, R., Rameez, M., Sarkar, S., Cosmological inference from within the peculiar local universe. Universe, 10(5), 2024, 209 arXiv:2003.10420 [astro-ph.CO].
Singal, A.K., Peculiar motion of Solar system from the Hubble diagram of supernovae Ia and its implications for cosmology. Mon. Not. R. Astron. Soc. 515:4 (2022), 5969–5980 arXiv:2106.11968 [astro-ph.CO].
Horstmann, N., Pietschke, Y., Schwarz, D.J., Inference of the cosmic rest-frame from supernovae Ia. Astron. Astrophys., 668, 2022, A34 arXiv:2111.03055 [astro-ph.CO].
Cowell, J.A., Dhawan, S., Macpherson, H.J., Potential signature of a quadrupolar hubble expansion in Pantheon+supernovae. Mon. Not. R. Astron. Soc. 526:1 (2023), 1482–1494 arXiv:2212.13569 [astro-ph.CO].
Mc Conville, R., Colgáin, E.O., Anisotropic distance ladder in Pantheon+supernovae. Phys. Rev. D, 108(12), 2023, 123533 arXiv:2304.02718 [astro-ph.CO].
Andrade, U., Bengaly, C.A.P., Alcaniz, J.S., Santos, B., Isotropy of low redshift type Ia Supernovae: A Bayesian analysis. Phys. Rev. D, 97(8), 2018, 083518 arXiv:1711.10536 [astro-ph.CO].
Bengaly, C.A.P., Evidence for cosmic acceleration with next-generation surveys: A model-independent approach. Mon. Not. R. Astron. Soc. 499:1 (2020), L6–L10 arXiv:1912.05528 [astro-ph.CO].
Rahman, W., Trotta, R., Boruah, S.S., Hudson, M.J., van Dyk, D.A., New constraints on anisotropic expansion from supernovae Type Ia. Mon. Not. R. Astron. Soc. 514:1 (2022), 139–163 arXiv:2108.12497 [astro-ph.CO].
Salehi, A., Farajollahi, H., Motahari, M., Pashamokhtari, P., Yarahmadi, M., Fathi, S., Are Type Ia supernova powerful tool to detect anisotropic expansion of the Universe?. Eur. Phys. J. C, 80(8), 2020, 753.
Hu, J.P., Wang, Y.Y., Wang, F.Y., Testing cosmic anisotropy with Pantheon sample and quasars at high redshifts. Astron. Astrophys., 643, 2020, A93 arXiv:2008.12439 [astro-ph.CO].
Dhawan, S., Borderies, A., Macpherson, H.J., Heinesen, A., The quadrupole in the local Hubble parameter: first constraints using Type Ia supernova data and forecasts for future surveys. Mon. Not. R. Astron. Soc. 519:4 (2023), 4841–4855 arXiv:2205.12692 [astro-ph.CO].
Sapone, D., Nesseris, S., Bengaly, C.A.P., Is there any measurable redshift dependence on the SN Ia absolute magnitude?. Phys. Dark Univ., 32, 2021, 100814 arXiv:2006.05461 [astro-ph.CO].
Bengaly, C.A.P., Alcaniz, J.S., Pigozzo, C., Testing the isotropy of cosmic acceleration with the Pantheon+ and SH0ES datasets: A cosmographic analysis. Phys. Rev. D, 109(12), 2024, 123533 arXiv:2402.17741 [astro-ph.CO].
Antoniou, I., Perivolaropoulos, L., Searching for a cosmological preferred axis: union2 data analysis and comparison with other probes. J. Cosmol. Astropart. Phys., 12, 2010, 012 arXiv:1007.4347 [astro-ph.CO].
Mariano, A., Perivolaropoulos, L., Is there correlation between fine structure and dark energy cosmic dipoles?. Phys. Rev. D, 86, 2012, 083517 arXiv:1206.4055 [astro-ph.CO].
Krishnan, C., Mohayaee, R., Colgáin, E.O., Sheikh-Jabbari, M.M., Yin, L., Hints of FLRW breakdown from supernovae. Phys. Rev. D, 105(6), 2022, 063514 arXiv:2106.02532 [astro-ph.CO].
Bahr-Kalus, B., Schwarz, D.J., Seikel, M., Wiegand, A., Constraints on anisotropic cosmic expansion from supernovae. Astron. Astrophys., 553, 2013, A56 arXiv:1212.3691 [astro-ph.CO].
Zhao, D., Zhou, Y., Chang, Z., Anisotropy of the Universe via the Pantheon supernovae sample revisited. Mon. Not. R. Astron. Soc. 486:4 (2019), 5679–5689 arXiv:1903.12401 [astro-ph.CO].
Kalbouneh, B., Marinoni, C., Bel, J., Multipole expansion of the local expansion rate. Phys. Rev. D, 107(2), 2023, 023507 arXiv:2210.11333 [astro-ph.CO].
Tang, L., Lin, H.-N., Liu, L., Li, X., Consistency of Pantheon+ supernovae with a large-scale isotropic universe*. Chin. Phys. C, 47(12), 2023, 125101 arXiv:2309.11320 [astro-ph.CO].
Hu, J.P., Wang, Y.Y., Hu, J., Wang, F.Y., Testing the cosmological principle with the Pantheon+ sample and the region-fitting method. Astron. Astrophys., 681, 2024, A88 arXiv:2310.11727 [astro-ph.CO].
Sorrenti, F., Durrer, R., Kunz, M., The dipole of the Pantheon+SH0ES data. J. Cosmol. Astropart. Phys., 11, 2023, 054 arXiv:2212.10328 [astro-ph.CO].
Perivolaropoulos, L., Isotropy properties of the absolute luminosity magnitudes of SnIa in the Pantheon+ and SH0ES samples. Phys. Rev. D, 108(6), 2023, 063509 arXiv:2305.12819 [astro-ph.CO].
Risaliti, G., Lusso, E., A hubble diagram for quasars. Astrophys. J., 815, 2015, 33 arXiv:1505.07118 [astro-ph.CO].
Risaliti, G., Lusso, E., Cosmological constraints from the Hubble diagram of quasars at high redshifts. Nat. Astron. 3:3 (2019), 272–277 arXiv:1811.02590 [astro-ph.CO].
Khadka, N., Ratra, B., Do quasar X-ray and UV flux measurements provide a useful test of cosmological models?. Mon. Not. R. Astron. Soc. 510:2 (2022), 2753–2772 arXiv:2107.07600 [astro-ph.CO].
Khadka, N., Zaja CČcek, M., Prince, R., Panda, S., Czerny, B., Martínez-Aldama, M.L., Jaiswal, V.K., Ratra, B., Quasar UV/X-ray relation luminosity distances are shorter than reverberation-measured radius–luminosity relation luminosity distances. Mon. Not. R. Astron. Soc. 522:1 (2023), 1247–1264 arXiv:2212.10483 [astro-ph.CO].
Colgáin, E.O., Sheikh-Jabbari, M.M., Yin, L., Do high redshift QSOs and GRBs corroborate JWST?. 2024 arXiv:2405.19953 [astro-ph.CO].
Secrest, N.J., von Hausegger, S., Rameez, M., Mohayaee, R., Sarkar, S., Colin, J., A test of the cosmological principle with quasars. Astrophys. J. Lett., 908(2), 2021, L51 arXiv:2009.14826 [astro-ph.CO].
Singal, A.K., Peculiar motion of the solar system derived from a dipole anisotropy in the redshift distribution of distant quasars. Mon. Not. R. Astron. Soc. 488:1 (2019), L104–L108 arXiv:1405.4796 [astro-ph.CO].
Dam, L., Lewis, G.F., Brewer, B.J., Testing the cosmological principle with CatWISE quasars: a bayesian analysis of the number-count dipole. Mon. Not. R. Astron. Soc. 525:1 (2023), 231–245 arXiv:2212.07733 [astro-ph.CO].
Kothari, R., Panwar, M., Singh, G., Tiwari, P., Jain, P., A study of dipolar signal in distant Quasars with various observables. Eur. Phys. J. C, 84(1), 2024, 75 arXiv:2208.14397 [astro-ph.CO].
Abghari, A., Bunn, E.F., Hergt, L.T., Li, B., Scott, D., Sullivan, R.M., Wei, D., Reassessment of the dipole in the distribution of quasars on the sky. J. Cosmol. Astropart. Phys., 11, 2024, 067 arXiv:2405.09762 [astro-ph.CO].
Luongo, O., Muccino, M., Colgáin, E.O., Sheikh-Jabbari, M.M., Yin, L., Larger H0 values in the CMB dipole direction. Phys. Rev. D, 105(10), 2022, 103510 arXiv:2108.13228 [astro-ph.CO].
Blake, C., Wall, J., Detection of the velocity dipole in the radio galaxies of the nrao vla sky survey. Nature 416 (2002), 150–152 arXiv:astro-ph/0203385.
Colin, J., Mohayaee, R., Rameez, M., Sarkar, S., High redshift radio galaxies and divergence from the CMB dipole. Mon. Not. R. Astron. Soc. 471:1 (2017), 1045–1055 arXiv:1703.09376 [astro-ph.CO].
Singal, A.K., Large peculiar motion of the solar system from the dipole anisotropy in sky brightness due to distant radio sources. Astrophys. J. Lett., 742, 2011, L23 arXiv:1110.6260 [astro-ph.CO].
Rubart, M., Schwarz, D.J., Cosmic radio dipole from NVSS and WENSS. Astron. Astrophys., 555, 2013, A117 arXiv:1301.5559 [astro-ph.CO].
Bengaly, C.A.P., Siewert, T.M., Schwarz, D.J., Maartens, R., Testing the standard model of cosmology with the SKA: the cosmic radio dipole. Mon. Not. R. Astron. Soc. 486:1 (2019), 1350–1357 arXiv:1810.04960 [astro-ph.CO].
Singal, A.K., Large disparity in cosmic reference frames determined from the sky distributions of radio sources and the microwave background radiation. Phys. Rev. D, 100(6), 2019, 063501 arXiv:1904.11362 [physics.gen-ph].
Siewert, T.M., Schmidt-Rubart, M., Schwarz, D.J., Cosmic radio dipole: Estimators and frequency dependence. Astron. Astrophys., 653, 2021, A9 arXiv:2010.08366 [astro-ph.CO].
Secrest, N.J., von Hausegger, S., Rameez, M., Mohayaee, R., Sarkar, S., A challenge to the standard cosmological model. Astrophys. J. Lett., 937(2), 2022, L31 arXiv:2206.05624 [astro-ph.CO].
Wagenveld, J.D., Klöckner, H.-R., Schwarz, D.J., The cosmic radio dipole: Bayesian estimators on new and old radio surveys. Astron. Astrophys., 675, 2023, A72 arXiv:2305.15335 [astro-ph.CO].
Singal, A.K., Resolution of the incongruency of dipole asymmetries within various large radio surveys – implications for the Cosmological Principle. Mon. Not. R. Astron. Soc. 528:4 (2024), 5679–5691 arXiv:2312.12785 [astro-ph.CO].
Gibelyou, C., Huterer, D., Dipoles in the sky. Mon. Not. R. Astron. Soc. 427 (2012), 1994–2021 arXiv:1205.6476 [astro-ph.CO].
Bengaly, C.A.P., Maartens, R., Randriamiarinarivo, N., Baloyi, A., Testing the cosmological principle in the radio sky. J. Cosmol. Astropart. Phys., 09, 2019, 025 arXiv:1905.12378 [astro-ph.CO].
Murray, C., The effects of lensing by local structures on the dipole of radio source counts. Mon. Not. R. Astron. Soc. 510:2 (2022), 3098–3101 arXiv:2112.06689 [astro-ph.CO].
Cheng, Y.-T., Chang, T.-C., Lidz, A., Is the radio source dipole from NVSS consistent with the cosmic microwave background and ΛCDM?. Astrophys. J., 965(1), 2024, 32 arXiv:2309.02490 [astro-ph.CO].
da Silveira Ferreira, P., Marra, V., Tomographic redshift dipole: testing the cosmological principle. J. Cosmol. Astropart. Phys., 09, 2024, 077 arXiv:2403.14580 [astro-ph.CO].
Oayda, O.T., Mittal, V., Lewis, G.F., Murphy, T., A Bayesian approach to the cosmic dipole in radio galaxy surveys: joint analysis of NVSS & RACS. Mon. Not. R. Astron. Soc. 531:4 (2024), 4545–4559 arXiv:2406.01871 [astro-ph.CO].
Schaefer, B.E., The hubble diagram to redshift >6 from 69 gamma-ray bursts. Astrophys. J. 660 (2007), 16–46 arXiv:astro-ph/0612285.
Basilakos, S., Perivolaropoulos, L., Testing GRBs as standard candles. Mon. Not. R. Astron. Soc. 391 (2008), 411–419 arXiv:0805.0875 [astro-ph].
Liang, N., Xiao, W.K., Liu, Y., Zhang, S.N., A cosmology independent calibration of gamma-ray burst luminosity relations and the hubble diagram. Astrophys. J., 685, 2008, 354 arXiv:0802.4262 [astro-ph].
Cao, S., Khadka, N., Ratra, B., Standardizing Dainotti-correlated gamma-ray bursts, and using them with standardized Amati-correlated gamma-ray bursts to constrain cosmological model parameters. Mon. Not. R. Astron. Soc. 510:2 (2022), 2928–2947 arXiv:2110.14840 [astro-ph.CO].
Hoffman, Y., Valade, A., Libeskind, N.I., Sorce, J.G., Tully, R.B., Pfeifer, S., Gottlöber, S., Pomarède, D., The large-scale velocity field from the Cosmicflows-4 data. Mon. Not. R. Astro. Soc. 527:2 (2024), 3788–3805 arXiv:2311.01340 [astro-ph.CO].
Watkins, R., Allen, T., Bradford, C.J., Ramon, A., Walker, A., Feldman, H.A., Cionitti, R., Al-Shorman, Y., Kourkchi, E., Tully, R.B., Analysing the large-scale bulk flow using cosmicflows4: increasing tension with the standard cosmological model. Mon. Not. R. Astron. Soc. 524:2 (2023), 1885–1892 arXiv:2302.02028 [astro-ph.CO].
Peery, S., Watkins, R., Feldman, H.A., Easily interpretable bulk flows: continuing tension with the standard cosmological model. Mon. Not. R. Astron. Soc. 481:1 (2018), 1368–1375 arXiv:1808.07772 [astro-ph.CO].
Kashlinsky, A., Atrio-Barandela, F., Kocevski, D., Ebeling, H., A measurement of large-scale peculiar velocities of clusters of galaxies: results and cosmological implications. Astrophys. J. Lett. 686 (2009), L49–L52 arXiv:0809.3734 [astro-ph].
Atrio-Barandela, F., Kashlinsky, A., Ebeling, H., Fixsen, D.J., Kocevski, D., Probing the dark flow signal in Wmap 9 -year and planck cosmic microwave background maps. Astrophys. J., 810(2), 2015, 143 arXiv:1411.4180 [astro-ph.CO].
Kashlinsky, A., Atrio-Barandela, F., Ebeling, H., Edge, A., Kocevski, D., A new measurement of the bulk flow of X-ray luminous clusters of galaxies. Astrophys. J. Lett. 712 (2010), L81–L85 arXiv:0910.4958 [astro-ph.CO].
Kashlinsky, A., Atrio-Barandela, F., Ebeling, H., Measuring the dark flow with public X-ray cluster data. Astrophys. J., 732, 2011, 1 arXiv:1012.3214 [astro-ph.CO].
Atrio-Barandela, F., On the statistical significance of the bulk flow measured by the PLANCK satellite. Astron. Astrophys., 557, 2013, A116 arXiv:1303.6614 [astro-ph.CO].
Aghanim, N., et al., Planck Collaboration. Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astron. Astrophys., 641, 2020, A1 arXiv:1807.06205 [astro-ph.CO].
Grande, J., Perivolaropoulos, L., Generalized LTB model with inhomogeneous isotropic dark energy: observational constraints. Phys. Rev. D, 84, 2011, 023514 arXiv:1103.4143 [astro-ph.CO].
Alnes, H., Amarzguioui, M., Gron, O., Can a dust dominated Universe have accelerated expansion?. J. Cosmol. Astropart. Phys., 01, 2007, 007 arXiv:astro-ph/0506449.
Ackerman, L., Carroll, S.M., Wise, M.B., Imprints of a primordial preferred direction on the microwave background. Phys. Rev. D, 75, 2007, 083502 arXiv:astro-ph/0701357 Phys. Rev. D, 80, 2009, 069901 (erratum).
Aurich, R., Lustig, S., Steiner, F., CMB anisotropy of the Poincare dodecahedron. Cl. Quant. Grav. 22 (2005), 2061–2083 arXiv:astro-ph/0412569.
Akrami, Y., et al., COMPACT Collaboration. Promise of future searches for cosmic topology. Phys. Rev. Lett., 132(17), 2024, 171501 arXiv:2210.11426 [astro-ph.CO].
Perivolaropoulos, L., Topological quintessence: Generalizing Lambda CDM with inhomogeneous dark energy. Romanian J. Phys. 57 (2012), 950–968.
Koivisto, T., Mota, D.F., Dark energy anisotropic stress and large scale structure formation. Phys. Rev. D, 73, 2006, 083502 arXiv:astro-ph/0512135.
Battye, R., Moss, A., Anisotropic dark energy and CMB anomalies. Phys. Rev. D, 80, 2009, 023531 arXiv:0905.3403 [astro-ph.CO].
Barrow, J.D., Cosmological limits on slightly skew stresses. Phys. Rev. D 55 (1997), 7451–7460 arXiv:gr-qc/9701038.
Barrow, J.D., Ferreira, P.G., Silk, J., Constraints on a primordial magnetic field. Phys. Rev. Lett. 78 (1997), 3610–3613 arXiv:astro-ph/9701063.
Campanelli, L., A model of universe anisotropization. Phys. Rev. D, 80, 2009, 063006 arXiv:0907.3703 [astro-ph.CO].
Maleknejad, A., Sheikh-Jabbari, M.M., Soda, J., Gauge fields and inflation. Phys. Rep. 528 (2013), 161–261 arXiv:1212.2921 [hep-th].
Dimopoulos, K., Karciauskas, M., Wagstaff, J.M., Vector curvaton with varying kinetic function. Phys. Rev. D, 81, 2010, 023522 arXiv:0907.1838 [hep-ph].
Karciauskas, M., Dimopoulos, K., Lyth, D.H., Anisotropic non-Gaussianity from vector field perturbations. Phys. Rev. D, 80, 2009, 023509 arXiv:0812.0264 [astro-ph] Phys. Rev. D, 85, 2012, 069905 (erratum).
Tsagas, C.G., Peculiar motions, accelerated expansion and the cosmological axis. Phys. Rev. D, 84, 2011, 063503 arXiv:1107.4045 [astro-ph.CO].
Anton, T., Clifton, T., Modelling the emergence of cosmic anisotropy from non-linear structures. Cl. Quant. Grav., 40(14), 2023, 145004 arXiv:2302.05715 [gr-qc].
Pastén, E., Cárdenas, V.H., Testing ΛCDM cosmology in a binned universe: Anomalies in the deceleration parameter. Phys. Dark Univ., 40, 2023, 101224 arXiv:2301.10740 [astro-ph.CO].
Tsagas, C.G., The peculiar Jeans length. Eur. Phys. J. C, 81(8), 2021, 753 arXiv:2103.15884 [gr-qc].
Roldan, O., Notari, A., Quartin, M., Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole?. J. Cosmol. Astropart. Phys., 06, 2016, 026 arXiv:1603.02664 [astro-ph.CO].
Yasini, S., Pierpaoli, E., Beyond the boost: measuring the intrinsic dipole of the cosmic microwave background using the spectral distortions of the monopole and quadrupole. Phys. Rev. Lett., 119(22), 2017, 221102 arXiv:1610.00015 [astro-ph.CO].
Ferreira, P.d.S., Quartin, M., First constraints on the intrinsic CMB dipole and our velocity with doppler and aberration. Phys. Rev. Lett., 127(10), 2021, 101301 arXiv:2011.08385 [astro-ph.CO].
Khan, M.I., Saha, R., Detection of dipole modulation in CMB temperature anisotropy maps from WMAP and planck using artificial intelligence. Astrophys. J., 947(2), 2023, 47 arXiv:2212.04438 [astro-ph.CO].
Kester, C.E., Bernui, A., Hipólito-Ricaldi, W.S., Probing the statistical isotropy of the universe with Planck data of the cosmic microwave background. Astron. Astrophys., 683, 2024, A176 arXiv:2310.02928 [astro-ph.CO].
King, J.A., Webb, J.K., Murphy, M.T., Flambaum, V.V., Carswell, R.F., Bainbridge, M.B., Wilczynska, M.R., Koch, F.E., Spatial variation in the fine-structure constant – new results from VLT/UVES. Mon. Not. R. Astron. Soc. 422 (2012), 3370–3413 arXiv:1202.4758 [astro-ph.CO].
Qiang, D.-C., Deng, H.-K., Wei, H., Cosmic anisotropy and fast radio bursts. Cl. Quant. Grav., 37(18), 2020, 185022 arXiv:1902.03580 [astro-ph.CO].
Lin, H.-N., Sang, Y., Probing the anisotropic distribution of baryon matter in the Universe using fast radio bursts *. Chin. Phys. C, 45(12), 2021, 125101 arXiv:2111.12934 [astro-ph.CO].
Oayda, O.T., Lewis, G.F., Testing the cosmological principle: on the time dilation of distant sources. Mon. Not. R. Astron. Soc. 523:1 (2023), 667–675 arXiv:2305.06771 [astro-ph.CO].
Mittal, V., Oayda, O.T., Lewis, G.F., The cosmic dipole in the quaia sample of quasars: a Bayesian analysis. Mon. Not. R. Astron. Soc., 527(3), 2024, 8497–8510 arXiv:2311.14938 [astro-ph.CO] Mon. Not. Roy. Astron. Soc. 530 (2024), 4763–4764 (erratum).
Iocco, F., Mangano, G., Miele, G., Pisanti, O., Serpico, P.D., Primordial Nucleosynthesis: from precision cosmology to fundamental physics. Phys. Rep. 472 (2009), 1–76 arXiv:0809.0631 [astro-ph].
Cyburt, R.H., Fields, B.D., Olive, K.A., Yeh, T.-H., Big bang nucleosynthesis: 2015. Rev. Modern Phys., 88, 2016, 015004 arXiv:1505.01076 [astro-ph.CO].
Big bang nucleosynthesis. Tanihata, I., Toki, H., Kajino, T., (eds.) Handbook of Nuclear Physics, 2023, Springer Nature Singapore, 1–21 arXiv:2301.12299 [astro-ph.CO].
Workman, R.L., et al., Particle Data Group Collaboration. Review of particle physics. PTEP, 2022, 2022, 083C01.
Yeh, T.-H., Olive, K.A., Fields, B.D., The impact of new d(p,γ)3 rates on Big Bang Nucleosynthesis. J. Cosmol. Astropart. Phys., 03, 2021, 046 arXiv:2011.13874 [astro-ph.CO].
Coc, A., Goriely, S., Xu, Y., Saimpert, M., Vangioni, E., Standard Big-Bang Nucleosynthesis up to CNO with an improved extended nuclear network. Astrophys. J., 744, 2012, 158 arXiv:1107.1117 [astro-ph.CO].
Consiglio, R., de Salas, P.F., Mangano, G., Miele, G., Pastor, S., Pisanti, O., PArthENoPE reloaded. Comput. Phys. Comm. 233 (2018), 237–242 arXiv:1712.04378 [astro-ph.CO].
Pitrou, C., Coc, A., Uzan, J.-P., Vangioni, E., A new tension in the cosmological model from primordial deuterium?. Mon. Not. R. Astron. Soc. 502:2 (2021), 2474–2481 arXiv:2011.11320 [astro-ph.CO].
Singh, V., Bhowmick, D., Basu, D.N., Re-examining the Lithium abundance problem in Big-Bang nucleosynthesis. Astropart. Phys., 162, 2024, 102995 arXiv:2304.08032 [nucl-th].
Gariazzo, S., F. de Salas, P., Pisanti, O., Consiglio, R., PArthENoPE revolutions. Comput. Phys. Comm., 271, 2022, 108205 arXiv:2103.05027 [astro-ph.IM].
Sbordone, L., et al. The metal-poor end of the Spite plateau. 1: Stellar parameters, metallicities and lithium abundances. Astron. Astrophys., 522, 2010, A26 arXiv:1003.4510 [astro-ph.GA].
Howk, J.C., Lehner, N., Fields, B.D., Mathews, G.J., The detection of interstellar lithium in a low-metallicity galaxy. Nature, 489, 2012, 121 arXiv:1207.3081 [astro-ph.CO].
Izzo, L., Molaro, P., Cescutti, G., Aydi, E., Selvelli, P., Harvey, E., Agnello, A., Bonifacio, P., Della Valle, M., Guido, E., Hernanz, M., Detection of 7Be II in the small magellanic cloud. Mon. Not. R. Astro. Soc. 510:4 (2022), 5302–5314 arXiv:2112.11859 [astro-ph.SR].
Fields, B.D., The primordial lithium problem. Ann. Rev. Nucl. Part. Sci. 61 (2011), 47–68 arXiv:1203.3551 [astro-ph.CO].
Spite, F., Spite, M., Abundance of lithium in unevolved halo stars and old disk stars: Interpretation and consequences. Astron. Astrophys. 115 (1982), 357–366.
Rebolo, R., Molaro, P., Beckman, J.E., Lithium abundances in metal-deficient dwarfs. Astron. Astrophys. 192 (1988), 192–205.
Matteucci, F., Molero, M., Aguado, D.S., Romano, D., The evolution of Lithium: implications of a universal Spite plateau. Mon. Not. R. Astro. Soc. 505:1 (2021), 200–206 arXiv:2104.11504 [astro-ph.GA].
Fu, X., Bressan, A., Molaro, P., Marigo, P., Lithium evolution in metal-poor stars: from pre-main sequence to the Spite plateau. Mon. Not. R. Astro. Soc. 452:3 (2015), 3256–3265 arXiv:1506.05993 [astro-ph.SR].
Fields, B.D., Olive, K.A., Implications of the non-observation of 6Li in halo stars for the primordial 7Li problem. J. Cosmol. Astropart. Phys., 10, 2022, 078 arXiv:2204.03167 [astro-ph.GA].
Smith, V.V., Lambert, D.L., Nissen, P.E., The 6Li/7Li ratio in the metal-poor halo dwarfs HD 19445 and HD 84937. Astrophys. J. 408 (1993), 262–276.
Hobbs, L.M., Thorburn, J.A., Lithium isotope ratios in six halo stars. Astrophys. J. Lett., 428, 1994, L25.
Hobbs, L.M., Thorburn, J.A., Lithium isotope ratios in halo stars. II. Astrophys. J. 491:2 (1997), 772–788.
Smith, V.V., Lambert, D.L., Nissen, P.E., Isotopic lithium abundances in nine halo stars. Astrophys. J. 506:1 (1998), 405–423.
Hobbs, L.M., Thorburn, J.A., Rebull, L.M., Lithium isotope ratios in halo stars. III. Astrophys. J. 523:2 (1999), 797–804.
Cayrel, R., Spite, M., Spite, F., Vangioni-Flam, E., Casse, M., Cayrel, J.A.R., Audouze, J., New high s/n observations of the li-6/li-7 blend in hd 84937 and two other metal-poor stars. Astron. Astrophys., 343, 1999, 923 arXiv:astro-ph/9901205.
Asplund, M., Lambert, D.L., Nissen, P.E., Primas, F., Smith, V.V., Lithium isotopic abundances in metal-poor halo stars. Astrophys. J. 644 (2006), 229–259 arXiv:astro-ph/0510636.
Steffen, M., Cayrel, R., Bonifacio, P., Ludwig, H.G., Caffau, E., 6Li in metal-poor halo stars: real or spurious?. IAU Symp., 265, 2010, 23 arXiv:0910.5917 [astro-ph.SR].
Perez, A.E.G., Aoki, W., Inoue, S., Ryan, S.G., Suzuki, T.K., Chiba, M., 6Li/7Li estimates for metal-poor stars. Astron. Astrophys., 504, 2009, 213 arXiv:0909.5163 [astro-ph.SR].
Lind, K., Melendez, J., Asplund, M., Collet, R., Magic, Z., The lithium isotopic ratio in very metal-poor stars. Astron. Astrophys., 554, 2013, A96 arXiv:1305.6564 [astro-ph.SR].
Wang, E.X., Nordlander, T., Asplund, M., Lind, K., Zhou, Y., Reggiani, H., Non-detection of 6Li in Spite plateau stars with ESPRESSO. Mon. Not. R. Astron. Soc. 509:1 (2021), 1521–1535 arXiv:2110.03822.
Korn, A., The ups and downs of inferred cosmological lithium. EPJ Web Conf., 297, 2024, 01007 arXiv:2406.09974 [astro-ph.SR].
Gao, X., et al., GALAH Collaboration. The GALAH Survey: A new constraint on cosmological lithium and Galactic lithium evolution from warm dwarf stars. Mon. Not. R. Astron. Soc. 497:1 (2020), L30–L34 arXiv:2006.05173 [astro-ph.SR].
Olive, K.A., Petitjean, P., Vangioni, E., Silk, J., Higher D or Li: probes of physics beyond the standard model. Mon. Not. R. Astron. Soc., 426, 2012, 1427 arXiv:1203.5701 [astro-ph.CO].
Coc, A., Pospelov, M., Uzan, J.-P., Vangioni, E., Modified big bang nucleosynthesis with nonstandard neutron sources. Phys. Rev. D, 90(8), 2014, 085018 arXiv:1405.1718 [hep-ph].
Jedamzik, K., Neutralinos and Big Bang nucleosynthesis. Phys. Rev. D, 70, 2004, 083510 arXiv:astro-ph/0405583.
Jedamzik, K., Did something decay, evaporate, or annihilate during Big Bang nucleosynthesis?. Phys. Rev. D, 70, 2004, 063524 arXiv:astro-ph/0402344.
Goudelis, A., Pospelov, M., Pradler, J., Light particle solution to the cosmic lithium problem. Phys. Rev. Lett., 116(21), 2016, 211303 arXiv:1510.08858 [hep-ph].
Hou, S.Q., He, J.J., Parikh, A., Kahl, D., Bertulani, C.A., Kajino, T., Mathews, G.J., Zhao, G., Non-extensive statistics to the cosmological lithium problem. Astrophys. J., 834(2), 2017, 165 arXiv:1701.04149 [astro-ph.CO].
Nakamura, R., Hasahimoto, M.-a., Ichimasa, R., Arai, K., Big-Bang nucleosynthesis: Constraints on nuclear reaction rates, neutrino degeneracy, inhomogeneous and Brans–Dicke models. Int. J. Mod. Phys. E, 26(08), 2017, 1741003 arXiv:1710.08153 [astro-ph.CO].
Yamazaki, D.G., Kusakabe, M., Kajino, T., Mathews, G.J., Cheoun, M.-K., The new hybrid BBN model with the photon cooling, X particle, and the primordial magnetic field. Int. J. Mod. Phys. E, 26(08), 2017, 1741006.
Makki, T.R., El Eid, M.F., Mathews, G.J., Impact of neutrino properties and dark matter on the primordial lithium production. Int. J. Mod. Phys. E, 28(08), 2019, 1950065 arXiv:1901.03726 [astro-ph.CO].
Makki, T.R., El Eid, M.F., Mathews, G.J., A critical analysis of the Big Bang Nucleosynthesis. Modern Phys. Lett. A, 34(24), 2019, 1950194.
Burns, A.-K., Keus, V., Sher, M., Tait, T.M.P., Constraints on variation of the weak scale from big bang nucleosynthesis. Phys. Rev. D, 109(12), 2024, 123506 arXiv:2402.08626 [hep-ph].
Huang, G.-y., Rodejohann, W., Solving the Hubble tension without spoiling Big Bang Nucleosynthesis. Phys. Rev. D, 103, 2021, 123007 arXiv:2102.04280 [hep-ph].
Mathews, G.J., Kedia, A., Sasankan, N., Kusakabe, M., Luo, Y., Kajino, T., Yamazaki, D., Makki, T., Eid, M.E., Cosmological solutions to the lithium problem. JPS Conf. Proc., 31, 2020, 011033 arXiv:1909.01245 [astro-ph.CO].
Bania, T.M., Rood, R.T., Balser, D.S., The cosmological density of baryons from observations of 3He+ in the Milky Way. Nature 415 (2002), 54–57.
Aver, E., Berg, D.A., Olive, K.A., Pogge, R.W., Salzer, J.J., Skillman, E.D., Improving helium abundance determinations with Leo P as a case study. J. Cosmol. Astropart. Phys., 03, 2021, 027 arXiv:2010.04180 [astro-ph.CO].
Valerdi, M., Peimbert, A., Peimbert, M., Sixtos, A., Determination of the primordial helium abundance based on NGC 346, an H ii region of the small magellanic cloud. Astrophys. J., 876(2), 2019, 98 arXiv:1904.01594 [astro-ph.GA].
Fernández, V., Terlevich, E., Díaz, A.I., Terlevich, R., A Bayesian direct method implementation to fit emission line spectra: Application to the primordial He abundance determination. Mon. Not. R. Astron. Soc. 487:3 (2019), 3221–3238 arXiv:1905.09215 [astro-ph.GA].
Kurichin, O.A., Kislitsyn, P.A., Klimenko, V.V., Balashev, S.A., Ivanchik, A.V., A new determination of the primordial helium abundance using the analyses of H II region spectra from SDSS. Mon. Not. R. Astron. Soc. 502:2 (2021), 3045–3056 arXiv:2101.09127 [astro-ph.CO].
Hsyu, T., Cooke, R.J., Prochaska, J.X., Bolte, M., The PHLEK survey: a new determination of the primordial helium abundance. Astrophys. J., 896(1), 2020, 77 arXiv:2005.12290 [astro-ph.GA].
Valerdi, M., Peimbert, A., Peimbert, M., Chemical abundances in seven metal-poor H II regions and a determination of the primordial helium abundance. Mon. Not. R. Astro. Soc. 505:3 (2021), 3624–3634 arXiv:2105.12260 [astro-ph.GA].
Matsumoto, A., et al. EMPRESS. VIII. A new determination of primordial he abundance with extremely metal-poor galaxies: a suggestion of the lepton asymmetry and implications for the hubble tension. Astrophys. J., 941(2), 2022, 167 arXiv:2203.09617 [astro-ph.CO].
Takahashi, T., Yamashita, S., Big bang nucleosynthesis and early dark energy in light of the EMPRESS Yp results and the H0 tension. Phys. Rev. D, 107(10), 2023, 103520 arXiv:2211.04087 [astro-ph.CO].
Escudero, M., Ibarra, A., Maura, V., Primordial lepton asymmetries in the precision cosmology era: Current status and future sensitivities from BBN and the CMB. Phys. Rev. D, 107(3), 2023, 035024 arXiv:2208.03201 [hep-ph].
Izotov, Y.I., Thuan, T.X., Guseva, N.G., A new determination of the primordial He abundance using the He i λ10830 Å emission line: cosmological implications. Mon. Not. R. Astron. Soc. 445:1 (2014), 778–793 arXiv:1408.6953 [astro-ph.CO].
Pitrou, C., Coc, A., Uzan, J.-P., Vangioni, E., Resolving conclusions about the early Universe requires accurate nuclear measurements. Nat. Rev. Phys. 3:4 (2021), 231–232 arXiv:2104.11148 [astro-ph.CO].
Pisanti, O., Mangano, G., Miele, G., Mazzella, P., Primordial Deuterium after LUNA: concordances and error budget. J. Cosmol. Astropart. Phys., 04, 2021, 020 arXiv:2011.11537 [astro-ph.CO].
Di Valentino, E., Gustavino, C., Lesgourgues, J., Mangano, G., Melchiorri, A., Miele, G., Pisanti, O., Probing nuclear rates with Planck and BICEP2. Phys. Rev. D, 90(2), 2014, 023543 arXiv:1404.7848 [astro-ph.CO].
Addison, G.E., Hinshaw, G., Halpern, M., Cosmological constraints from baryon acoustic oscillations and clustering of large-scale structure. Mon. Not. R. Astron. Soc. 436 (2013), 1674–1683 arXiv:1304.6984 [astro-ph.CO].
Addison, G.E., Watts, D.J., Bennett, C.L., Halpern, M., Hinshaw, G., Weiland, J.L., Elucidating ΛCDM: impact of baryon acoustic oscillation measurements on the hubble constant discrepancy. Astrophys. J., 853(2), 2018, 119 arXiv:1707.06547 [astro-ph.CO].
Blomqvist, M., et al., eBOSS Collaboration. Baryon acoustic oscillations from the cross-correlation of Lyα absorption and quasars in eBOSS DR14. Astron. Astrophys., 629, 2019, A86 arXiv:1904.03430 [astro-ph.CO].
Cuceu, A., Farr, J., Lemos, P., Font-Ribera, A., Baryon acoustic oscillations and the hubble constant: past, present and future. J. Cosmol. Astropart. Phys., 10, 2019, 044 arXiv:1906.11628 [astro-ph.CO].
Schöneberg, N., Verde, L., Gil-Marín, H., Brieden, S., BAO+BBN revisited — growing the Hubble tension with a 0.7 km/s/Mpc constraint. J. Cosmol. Astropart. Phys., 11, 2022, 039 arXiv:2209.14330 [astro-ph.CO].
Schöneberg, N., Vacher, L., The mass effect — variations of the electron mass and their impact on cosmology. J. Cosmol. Astropart. Phys., 03, 2025, 004 arXiv:2407.16845 [astro-ph.CO].
McQuinn, M., The evolution of the intergalactic medium. Ann. Rev. Astron. Astrophys. 54 (2016), 313–362 arXiv:1512.00086 [astro-ph.CO].
du Mas des Bourboux, H., et al., eBOSS Collaboration. The completed SDSS-IV extended baryon oscillation spectroscopic survey: baryon acoustic oscillations with Lyα forests. Astrophys. J., 901(2), 2020, 153 arXiv:2007.08995 [astro-ph.CO].
Cuceu, A., Font-Ribera, A., Joachimi, B., Nadathur, S., Cosmology beyond BAO from the 3D distribution of the Lyman-α forest. Mon. Not. R. Astron. Soc. 506:4 (2021), 5439–5450 arXiv:2103.14075 [astro-ph.CO].
de Belsunce, R., Philcox, O.H.E., Irsic, V., McDonald, P., Guy, J., Palanque-Delabrouille, N., The 3D Lyman-α forest power spectrum from eBOSS DR16. Mon. Not. R. Astron. Soc. 533:3 (2024), 3756–3770 arXiv:2403.08241 [astro-ph.CO].
Ravoux, C., et al., DESI Collaboration. The Dark Energy Spectroscopic Instrument: one-dimensional power spectrum from first Ly α forest samples with Fast Fourier Transform. Mon. Not. R. Astron. Soc. 526:4 (2023), 5118–5140 arXiv:2306.06311 [astro-ph.CO].
Karaçaylı, N.G., et al. Optimal 1D Lyα forest power spectrum estimation – III. DESI early data. Mon. Not. R. Astron. Soc. 528:3 (2024), 3941–3963 arXiv:2306.06316 [astro-ph.CO].
Narayanan, V.K., Spergel, D.N., Dave, R., Ma, C.-P., Constraints on the mass of warm dark matter particles and the shape of the linear power spectrum from the Lyα forest. Astrophys. J. Lett. 543 (2000), L103–L106 arXiv:astro-ph/0005095.
Seljak, U., Slosar, A., McDonald, P., Cosmological parameters from combining the Lyman-alpha forest with CMB, galaxy clustering and SN constraints. J. Cosmol. Astropart. Phys., 10, 2006, 014 arXiv:astro-ph/0604335.
Viel, M., Schaye, J., Booth, C.M., The impact of feedback from galaxy formation on the Lyman-alpha transmitted flux. Mon. Not. R. Astron. Soc., 429, 2013, 1734 arXiv:1207.6567 [astro-ph.CO].
Iršič, V., et al. The Lyman α forest power spectrum from the XQ-100 legacy survey. Mon. Not. R. Astron. Soc. 466:4 (2017), 4332–4345 arXiv:1702.01761 [astro-ph.CO].
Boera, E., Becker, G.D., Bolton, J.S., Nasir, F., Revealing reionization with the thermal history of the intergalactic medium: new constraints from the Lyα flux power spectrum. Astrophys. J., 872(1), 2019, 101 arXiv:1809.06980 [astro-ph.CO].
Karaçaylı, N.G., et al. Optimal 1D Ly α forest power spectrum estimation – II. KODIAQ, SQUAD, and XQ-100. Mon. Not. R. Astron. Soc. 509:2 (2022), 2842–2855 arXiv:2108.10870 [astro-ph.CO].
Villasenor, B., Robertson, B., Madau, P., Schneider, E., New constraints on warm dark matter from the Lyman-α forest power spectrum. Phys. Rev. D, 108(2), 2023, 023502 arXiv:2209.14220 [astro-ph.CO].
Puchwein, E., et al. The Sherwood–Relics simulations: overview and impact of patchy reionization and pressure smoothing on the intergalactic medium. Mon. Not. R. Astron. Soc. 519:4 (2023), 6162–6183 arXiv:2207.13098 [astro-ph.CO].
Doughty, C.C., Hennawi, J.F., Davies, F.B., Lukić, Z., Oñorbe, J., Convergence of small scale Ly α structure at high-z under different reionization scenarios. Mon. Not. R. Astron. Soc. 525:3 (2023), 3790–3805 arXiv:2305.16200 [astro-ph.CO].
Bird, S., Fernandez, M., Ho, M.-F., Qezlou, M., Monadi, R., Ni, Y., Chen, N., Croft, R., Di Matteo, T., PRIYA: a new suite of Lyman-α forest simulations for cosmology. J. Cosmol. Astropart. Phys., 10, 2023, 037 arXiv:2306.05471 [astro-ph.CO].
McDonald, P., et al., SDSS Collaboration. The Linear theory power spectrum from the Lyman-alpha forest in the Sloan Digital Sky Survey. Astrophys. J. 635 (2005), 761–783 arXiv:astro-ph/0407377.
Pedersen, C., Font-Ribera, A., Gnedin, N.Y., Compressing the cosmological information in one-dimensional correlations of the Lyα forest. Astrophys. J., 944(2), 2023, 223 arXiv:2209.09895 [astro-ph.CO].
Viel, M., Lesgourgues, J., Haehnelt, M.G., Matarrese, S., Riotto, A., Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest. Phys. Rev. D, 71, 2005, 063534 arXiv:astro-ph/0501562.
Iršič, V., Viel, M., Haehnelt, M.G., Bolton, J.S., Becker, G.D., First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations. Phys. Rev. Lett., 119(3), 2017, 031302 arXiv:1703.04683 [astro-ph.CO].
Armengaud, E., Palanque-Delabrouille, N., Yèche, C., Marsh, D.J.E., Baur, J., Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest. Mon. Not. R. Astron. Soc. 471:4 (2017), 4606–4614 arXiv:1703.09126 [astro-ph.CO].
Palanque-Delabrouille, N., Yèche, C., Schöneberg, N., Lesgourgues, J., Walther, M., Chabanier, S., Armengaud, E., Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data. J. Cosmol. Astropart. Phys., 04, 2020, 038 arXiv:1911.09073 [astro-ph.CO].
Rogers, K.K., Peiris, H.V., General framework for cosmological dark matter bounds using N-body simulations. Phys. Rev. D, 103(4), 2021, 043526 arXiv:2007.13751 [astro-ph.CO].
Iršič, V., et al. Unveiling dark matter free streaming at the smallest scales with the high redshift Lyman-alpha forest. Phys. Rev. D, 109(4), 2024, 043511 arXiv:2309.04533 [astro-ph.CO].
Chabanier, S., et al., eBOSS Collaboration. The one-dimensional power spectrum from the SDSS DR14 Lyα forests. J. Cosmol. Astropart. Phys., 07, 2019, 017 arXiv:1812.03554 [astro-ph.CO].
Fernandez, M.A., Bird, S., Ho, M.-F., Cosmological constraints from the eBOSS Lyman-α forest using the PRIYA simulations. J. Cosmol. Astropart. Phys., 07, 2024, 029 arXiv:2309.03943 [astro-ph.CO].
Iršič, V., et al. New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data. Phys. Rev. D, 96(2), 2017, 023522 arXiv:1702.01764 [astro-ph.CO].
Yèche, C., Palanque-Delabrouille, N., Baur, J., du Mas des Bourboux, H., Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100. J. Cosmol. Astropart. Phys., 06, 2017, 047 arXiv:1702.03314 [astro-ph.CO].
Esposito, M., Iršič, V., Costanzi, M., Borgani, S., Saro, A., Viel, M., Weighing cosmic structures with clusters of galaxies and the intergalactic medium. Mon. Not. R. Astron. Soc. 515:1 (2022), 857–870 arXiv:2202.00974 [astro-ph.CO].
Goldstein, S., Hill, J.C., Iršič, V., Sherwin, B.D., Canonical hubble-tension-resolving early dark energy cosmologies are inconsistent with the Lyman-α forest. Phys. Rev. Lett., 131(20), 2023, 201001 arXiv:2303.00746 [astro-ph.CO].
Rogers, K.K., Poulin, V., 5σ tension between Planck cosmic microwave background and eBOSS Lyman-alpha forest and constraints on physics beyond ΛCDM. Phys. Rev. Res., 7(1), 2025, L012018 arXiv:2311.16377 [astro-ph.CO].
Kobayashi, T., Murgia, R., De Simone, A., Iršič, V., Viel, M., Lyman-α constraints on ultralight scalar dark matter: Implications for the early and late universe. Phys. Rev. D, 96(12), 2017, 123514 arXiv:1708.00015 [astro-ph.CO].
Baur, J., Palanque-Delabrouille, N., Yeche, C., Boyarsky, A., Ruchayskiy, O., Armengaud, E., Lesgourgues, J., Constraints from Ly-α forests on non-thermal dark matter including resonantly-produced sterile neutrinos. J. Cosmol. Astropart. Phys., 12, 2017, 013 arXiv:1706.03118 [astro-ph.CO].
Gaikwad, P., et al. Probing the thermal state of the intergalactic medium at z > 5 with the transmission spikes in high-resolution Ly α forest spectra. Mon. Not. R. Astron. Soc. 494:4 (2020), 5091–5109 arXiv:2001.10018 [astro-ph.CO].
Montero-Camacho, P., Hirata, C.M., Martini, P., Honscheid, K., Impact of inhomogeneous reionization on the Lyman-α forest. Mon. Not. R. Astron. Soc. 487:1 (2019), 1047–1056 arXiv:1902.02892 [astro-ph.CO].
Molaro, M., Iršič, V., Bolton, J.S., Lieu, M., Keating, L.C., Puchwein, E., Haehnelt, M.G., Viel, M., Possible evidence for a large-scale enhancement in the Lyman-α forest power spectrum at redshift z ≥ 4. Mon. Not. R. Astron. Soc. 521:1 (2023), 1489–1501 arXiv:2303.05167 [astro-ph.CO].
Einasto, J., Dark Matter and Cosmic Web Story. 2014, World Scientific Publishing Co.
Einasto, M., Einasto, J., Tenjes, P., Korhonen, S., Kipper, R., Tempel, E., Liivamägi, L.J., Heinämäki, P., Galaxy groups and clusters and their brightest galaxies within the cosmic web. Astron. Astrophys., 681, 2024, A91 arXiv:2311.01868 [astro-ph.CO].
Sankhyayan, S., Bagchi, J., Tempel, E., More, S., Einasto, M., Dabhade, P., Raychaudhury, S., Athreya, R., Heinämäki, P., Identification of superclusters and their properties in the sloan digital sky survey using the WHL cluster catalog. Astrophys. J., 958(1), 2023, 62 arXiv:2309.06251 [astro-ph.CO].
Einasto, J., Suhhonenko, I., Liivamägi, L.J., Einasto, M., Evolution of superclusters in the cosmic web. Astron. Astrophys., 623, 2019, A97 arXiv:1901.09378 [astro-ph.CO].
Einasto, M., Einasto, J., Tago, E., Dalton, G.B., Andernach, H., The structure of the universe traced by rich clusters of galaxies. Mon. Not. R. Astro. Soc. 269 (1994), 301–322.
Lietzen, H., Tempel, E., Liivamägi, L.J., Montero-Dorta, A., Einasto, M., Streblyanska, A., Maraston, C., Rubiño Martín, J.A., Saar, E., Discovery of a massive supercluster system at z ∼ 0.47. Astron. Astrophys., 588, 2016, L4 arXiv:1602.08498 [astro-ph.CO].
Einasto, M., Kipper, R., Tenjes, P., Lietzen, H., Tempel, E., Liivamägi, L.J., Einasto, J., Tamm, A., Heinämäki, P., Nurmi, P., The Corona Borealis supercluster: connectivity, collapse, and evolution. Astron. Astrophys., 649, 2021, A51 arXiv:2103.02326 [astro-ph.CO].
Aghanim, N., Tuominen, T., Bonjean, V., Gouin, C., Bonnaire, T., Einasto, M., Dissecting a miniature universe: A multi-wavelength view of galaxy quenching in the Shapley supercluster. Astron. Astrophys., 689, 2024, A332 arXiv:2402.18455 [astro-ph.CO].
Liivamagi, L.J., Tempel, E., Saar, E., SDSS DR7 superclusters. The catalogues. Astron. Astrophys., 539, 2012, A80 arXiv:1012.1989 [astro-ph.CO].
Tully, R.B., Courtois, H., Hoffman, Y., Pomarède, D., The Laniakea supercluster of galaxies. Nature, 513(7516), 2014, 71 arXiv:1409.0880 [astro-ph.CO].
Dupuy, A., Courtois, H.M., Dynamic cosmography of the local Universe: Laniakea and five more watershed superclusters. Astron. Astrophys., 678, 2023, A176 arXiv:2305.02339 [astro-ph.CO].
Einasto, M., et al. The Sloan Great Wall. Morphology and galaxy content. Astrophys. J., 736, 2011, 51 arXiv:1105.1632 [astro-ph.CO].
Zúñiga, J.M., Caretta, C.A., Andernach, H., Nucleation regions in the Large-Scale Structure I: A catalogue of cores in nearby rich superclusters. Publ. Astron. Soc. Austral., 41, 2024, e078 arXiv:2405.13280 [astro-ph.CO].
Lim, S., Lee, J., An analytic formula for the supercluster mass function. Astrophys. J., 783, 2014, 39 arXiv:1201.1382 [astro-ph.CO].
Nadathur, S., Hotchkiss, S., Sarkar, S., The integrated Sachs-Wolfe imprints of cosmic superstructures: a problem for ΛCDM. J. Cosmol. Astropart. Phys., 06, 2012, 042 arXiv:1109.4126 [astro-ph.CO].
Granett, B.R., Neyrinck, M.C., Szapudi, I., An imprint of super-structures on the microwave background due to the integrated sachs-wolfe effect. Astrophys. J. Lett. 683 (2008), L99–L102 arXiv:0805.3695 [astro-ph].
Gialamas, I.D., Hütsi, G., Kannike, K., Racioppi, A., Raidal, M., Vasar, M., Veermäe, H., Interpreting DESI 2024 BAO: Late-time dynamical dark energy or a local effect?. Phys. Rev. D, 111(4), 2025, 043540 arXiv:2406.07533 [astro-ph.CO].
Reyhani, M., Najafi, M., Firouzjaee, J.T., Di Valentino, E., Structure formation in various dynamical dark energy scenarios. Phys. Dark Univ., 44, 2024, 101477 arXiv:2403.15202 [astro-ph.CO].
Sachs, R.K., Wolfe, A.M., Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147 (1967), 73–90.
Rees, M.J., Sciama, D.W., Large scale density inhomogeneities in the universe. Nature 217 (1968), 511–516.
Flender, S., Hotchkiss, S., Nadathur, S., The stacked ISW signal of rare superstructures in Λ CDM. J. Cosmol. Astropart. Phys., 02, 2013, 013 arXiv:1212.0776 [astro-ph.CO].
Hernandez-Monteagudo, C., Smith, R.E., On the signature of nearby superclusters and voids in the Integrated Sachs-Wolfe effect. Mon. Not. R. Astron. Soc., 435, 2013, 1094 arXiv:1212.1174 [astro-ph.CO].
Aiola, S., Kosowsky, A., Wang, B., Gaussian approximation of peak values in the integrated sachs-wolfe effect. Phys. Rev. D, 91, 2015, 043510 arXiv:1410.6138 [astro-ph.CO].
Sołtan, A.M., ISW in ΛCDM or something else?. Mon. Not. R. Astron. Soc. 488:2 (2019), 2732–2742 arXiv:1812.09348 [astro-ph.CO].
Cai, Y.-C., Neyrinck, M., Mao, Q., Peacock, J.A., Szapudi, I., Berlind, A.A., The lensing and temperature imprints of voids on the Cosmic Microwave Background. Mon. Not. R. Astron. Soc. 466:3 (2017), 3364–3375 arXiv:1609.00301 [astro-ph.CO].
Kovács, A., The part and the whole: voids, supervoids, and their ISW imprint. Mon. Not. R. Astron. Soc. 475:2 (2018), 1777–1790 arXiv:1701.08583 [astro-ph.CO].
Nadathur, S., Crittenden, R., A detection of the integrated Sachs-Wolfe imprint of cosmic superstructures using a matched-filter approach. Astrophys. J. Lett., 830(1), 2016, L19 arXiv:1608.08638 [astro-ph.CO].
Kovács, A., et al., DES Collaboration. Imprint of DES superstructures on the cosmic microwave background. Mon. Not. R. Astron. Soc. 465:4 (2017), 4166–4179 arXiv:1610.00637 [astro-ph.CO].
Kovács, A., et al., DES Collaboration. More out of less: an excess integrated Sachs-Wolfe signal from supervoids mapped out by the Dark Energy Survey. Mon. Not. R. Astron. Soc. 484 (2019), 5267–5277 arXiv:1811.07812 [astro-ph.CO].
Cruz, M., Martinez-Gonzalez, E., Vielva, P., Cayon, L., Detection of a non-gaussian spot in wmap. Mon. Not. R. Astron. Soc. 356 (2005), 29–40 arXiv:astro-ph/0405341.
Finelli, F., García-Bellido, J., Kovács, A., Paci, F., Szapudi, I., Supervoids in the WISE–2MASS catalogue imprinting cold spots in the cosmic microwave background. Mon. Not. R. Astron. Soc. 455:2 (2016), 1246–1256 arXiv:1405.1555 [astro-ph.CO].
Pataki, A., Raffai, P., Csabai, I., Rácz, G., Szapudi, I., Constraints on AvERA cosmologies from cosmic chronometers and type ia supernovae. 2025 arXiv:2503.21369 [astro-ph.CO].
Buchert, T., et al. Is there proof that backreaction of inhomogeneities is irrelevant in cosmology?. Cl. Quant. Grav., 32, 2015, 215021 arXiv:1505.07800 [gr-qc].
Wiltshire, D.L., Solution to the cosmological constant problem. 2024 arXiv:2404.02129 [gr-qc].
Williams, M.J., Macpherson, H.J., Wiltshire, D.L., Stevens, C., First investigation of void statistics in numerical relativity simulations. Mon. Not. R. Astron. Soc. 536 (2025), 2645–2660 arXiv:2403.15134 [astro-ph.CO].
Kovács, A., Beck, R., Smith, A., Rácz, G., Csabai, I., Szapudi, I., Evidence for a high-z ISW signal from supervoids in the distribution of eBOSS quasars. Mon. Not. R. Astron. Soc. 513:1 (2022), 15–26 arXiv:2107.13038 [astro-ph.CO].
Myers, A.D., et al., eBOSS Collaboration. The SDSS-IV extended baryon oscillation spectroscopic survey: quasar target selection. Astrophys. J. Suppl., 221(2), 2015, 27 arXiv:1508.04472 [astro-ph.CO].
Gott, III, J.R., Juric, M., Schlegel, D., Hoyle, F., Vogeley, M., Tegmark, M., Bahcall, N.A., Brinkmann, J., A map of the universe. Astrophys. J., 624, 2005, 463 arXiv:astro-ph/0310571.
Einasto, M., Lietzen, H., Gramann, M., Tempel, E., Saar, E., Liivamägi, L.J., Heinämäki, P., Nurmi, P., Einasto, J., Sloan Great Wall as a complex of superclusters with collapsing cores. Astron. Astrophys., 595, 2016, A70 arXiv:1608.04988 [astro-ph.CO].
Einasto, M., Tenjes, P., Gramann, M., Lietzen, H., Kipper, R., Liivamägi, L.J., Tempel, E., Sankhyayan, S., Einasto, J., The evolution of high-density cores of the BOSS Great Wall superclusters. Astron. Astrophys., 666, 2022, A52 arXiv:2204.08918 [astro-ph.CO].
Einasto, J., et al. Luminous superclusters: remnants from inflation. Astron. Astrophys., 459, 2006, L1 arXiv:astro-ph/0605393.
Sheth, R.K., Diaferio, A., How unusual are the shapley supercluster and the sloan great wall?. Mon. Not. R. Astron. Soc. 417 (2011), 2938–2949 arXiv:1105.3378 [astro-ph.CO].
Park, C., Choi, Y.-Y., Kim, J., Gott, J.R. III, Kim, S.S., Kim, K.-S., The challenge of the largest structures in the universe to cosmology. Astrophys. J. Lett., 759, 2012, L7 arXiv:1209.5659 [astro-ph.CO].
Einasto, J., Miller, R.H., Neighboring superclusters and their environs. Abell, G.O., Chincarini, G., (eds.) Early Evolution of the Universe and its Present Structure IAU Symposium, vol. 104, 1983, 405.
Shaver, P.A., Radio surveys and large scale structure. Aust. J. Phys., 44(6), 1991, 759.
Boehringer, H., Chon, G., Truemper, J., The Cosmic Large-Scale Structure in X-rays (CLASSIX) Cluster Survey - II. Unveiling a pancake structure with a 100 Mpc radius in the local Universe. Astron. Astrophys., 651, 2021, A15 arXiv:2105.13999 [astro-ph.CO].
Peebles, P.J.E., Flat patterns in cosmic structure. Mon. Not. R. Astron. Soc. 526:3 (2023), 4490–4501 arXiv:2308.04245 [astro-ph.CO].
Einasto, M., Tago, E., Jaaniste, J., Einasto, J., Andernach, H., The supercluster-void network I. the supercluster catalogue and large scale distribution. Astron. Astrophys. Suppl. Ser., 123, 1997, 119 arXiv:astro-ph/9610088.
Dolag, K., Sorce, J.G., Pilipenko, S., Hernández-Martínez, E., Valentini, M., Gottlöber, S., Aghanim, N., Khabibullin, I., Simulating the LOcal Web (SLOW) - I. Anomalies in the local density field. Astron. Astrophys., 677, 2023, A169 arXiv:2302.10960 [astro-ph.CO].
Toomet, O., Andernach, H., Einasto, J., Einasto, M., Kasak, E., Starobinsky, A.A., Tago, E., The supercluster-void network v. alternative evidence for its regularity. Astron. Astrophys., 393, 2002, 1 arXiv:astro-ph/9907238.
Einasto, J., Einasto, M., Gottlober, S., Mller, V., Saar, V., Starobinsky, A.A., Tago, E., Tucker, D., Andernach, H., Frisch, P., A 120 MPC periodicity in the three-dimensional distribution of galaxy superclusters. Nature 385 (1997), 139–141 arXiv:astro-ph/9701018.
Einasto, J., Einasto, M., Frisch, P., Gottlober, S., Mller, V., Saar, V., Starobinsky, A.A., Tago, E., Tucker, D., Andernach, H., The supercluster-void network. 2. An oscillating cluster correlation function. Mon. Not. R. Astron. Soc. 289 (1997), 801–812 arXiv:astro-ph/9704127.
Tago, E., Einasto, J., Einasto, M., Muller, V., Andernach, H., Optical and x-ray clusters as tracers of the supercluster-void network. II the spatial correlation function. Astron. J., 123, 2002, 37 arXiv:astro-ph/0012537.
Lindner, U., Einasto, J., Einasto, M., Freudling, W., Fricke, K., Tago, E., The structure of supervoids - I: void hierarchy in the northern local supervoid. Astron. Astrophys., 301, 1995, 329 arXiv:astro-ph/9503044.
Kovács, A., García-Bellido, J., Cosmic troublemakers: the cold spot, the eridanus supervoid, and the great walls. Mon. Not. R. Astron. Soc. 462:2 (2016), 1882–1893 arXiv:1511.09008 [astro-ph.CO].
Einasto, M., Tago, E., Lietzen, H., Park, C., Heinamaki, P., Saar, E., Song, H., Liivamagi, L.J., Einasto, J., Tracing a high redshift cosmic web with quasar systems. Astron. Astrophys., 568, 2014, A46 arXiv:1406.5578 [astro-ph.CO].
Einasto, M., Heinämäki, P., Liivamägi, L.J., Martinez, V.J., Hurtado-Gil, L., Arnalte-Mur, P., Nurmi, P., Einasto, J., Saar, E., Shell-like structures in our cosmic neighbourhood. Astron. Astrophys., 587, 2016, A116 arXiv:1506.05295 [astro-ph.CO].
Einasto, M., Liivamagi, L.J., Tago, E., Saar, E., Tempel, E., Einasto, J., Martinez, V.J., Heinamaki, P., SDSS DR7 superclusters. Morphology. Astron. Astrophys., 532, 2011, A5 arXiv:1105.2124 [astro-ph.CO].
Tully, R.B., Howlett, C., Pomarede, D., Ho'oleilana: an individual baryon acoustic oscillation?. Astrophys. J., 954(2), 2023, 169 arXiv:2309.00677 [astro-ph.CO].
Arnalte-Mur, P., Labatie, A., Clerc, N., Martinez, V.J., Starck, J.L., Lachieze-Rey, M., Saar, E., Paredes, S., Wavelet analysis of baryon acoustic structures in the galaxy distribution. Astron. Astrophys., 542, 2012, A34 arXiv:1101.1911 [astro-ph.CO].
Einasto, M., Gramann, M., Saar, E., Liivamagi, L.J., Tempel, E., Nevalainen, J., Heinamaki, P., Park, C., Einasto, J., Unusual A2142 supercluster with a collapsing core: distribution of light and mass. Astron. Astrophys., 580, 2015, A69 arXiv:1505.07233 [astro-ph.CO].
Heinämäki, P., Teerikorpi, P., Douspis, M., Nurmi, P., Einasto, M., Gramann, M., Nevalainen, J., Saar, E., Quasi-spherical superclusters. Astron. Astrophys., 668, 2022, A37 arXiv:2210.13294 [astro-ph.CO].
Vikhlinin, A., Markevitch, M., Murray, S.S., Jones, C., Forman, W., Van Speybroeck, L., Chandra temperature profiles for a sample of nearby relaxed galaxy clusters. Astrophys. J. 628 (2005), 655–672 arXiv:astro-ph/0412306.
Tempel, E., Tamm, A., Gramann, M., Tuvikene, T., Liivamägi, L.J., Suhhonenko, I., Kipper, R., Einasto, M., Saar, E., Flux- and volume-limited groups/clusters for the SDSS galaxies: catalogues and mass estimation. Astron. Astrophys., 566, 2014, A1 arXiv:1402.1350 [astro-ph.CO].
Rieke, M.J., Kelly, D., Horner, S., Overview of James Webb Space Telescope and NIRCam's Role. Heaney, J.B., Burriesci, L.G., (eds.) Cryogenic Optical Systems and Instruments XI Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5904, 2005, 1–8.
Santini, P., Fontana, A., Castellano, M., Leethochawalit, N., Trenti, M., Treu, T., Belfiori, D., Birrer, S., Bonchi, A., Merlin, E., Mason, C., Morishita, T., Nonino, M., Paris, D., Polenta, G., Rosati, P., Yang, L., Boyett, K., Bradac, M., Calabrò, A., Dressler, A., Glazebrook, K., Marchesini, D., Mascia, S., Nanayakkara, T., Pentericci, L., Roberts-Borsani, G., Scarlata, C., Vulcani, B., Wang, X., Early results from GLASS-JWST. XI. Stellar masses and mass-to-light ratio of z > 7 galaxies. Astrophys. J. Lett., 942(2), 2023, L27 arXiv:2207.11379 [astro-ph.GA].
Castellano, M., Fontana, A., Treu, T., Santini, P., Merlin, E., Leethochawalit, N., Trenti, M., Vanzella, E., Mestric, U., Bonchi, A., Belfiori, D., Nonino, M., Paris, D., Polenta, G., Roberts-Borsani, G., Boyett, K., Bradač, M.s., Calabrò, A., Glazebrook, K., Grillo, C., Mascia, S., Mason, C., Mercurio, A., Morishita, T., Nanayakkara, T., Pentericci, L., Rosati, P., Vulcani, B., Wang, X., Yang, L., Early results from GLASS-JWST. III. Galaxy candidates at z 9-15. Astrophys. J. Lett., 938(2), 2022, L15 arXiv:2207.09436 [astro-ph.GA].
Finkelstein, S.L., Bagley, M.B., Ferguson, H.C., Wilkins, S.M., Kartaltepe, J.S., et al. CEERS key paper. I. An early look into the first 500 Myr of galaxy formation with JWST. Astrophys. J. Lett., 946(1), 2023, L13 arXiv:2211.05792 [astro-ph.GA].
Naidu, R.P., Oesch, P.A., van Dokkum, P., Nelson, E.J., Suess, K.A., Brammer, G., Whitaker, K.E., Illingworth, G., Bouwens, R., Tacchella, S., Matthee, J., Allen, N., Bezanson, R., Conroy, C., Labbe, I., Leja, J., Leonova, E., Magee, D., Price, S.H., Setton, D.J., Strait, V., Stefanon, M., Toft, S., Weaver, J.R., Weibel, A., Two remarkably luminous galaxy candidates at z ≈ 10-12 revealed by JWST. Astrophys. J. Lett., 940(1), 2022, L14 arXiv:2207.09434 [astro-ph.GA].
Treu, T., et al. The glass-jwst early release science program. I. Survey design and release plans. Astrophys. J., 935(2), 2022, 110 arXiv:2206.07978 [astro-ph.GA].
Harikane, Y., Ouchi, M., Oguri, M., Ono, Y., Nakajima, K., Isobe, Y., Umeda, H., Mawatari, K., Zhang, Y., A comprehensive study of galaxies at z ∼ 9–16 found in the early JWST data: ultraviolet luminosity functions and cosmic star formation history at the pre-reionization epoch. Astrophys. J. Suppl., 265(1), 2023 arXiv:2208.01612 [astro-ph.GA].
Pérez-González, P.G., et al. CEERS key paper. IV. A triality in the nature of HST-dark galaxies. Astrophys. J. Lett., 946(1), 2023, L16 arXiv:2211.00045 [astro-ph.GA].
Papovich, C., et al. CEERS key paper. V. Galaxies at 4 < z < 9 are bluer than they appear–characterizing galaxy stellar populations from rest-frame ∼1 μm imaging. Astrophys. J. Lett., 949(2), 2023, L18 arXiv:2301.00027 [astro-ph.GA].
Bouwens, R.J., Stefanon, M., Brammer, G., Oesch, P.A., Herard-Demanche, T., Illingworth, G.D., Matthee, J., Naidu, R.P., van Dokkum, P.G., van Leeuwen, I.F., Evolution of the UV LF from z 15 to z 8 using new JWST NIRCam medium-band observations over the HUDF/XDF. Mon. Not. R. Astron. Soc. 523:1 (2023), 1036–1055 arXiv:2211.02607 [astro-ph.GA].
Adams, N.J., Conselice, C.J., Ferreira, L., Austin, D., Trussler, J.A.A., Juodžbalis, I., Wilkins, S.M., Caruana, J., Dayal, P., Verma, A., Vijayan, A.P., Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field. Mon. Not. R. Astron. Soc. 518:3 (2023), 4755–4766 arXiv:2207.11217 [astro-ph.GA].
Bouwens, R., Illingworth, G., Oesch, P., Stefanon, M., Naidu, R., van Leeuwen, I., Magee, D., UV luminosity density results at z > 8 from the first JWST/NIRCam fields: limitations of early data sets and the need for spectroscopy. Mon. Not. R. Astron. Soc. 523:1 (2023), 1009–1035 arXiv:2212.06683 [astro-ph.CO].
Finkelstein, S.L., et al. The complete CEERS early universe galaxy sample: a surprisingly slow evolution of the space density of bright galaxies at z ∼ 8.5–14.5. Astrophys. J. Lett., 969(1), 2024, L2 arXiv:2311.04279 [astro-ph.GA].
McLeod, D.J., Donnan, C.T., McLure, R.J., Dunlop, J.S., Magee, D., Begley, R., Carnall, A.C., Cullen, F., Ellis, R.S., Hamadouche, M.L., Stanton, T.M., The galaxy UV luminosity function at z≃11 from a suite of public JWST ERS, ERO, and Cycle-1 programs. Mon. Not. R. Astron. Soc. 527:3 (2024), 5004–5022 arXiv:2304.14469 [astro-ph.GA].
Yung, L.Y.A., Somerville, R.S., Finkelstein, S.L., Wilkins, S.M., Gardner, J.P., Are the ultra-high-redshift galaxies at z > 10 surprising in the context of standard galaxy formation models?. Mon. Not. R. Astron. Soc. 527:3 (2024), 5929–5948 arXiv:2304.04348 [astro-ph.GA].
Wang, Y.-Y., Lei, L., Tang, S.-P., Yuan, G.-W., Fan, Y.-Z., Digging into the ultraviolet luminosity functions of galaxies at high redshifts: galaxies evolution, reionization, and cosmological parameters. Astrophys. J., 975(2), 2024, 285 arXiv:2405.09350 [astro-ph.CO].
Sabti, N., Muñoz, J.B., Kamionkowski, M., Insights from HST into ultramassive galaxies and early-universe cosmology. Phys. Rev. Lett., 132(6), 2024, 061002 arXiv:2305.07049 [astro-ph.CO].
Donnan, C.T., McLeod, D.J., Dunlop, J.S., McLure, R.J., Carnall, A.C., Begley, R., Cullen, F., Hamadouche, M.L., Bowler, R.A.A., Magee, D., McCracken, H.J., Milvang-Jensen, B., Moneti, A., Targett, T., The evolution of the galaxy UV luminosity function at redshifts z≃8−15 from deep JWST and ground-based near-infrared imaging. Mon. Not. R. Astron. Soc. 518:4 (2023), 6011–6040 arXiv:2207.12356 [astro-ph.GA].
Furtak, L.J., Shuntov, M., Atek, H., Zitrin, A., Richard, J., Lehnert, M.D., Chevallard, J., Constraining the physical properties of the first lensed z 9 - 16 galaxy candidates with JWST. Mon. Not. R. Astron. Soc. 519:2 (2023), 3064–3075 arXiv:2208.05473 [astro-ph.GA].
Zavala, J.A., et al. Dusty starbursts masquerading as ultra-high redshift galaxies in JWST CEERS observations. Astrophys. J. Lett., 943(2), 2023, L9 arXiv:2208.01816 [astro-ph.GA].
Yan, H., Ma, Z., Ling, C., Cheng, C., Huang, J.-s., First batch of z ≈ 11–20 candidate objects revealed by the james webb space telescope early release observations on SMACS 0723-73. Astrophys. J. Lett., 942(1), 2023, L9 arXiv:2207.11558 [astro-ph.GA].
Labbe, I., et al. A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 616:7956 (2023), 266–269 arXiv:2207.12446 [astro-ph.GA].
Xiao, M., et al. Accelerated formation of ultra-massive galaxies in the first billion years. Nature 635:8038 (2024), 311–315 arXiv:2309.02492 [astro-ph.GA].
Weibel, A., Oesch, P.A., Barrufet, L., Gottumukkala, R., Ellis, R.S., Santini, P., Weaver, J.R., Allen, N., Bouwens, R., Bowler, R.A.A., Brammer, G., Carnall, A.C., Cullen, F., Dayal, P., Dickinson, M., Donnan, C.T., Dunlop, J.S., Giavalisco, M., Grogin, N.A., Illingworth, G.D., Koekemoer, A.M., Labbe, I., Marchesini, D., McLeod, D.J., McLure, R.J., Naidu, R.P., Pérez-González, P.G., Shuntov, M., Stefanon, M., Toft, S., Xiao, M., Galaxy build-up in the first 1.5 Gyr of cosmic history: insights from the stellar mass function at z 4-9 from JWST NIRCam observations. Mon. Not. R. Astron. Soc. 533:2 (2024), 1808–1838 arXiv:2403.08872 [astro-ph.GA].
Chworowsky, K., Finkelstein, S.L., Boylan-Kolchin, M., McGrath, E.J., Iyer, K.G., Papovich, C., Dickinson, M., Taylor, A.J., Yung, L.Y.A., Arrabal Haro, P., Bagley, M.B., Backhaus, B.E., Bhatawdekar, R., Cheng, Y., Cleri, N.J., Cole, J.W., Cooper, M.C., Costantin, L., Dekel, A., Franco, M., Fujimoto, S., Hayward, C.C., Holwerda, B.W., Huertas-Company, M., Hirschmann, M., Hutchison, T.A., Koekemoer, A.M., Larson, R.L., Li, Z., Long, A.S., Lucas, R.A., Pirzkal, N., Rodighiero, G., Somerville, R.S., Vanderhoof, B.N., de la Vega, A., Wilkins, S.M., Yang, G., Zavala, J.A., Evidence for a shallow evolution in the volume densities of massive galaxies at z=4–8 from CEERS. Astron. J., 168(3), 2024, 113 arXiv:2311.14804 [astro-ph.GA].
Lovell, C.C., Harrison, I., Harikane, Y., Tacchella, S., Wilkins, S.M., Extreme value statistics of the halo and stellar mass distributions at high redshift: are JWST results in tension with ΛCDM?. Mon. Not. R. Astron. Soc. 518:2 (2022), 2511–2520 arXiv:2208.10479 [astro-ph.GA].
Boylan-Kolchin, M., Stress testing ΛCDM with high-redshift galaxy candidates. Nat. Astron. 7:6 (2023), 731–735 arXiv:2208.01611 [astro-ph.CO].
Forconi, M., Ruchika, Melchiorri, A., Mena, O., Menci, N., Do the early galaxies observed by JWST disagree with Planck's CMB polarization measurements?. J. Cosmol. Astropart. Phys., 10, 2023, 012 arXiv:2306.07781 [astro-ph.CO].
Lu, J., Wang, L., Chen, X., Rubin, D., Perlmutter, S., Baade, D., Mould, J., Vinko, J., Regős, E., Koekemoer, A.M., Constraints on cosmological parameters with a sample of type ia supernovae from JWST. Astrophys. J., 941(1), 2022, 71 arXiv:2210.00746 [astro-ph.CO].
Pierel, J.D.R., et al. Testing for intrinsic type ia supernova luminosity evolution at z > 2 with JWST. Astrophys. J. Lett., 981(1), 2025, L9 arXiv:2411.11953 [astro-ph.CO].
Vinko, J., Regos, E., SN 2023adsy – a normal Type Ia Supernova at z=2.9, discovered by JWST. 2024 arXiv:2411.10427 [astro-ph.HE].
Coulter, D.A., et al. Discovery of a likely Type II SN at z=3.6 with JWST. 2025 arXiv:2501.05513 [astro-ph.HE].
Moriya, T.J., et al. Properties of high-redshift Type II supernovae discovered by the JADES transient survey. 2025 arXiv:2501.08969 [astro-ph.HE].
Moriya, T.J., Harikane, Y., Inoue, A.K., Constraint on the event rate of general relativistic instability supernovae from the early JWST deep field data. Mon. Not. R. Astron. Soc. 526:2 (2023), 2400–2402 arXiv:2309.12049 [astro-ph.HE].
Dainotti, M.G., et al. A New Master Supernovae Ia sample and the investigation of the H0 tension. 2025 arXiv:2501.11772 [astro-ph.CO].
Alonso, P.M.M., Escamilla-Rivera, C., Sandoval-Orozco, R., Constraining dark energy cosmologies with spatial curvature using Supernovae JWST forecasting. J. Cosmol. Astropart. Phys., 04, 2024, 084 arXiv:2309.12292 [astro-ph.CO].
Williams, C.C., Alberts, S., Ji, Z., Hainline, K.N., Lyu, J., Rieke, G., Endsley, R., Suess, K.A., Sun, F., Johnson, B.D., Florian, M., Shivaei, I., Rujopakarn, W., Baker, W.M., Bhatawdekar, R., Boyett, K., Bunker, A.J., Cameron, A.J., Carniani, S., Charlot, S., Curtis-Lake, E., DeCoursey, C., de Graaff, A., Egami, E., Eisenstein, D.J., Gibson, J.L., Hausen, R., Helton, J.M., Maiolino, R., Maseda, M.V., Nelson, E.J., Pérez-González, P.G., Rieke, M.J., Robertson, B.E., Saxena, A., Tacchella, S., Willmer, C.N.A., Willott, C.J., The galaxies missed by hubble and ALMA: the contribution of extremely red galaxies to the cosmic census at 3 < z < 8. Astrophys. J., 968(1), 2024, 34 arXiv:2311.07483 [astro-ph.GA].
Steinhardt, C.L., Kokorev, V., Rusakov, V., Garcia, E., Sneppen, A., Templates for fitting photometry of ultra-high-redshift galaxies. Astrophys. J. Lett., 951(2), 2023, L40 arXiv:2208.07879 [astro-ph.GA].
Endsley, R., Stark, D.P., Whitler, L., Topping, M.W., Chen, Z., Plat, A., Chisholm, J., Charlot, S., A JWST/NIRCam study of key contributors to reionization: the star-forming and ionizing properties of UV-faint z 7-8 galaxies. Mon. Not. R. Astron. Soc. 524:2 (2023), 2312–2330 arXiv:2208.14999 [astro-ph.GA].
Arrabal Haro, P., Dickinson, M., Finkelstein, S.L., Fujimoto, S., Fernández, V., Kartaltepe, J.S., Jung, I., Cole, J.W., Burgarella, D., Chworowsky, K., Hutchison, T.A., Morales, A.M., Papovich, C., Simons, R.C., Amorín, R.O., Backhaus, B.E., Bagley, M.B., Bisigello, L., Calabrò, A., Castellano, M., Cleri, N.J., Davé, R., Dekel, A., Ferguson, H.C., Fontana, A., Gawiser, E., Giavalisco, M., Harish, S., Hathi, N.P., Hirschmann, M., Holwerda, B.W., Huertas-Company, M., Koekemoer, A.M., Larson, R.L., Lucas, R.A., Mobasher, B., Pérez-González, P.G., Pirzkal, N., Rose, C., Santini, P., Trump, J.R., de la Vega, A., Wang, X., Weiner, B.J., Wilkins, S.M., Yang, G., Yung, L.Y.A., Zavala, J.A., Spectroscopic confirmation of CEERS NIRCam-selected galaxies at ≃8−10. Astrophys. J. Lett., 951(1), 2023, L22 arXiv:2304.05378 [astro-ph.GA].
Wang, B., Fujimoto, S., Labbé, I., Furtak, L.J., Miller, T.B., Setton, D.J., Zitrin, A., Atek, H., Bezanson, R., Brammer, G., Leja, J., Oesch, P.A., Price, S.H., Chemerynska, I., Cutler, S.E., Dayal, P., van Dokkum, P., Goulding, A.D., Greene, J.E., Fudamoto, Y., Khullar, G., Kokorev, V., Marchesini, D., Pan, R., Weaver, J.R., Whitaker, K.E., Williams, C.C., UNCOVER: illuminating the early universe-JWST/NIRSpec confirmation of z > 12 galaxies. Astrophys. J. Lett., 957(2), 2023, L34 arXiv:2308.03745 [astro-ph.GA].
Robertson, B.E., et al. Identification and properties of intense star-forming galaxies at redshifts z > 10. Nat. Astron. 7:5 (2023), 611–621 arXiv:2212.04480 [astro-ph.GA].
Curtis-Lake, E., Carniani, S., Cameron, A., Charlot, S., Jakobsen, P., Maiolino, R., Bunker, A., Witstok, J., Smit, R., Chevallard, J., Willott, C., Ferruit, P., Arribas, S., Bonaventura, N., Curti, M., D'Eugenio, F., Franx, M., Giardino, G., Looser, T.J., Lützgendorf, N., Maseda, M.V., Rawle, T., Rix, H.-W., Rodríguez del Pino, B., Übler, H., Sirianni, M., Dressler, A., Egami, E., Eisenstein, D.J., Endsley, R., Hainline, K., Hausen, R., Johnson, B.D., Rieke, M., Robertson, B., Shivaei, I., Stark, D.P., Tacchella, S., Williams, C.C., Willmer, C.N.A., Bhatawdekar, R., Bowler, R., Boyett, K., Chen, Z., de Graaff, A., Helton, J.M., Hviding, R.E., Jones, G.C., Kumari, N., Lyu, J., Nelson, E., Perna, M., Sandles, L., Saxena, A., Suess, K.A., Sun, F., Topping, M.W., Wallace, I.E.B., Whitler, L., Spectroscopic confirmation of four metal-poor galaxies at z= 10.3-13.2. Nat. Astron. 7 (2023), 622–632 arXiv:2212.04568 [astro-ph.GA].
Fujimoto, S., et al. CEERS spectroscopic confirmation of NIRCam-selected z ≳ 8 galaxy candidates with JWST/NIRSpec: initial characterization of their properties. Astrophys. J. Lett., 949(2), 2023, L25 arXiv:2301.09482 [astro-ph.GA].
Carniani, S., Hainline, K., D'Eugenio, F., Eisenstein, D.J., Jakobsen, P., Witstok, J., Johnson, B.D., Chevallard, J., Maiolino, R., Helton, J.M., Willott, C., Robertson, B., Alberts, S., Arribas, S., Baker, W.M., Bhatawdekar, R., Boyett, K., Bunker, A.J., Cameron, A.J., Cargile, P.A., Charlot, S., Curti, M., Curtis-Lake, E., Egami, E., Giardino, G., Isaak, K., Ji, Z., Jones, G.C., Kumari, N., Maseda, M.V., Parlanti, E., Pérez-González, P.G., Rawle, T., Rieke, G., Rieke, M., Del Pino, B.R., Saxena, A., Scholtz, J., Smit, R., Sun, F., Tacchella, S., Übler, H., Venturi, G., Williams, C.C., Willmer, C.N.A., Spectroscopic confirmation of two luminous galaxies at a redshift of 14. Nature 633:8029 (2024), 318–322 arXiv:2405.18485 [astro-ph.GA].
Castellano, M., Napolitano, L., Fontana, A., Roberts-Borsani, G., Treu, T., Vanzella, E., Zavala, J.A., Arrabal Haro, P., Calabrò, A., Llerena, M., Mascia, S., Merlin, E., Paris, D., Pentericci, L., Santini, P., Bakx, T.J.L.C., Bergamini, P., Cupani, G., Dickinson, M., Filippenko, A.V., Glazebrook, K., Grillo, C., Kelly, P.L., Malkan, M.A., Mason, C.A., Morishita, T., Nanayakkara, T., Rosati, P., Sani, E., Wang, X., Yoon, I., JWST NIRSpec spectroscopy of the remarkable bright galaxy GHZ2/GLASS-z12 at redshift 12.34. Astrophys. J., 972(2), 2024, 143 arXiv:2403.10238 [astro-ph.GA].
Giménez-Arteaga, C., et al. Spatially resolved properties of galaxies at 5 < z < 9 in the SMACS 0723 JWST ERO field. Astrophys. J., 948(2), 2023, 126 arXiv:2212.08670 [astro-ph.GA].
Ferrara, A., Super-early JWST galaxies, outflows, and Lyα visibility in the Epoch of Reionization. Astron. Astrophys., 684, 2024, A207 arXiv:2310.12197 [astro-ph.GA].
Mason, C.A., Trenti, M., Treu, T., The brightest galaxies at cosmic dawn. Mon. Not. R. Astron. Soc. 521:1 (2023), 497–503 arXiv:2207.14808 [astro-ph.GA].
Kravtsov, A., Belokurov, V., Stochastic star formation and the abundance of z>10 UV-bright galaxies. 2024 arXiv:2405.04578 [astro-ph.GA].
Hegde, S., Wyatt, M.M., Furlanetto, S.R., A hidden population of active galactic nuclei can explain the overabundance of luminous z > 10 objects observed by JWST. J. Cosmol. Astropart. Phys., 08, 2024, 025 arXiv:2405.01629 [astro-ph.GA].
Gelli, V., Mason, C., Hayward, C.C., The impact of mass-dependent stochasticity at cosmic dawn. Astrophys. J., 975(2), 2024, 192 arXiv:2405.13108 [astro-ph.GA].
Desprez, G., et al. ΛCDM not dead yet: massive high-z Balmer break galaxies are less common than previously reported. Mon. Not. R. Astron. Soc. 530:3 (2024), 2935–2952 arXiv:2310.03063 [astro-ph.GA].
Dekel, A., Sarkar, K.C., Birnboim, Y., Mandelker, N., Li, Z., Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts. Mon. Not. R. Astron. Soc. 523:3 (2023), 3201–3218 arXiv:2303.04827 [astro-ph.GA].
Ferrara, A., Pallottini, A., Dayal, P., On the stunning abundance of super-early, luminous galaxies revealed by JWST. Mon. Not. R. Astron. Soc. 522:3 (2023), 3986–3991 arXiv:2208.00720 [astro-ph.GA].
Wang, B., Leja, J., Atek, H., Labbé, I., Li, Y., Bezanson, R., Brammer, G., Cutler, S.E., Dayal, P., Furtak, L.J., Greene, J.E., Kokorev, V., Pan, R., Price, S.H., Suess, K.A., Weaver, J.R., Whitaker, K.E., Williams, C.C., Quantifying the effects of known unknowns on inferred high-redshift galaxy properties: burstiness, IMF, and nebular physics. Astrophys. J., 963(1), 2024, 74 arXiv:2310.06781 [astro-ph.GA].
Narayanan, D., Lower, S., Torrey, P., Brammer, G., Cui, W., Davé, R., Iyer, K.G., Li, Q., Lovell, C.C., Sales, L.V., Stark, D.P., Marinacci, F., Vogelsberger, M., Outshining by recent star formation prevents the accurate measurement of high-z galaxy stellar masses. Astrophys. J., 961(1), 2024, 73 arXiv:2306.10118 [astro-ph.GA].
Cochrane, R.K., Katz, H., Begley, R., Hayward, C.C., Best, P.N., High-z stellar masses can be recovered robustly with JWST photometry. Astrophys. J., 978(2), 2025, L42 arXiv:2412.02622 [astro-ph.GA].
Haslbauer, M., Kroupa, P., Zonoozi, A.H., Haghi, H., Has JWST already falsified dark-matter-driven galaxy formation?. Astrophys. J. Lett., 939(2), 2022, L31 arXiv:2210.14915 [astro-ph.GA].
Ventura, E.M., Qin, Y., Balu, S., Wyithe, J.S.B., Semi-analytic modelling of Pop. III star formation and metallicity evolution – I. Impact on the UV luminosity functions at z = 9–16. Mon. Not. R. Astron. Soc. 529:1 (2024), 628–646 arXiv:2401.07396 [astro-ph.GA].
Trinca, A., Schneider, R., Valiante, R., Graziani, L., Ferrotti, A., Omukai, K., Chon, S., Exploring the nature of UV-bright z ≳ 10 galaxies detected by JWST: star formation, black hole accretion, or a non-universal IMF?. Mon. Not. R. Astron. Soc. 529:4 (2024), 3563–3581 arXiv:2305.04944 [astro-ph.GA].
Salpeter, E.E., The Luminosity function and stellar evolution. Astrophys. J. 121 (1955), 161–167.
Cueto, E.R., Hutter, A., Dayal, P., Gottlöber, S., Heintz, K.E., Mason, C., Trebitsch, M., Yepes, G., ASTRAEUS - IX. Impact of an evolving stellar initial mass function on early galaxies and reionisation. Astron. Astrophys., 686, 2024, A138 arXiv:2312.12109 [astro-ph.GA].
Tacchella, S., Finkelstein, S.L., Bagley, M., Dickinson, M., Ferguson, H.C., Giavalisco, M., Graziani, L., Grogin, N.A., Hathi, N., Hutchison, T.A., Jung, I., Koekemoer, A.M., Larson, R.L., Papovich, C., Pirzkal, N., Rojas-Ruiz, S.a., Song, M., Schneider, R., Somerville, R.S., Wilkins, S.M., Yung, L.Y.A., On the stellar populations of galaxies at z=9-11: the growth of metals and stellar mass at early times. Astrophys. J., 927(2), 2022, 170 arXiv:2111.05351 [astro-ph.GA].
Whitler, L., Stark, D.P., Endsley, R., Leja, J., Charlot, S., Chevallard, J., Star formation histories of UV-luminous galaxies at z≃6.8: implications for stellar mass assembly at early cosmic times. Mon. Not. R. Astron. Soc. 519:4 (2023), 5859–5881 arXiv:2206.05315 [astro-ph.GA].
Iocco, F., Visinelli, L., Compatibility of JWST results with exotic halos. Phys. Dark Univ., 44, 2024, 101496 arXiv:2403.13068 [astro-ph.CO].
Pallottini, A., Ferrara, A., Stochastic star formation in early galaxies: Implications for the James Webb Space Telescope. Astron. Astrophys., 677, 2023, L4 arXiv:2307.03219 [astro-ph.GA].
Ceverino, D., Nakazato, Y., Yoshida, N., Klessen, R.S., Glover, S.C.O., Redshift-dependent galaxy formation efficiency at z=5 - 13 in the FirstLight Simulations. Astron. Astrophys., 689, 2024, A244 arXiv:2404.02537 [astro-ph.GA].
Turner, C., Tacchella, S., D'Eugenio, F., Carniani, S., Curti, M., Glazebrook, K., Johnson, B.D., Lim, S., Looser, T., Maiolino, R., Nanayakkara, T., Wan, J., Age-dating early quiescent galaxies: high star formation efficiency, but consistent with direct, higher-redshift observations. Mon. Not. R. Astron. Soc. 537:2 (2025), 1826–1848 arXiv:2410.05377 [astro-ph.GA].
Harvey, T., Conselice, C.J., Adams, N.J., Austin, D., Juodžbalis, I., Trussler, J., Li, Q., Ormerod, K., Ferreira, L., Lovell, C.C., Duan, Q., Westcott, L., Harris, H., Bhatawdekar, R., Coe, D., Cohen, S.H., Caruana, J., Cheng, C., Driver, S.P., Frye, B., Furtak, L.J., Grogin, N.A., Hathi, N.P., Holwerda, B.W., Jansen, R.A., Koekemoer, A.M., Marshall, M.A., Nonino, M., Vijayan, A.P., Wilkins, S.M., Windhorst, R., Willmer, C.N.A., Yan, H., Zitrin, A., EPOCHS. IV. SED modeling assumptions and their impact on the stellar mass function at 6.5 ≤ z ≤ 13.5 using PEARLS and public JWST observations. Astrophys. J., 978(1), 2025, 89 arXiv:2403.03908 [astro-ph.GA].
Chen, Y., Mo, H.J., Wang, K., Massive dark matter haloes at high redshift: implications for observations in the JWST era. Mon. Not. R. Astron. Soc. 526:2 (2023), 2542–2559 arXiv:2304.13890 [astro-ph.GA].
Wang, J., Huang, Z., Huang, L., Liu, J., Quantifying the tension between cosmological models and JWST red candidate massive galaxies. Res. Astron. Astrophys., 24(4), 2024, 045001 arXiv:2311.02866 [astro-ph.CO].
Qin, Y., Balu, S., Wyithe, J.S.B., Implications of z ≳ 12 JWST galaxies for galaxy formation at high redshift. Mon. Not. R. Astron. Soc. 526:1 (2023), 1324–1342 arXiv:2305.17959 [astro-ph.GA].
Atek, H., Shuntov, M., Furtak, L.J., Richard, J., Kneib, J.-P., Mahler, G., Zitrin, A., McCracken, H.J., Charlot, S., Chevallard, J., Chemerynska, I., Revealing galaxy candidates out to z 16 with JWST observations of the lensing cluster SMACS0723. Mon. Not. R. Astron. Soc. 519:1 (2023), 1201–1220 arXiv:2207.12338 [astro-ph.GA].
Navarro-Carrera, R., Rinaldi, P., Caputi, K.I., Iani, E., Kokorev, V., van Mierlo, S.E., Constraints on the faint end of the galaxy stellar mass function at z ≃ 4–8 from deep JWST data. Astrophys. J., 961(2), 2024, 207 arXiv:2305.16141 [astro-ph.GA].
Maggiore, M., Riotto, A., The Halo mass function from excursion set theory. II. The diffusing barrier. Astrophys. J. 717 (2010), 515–525 arXiv:0903.1250 [astro-ph.CO].
Achitouv, I.E., Corasaniti, P.S., Primordial bispectrum and trispectrum contributions to the non-gaussian excursion set halo mass function with diffusive drifting barrier. Phys. Rev. D, 86, 2012, 083011 arXiv:1207.4796 [astro-ph.CO].
Reed, D., Bower, R., Frenk, C., Jenkins, A., Theuns, T., The halo mass function from the dark ages through the present day. Mon. Not. R. Astron. Soc. 374 (2007), 2–15 arXiv:astro-ph/0607150.
Basilakos, S., Plionis, M., Lima, J.A.S., Confronting dark energy models using galaxy cluster number counts. Phys. Rev. D, 82, 2010, 083517 arXiv:1006.3418 [astro-ph.CO].
Bhattacharya, S., Heitmann, K., White, M., Lukic, Z., Wagner, C., Habib, S., Mass function predictions beyond LCDM. Astrophys. J., 732, 2011, 122 arXiv:1005.2239 [astro-ph.CO].
Tacchella, S., Bose, S., Conroy, C., Eisenstein, D.J., Johnson, B.D., A redshift-independent efficiency model: star formation and stellar masses in dark matter halos at z ≳ 4. Astrophys. J., 868(2), 2018, 92 arXiv:1806.03299 [astro-ph.GA].
Allen, S.W., Schmidt, R.W., Ebeling, H., Fabian, A.C., van Speybroeck, L., Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. R. Astron. Soc., 353, 2004, 457 arXiv:astro-ph/0405340.
Vikhlinin, A., Kravtsov, A., Forman, W., Jones, C., Markevitch, M., Murray, S.S., Van Speybroeck, L., Chandra sample of nearby relaxed galaxy clusters: Mass, gas fraction, and mass-temperature relation. Astrophys. J. 640 (2006), 691–709 arXiv:astro-ph/0507092.
Kravtsov, A.V., Nagai, D., Vikhlinin, A.A., Effects of cooling and star formation on the baryon fractions in clusters. Astrophys. J. 625 (2005), 588–598 arXiv:astro-ph/0501227.
Borgani, S., Kravtsov, A., Cosmological simulations of galaxy clusters. Adv. Sci. Lett., 4, 2011, 204 arXiv:0906.4370 [astro-ph.CO].
Mantz, A.B., Allen, S.W., Morris, R.G., Rapetti, D.A., Applegate, D.E., Kelly, P.L., von der Linden, A., Schmidt, R.W., Cosmology and astrophysics from relaxed galaxy clusters – II. Cosmological constraints. Mon. Not. R. Astron. Soc. 440:3 (2014), 2077–2098 arXiv:1402.6212 [astro-ph.CO].
Maio, U., Viel, M., The first billion years of a warm dark matter universe. Mon. Not. R. Astron. Soc. 446 (2015), 2760–2775 arXiv:1409.6718 [astro-ph.CO].
Panchal, K., Desai, S., Comparison of ΛCDM and Rh=ct with updated galaxy cluster fgas measurements using Bayesian inference. JHEAp 43 (2024), 15–19 arXiv:2401.11138 [astro-ph.CO].
Huang, H.-L., Jiang, J.-Q., Piao, Y.-S., High-redshift JWST massive galaxies and the initial clustering of supermassive primordial black holes. Phys. Rev. D, 110(10), 2024, 103540 arXiv:2407.15781 [astro-ph.CO].
Yuan, G.-W., Lei, L., Wang, Y.-Z., Wang, B., Wang, Y.-Y., Chen, C., Shen, Z.-Q., Cai, Y.-F., Fan, Y.-Z., Rapidly growing primordial black holes as seeds of the massive high-redshift JWST Galaxies. Sci. China Phys. Mech. Astron., 67(10), 2024, 109512 arXiv:2303.09391 [astro-ph.CO].
Carr, B., Clesse, S., Garcia-Bellido, J., Hawkins, M., Kuhnel, F., Observational evidence for primordial black holes: A positivist perspective. Phys. Rep. 1054 (2024), 1–68 arXiv:2306.03903 [astro-ph.CO].
Dolgov, A.D., Tension between HST/JWST and ΛCDM cosmology, PBH, and antimatter in the galaxy. 14th Frascati workshop on Multifrequency Behaviour of High Energy Cosmic Sources, 2023 arXiv:2310.00671 [astro-ph.CO].
Trinca, A., Schneider, R., Maiolino, R., Valiante, R., Graziani, L., Volonteri, M., Seeking the growth of the first black hole seeds with JWST. Mon. Not. R. Astron. Soc. 519:3 (2023), 4753–4764 arXiv:2211.01389 [astro-ph.GA].
Pacucci, F., Nguyen, B., Carniani, S., Maiolino, R., Fan, X., JWST CEERS and JADES active galaxies at z=4–7 violate the local M ⊙–M ⊙ relation at >3σ: implications for low-mass black holes and seeding models. Astrophys. J. Lett., 957(1), 2023, L3 arXiv:2308.12331 [astro-ph.GA].
Maiolino, R., et al. A small and vigorous black hole in the early Universe. Nature 627:8002 (2024), 59–63 arXiv:2305.12492 [astro-ph.GA] Nature, 630, 2024, E2 (erratum).
Mo, H., Chen, Y., Wang, H., A two-phase model of galaxy formation: I. The growth of galaxies and supermassive black holes. Mon. Not. R. Astron. Soc. 532:4 (2024), 3808–3838 arXiv:2311.05030 [astro-ph.GA].
Larson, R.L., et al., CEERS Team Collaboration. A CEERS discovery of an accreting supermassive black hole 570 Myr after the big bang: identifying a progenitor of massive z > 6 quasars. Astrophys. J. Lett., 953(2), 2023, L29 arXiv:2303.08918 [astro-ph.GA].
Bogdan, A., et al. Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar. Nat. Astron. 8:1 (2024), 126–133 arXiv:2305.15458 [astro-ph.GA].
Schneider, R., Valiante, R., Trinca, A., Graziani, L., Volonteri, M., Maiolino, R., Are we surprised to find SMBHs with JWST at z ≥ 9?. Mon. Not. R. Astron. Soc. 526:3 (2023), 3250–3261 arXiv:2305.12504 [astro-ph.GA].
Huang, H.-L., Wang, Y.-T., Piao, Y.-S., Supermassive primordial black holes for the GHZ9 and UHZ1 observed by the JWST. 2024 arXiv:2410.05891 [astro-ph.GA].
Trinca, A., Valiante, R., Schneider, R., Juodžbalis, I., Maiolino, R., Graziani, L., Lupi, A., Natarajan, P., Volonteri, M., Zana, T., Episodic super-eddington accretion as a clue to overmassive black holes in the early universe. 2024 arXiv:2412.14248 [astro-ph.GA].
Kumar, S., Weiner, N., Early galaxies from rare inflationary processes and JWST observations. 2025 arXiv:2502.08701 [astro-ph.CO].
Parashari, P., Laha, R., Primordial power spectrum in light of JWST observations of high redshift galaxies. Mon. Not. R. Astron. Soc. 526:1 (2023), L63–L69 arXiv:2305.00999 [astro-ph.CO].
Hirano, S., Yoshida, N., Early structure formation from primordial density fluctuations with a blue, tilted power spectrum: high-redshift galaxies. Astrophys. J., 963(1), 2024, 2 arXiv:2306.11993 [astro-ph.GA].
Padmanabhan, H., Loeb, A., Alleviating the need for exponential evolution of JWST galaxies in 1010 M ⊙ haloes at z > 10 by a modified ΛCDM power spectrum. Astrophys. J. Lett., 953(1), 2023, L4 arXiv:2306.04684 [astro-ph.CO].
Biagetti, M., Franciolini, G., Riotto, A., High-redshift JWST observations and primordial non-gaussianity. Astrophys. J., 944(2), 2023, 113 arXiv:2210.04812 [astro-ph.CO].
De Laurentis, M., Salucci, P., The accurate mass distribution of M87, the giant galaxy with imaged shadow of its supermassive black hole, as a portal to new physics. Astrophys. J., 929(1), 2022, 17 arXiv:2206.01997 [astro-ph.CO].
Guo, S.-Y., Khlopov, M., Liu, X., Wu, L., Wu, Y., Zhu, B., Footprints of axion-like particle in pulsar timing array data and James Webb Space Telescope observations. Sci. China Phys. Mech. Astron., 67(11), 2024, 111011 arXiv:2306.17022 [hep-ph].
Hütsi, G., Raidal, M., Urrutia, J., Vaskonen, V., Veermäe, H., Did JWST observe imprints of axion miniclusters or primordial black holes?. Phys. Rev. D, 107(4), 2023, 043502 arXiv:2211.02651 [astro-ph.CO].
Bird, S., Chang, C.-F., Cui, Y., Yang, D., Enhanced early galaxy formation in JWST from axion dark matter?. Phys. Lett. B, 858, 2024, 139062 arXiv:2307.10302 [hep-ph].
Gong, Y., Yue, B., Cao, Y., Chen, X., Fuzzy dark matter as a solution to reconcile the stellar mass density of high-z massive galaxies and reionization history. Astrophys. J., 947(1), 2023, 28 arXiv:2209.13757 [astro-ph.CO].
Zhitnitsky, A., Structure formation paradigm and axion quark nugget dark matter model. Phys. Dark Univ., 40, 2023, 101217 arXiv:2302.00010 [hep-ph].
Zhang, Q., Li, S., Tan, X.-H., Xia, J.-Q., Constraints on primordial magnetic fields from high redshift stellar mass density. Astrophys. J., 972(1), 2024, 117 arXiv:2408.03584 [astro-ph.CO].
Jiao, H., Brandenberger, R., Refregier, A., Early structure formation from cosmic string loops in light of early JWST observations. Phys. Rev. D, 108(4), 2023, 043510 arXiv:2304.06429 [astro-ph.CO].
Jiao, H., Brandenberger, R., Refregier, A., N-body simulation of early structure formation from cosmic string loops. Phys. Rev. D, 109(12), 2024, 123524 arXiv:2402.06235 [astro-ph.CO].
Koehler, S.M., Jiao, H., Kannan, R., Investigating cosmic strings using large-volume hydrodynamical simulations in the context of JWST's massive UV-bright galaxies. 2024 arXiv:2412.00182 [astro-ph.CO].
Dayal, P., Giri, S.K., Warm dark matter constraints from the JWST. Mon. Not. R. Astron. Soc. 528:2 (2024), 2784–2789 arXiv:2303.14239 [astro-ph.CO].
Maio, U., Viel, M., JWST high-redshift galaxy constraints on warm and cold dark matter models. Astron. Astrophys., 672, 2023, A71 arXiv:2211.03620 [astro-ph.CO].
Gandolfi, G., Lapi, A., Ronconi, T., Danese, L., Astroparticle constraints from the cosmic star formation rate density at high redshift: current status and forecasts for JWST. Universe, 8(11), 2022, 589 arXiv:2211.02840 [astro-ph.CO].
Forconi, M., Giarè, W., Mena, O., Ruchika, Di Valentino, E., Melchiorri, A., Nunes, R.C., A double take on early and interacting dark energy from JWST. J. Cosmol. Astropart. Phys., 05, 2024, 097 arXiv:2312.11074 [astro-ph.CO].
Klypin, A., Poulin, V., Prada, F., Primack, J., Kamionkowski, M., Avila-Reese, V., Rodriguez-Puebla, A., Behroozi, P., Hellinger, D., Smith, T.L., Clustering and halo abundances in early dark energy cosmological models. Mon. Not. R. Astron. Soc. 504:1 (2021), 769–781 arXiv:2006.14910 [astro-ph.CO].
Shen, X., Vogelsberger, M., Boylan-Kolchin, M., Tacchella, S., Naidu, R.P., Early galaxies and early dark energy: a unified solution to the hubble tension and puzzles of massive bright galaxies revealed by JWST. Mon. Not. R. Astron. Soc. 533:4 (2024), 3923–3936 arXiv:2406.15548 [astro-ph.GA].
Jiang, J.-Q., Liu, W., Zhan, H., Hu, B., Explanation of high redshift luminous galaxies from JWST by an early dark energy model. Phys. Rev. D, 111(2), 2025, 023519 arXiv:2409.19941 [astro-ph.CO].
Menci, N., Castellano, M., Santini, P., Merlin, E., Fontana, A., Shankar, F., High-redshift galaxies from early JWST observations: constraints on dark energy models. Astrophys. J. Lett., 938(1), 2022, L5 arXiv:2208.11471 [astro-ph.CO].
Menci, N., Sen, A.A., Castellano, M., The excess of JWST bright galaxies: a possible origin in the ground state of dynamical dark energy in the light of DESI 2024 data. Astrophys. J., 976(2), 2024, 227 arXiv:2410.22940 [astro-ph.CO].
Menci, N., Adil, S.A., Mukhopadhyay, U., Sen, A.A., Vagnozzi, S., Negative cosmological constant in the dark energy sector: tests from JWST photometric and spectroscopic observations of high-redshift galaxies. J. Cosmol. Astropart. Phys., 07, 2024, 072 arXiv:2401.12659 [astro-ph.CO].
Adil, S.A., Mukhopadhyay, U., Sen, A.A., Vagnozzi, S., Dark energy in light of the early JWST observations: case for a negative cosmological constant?. J. Cosmol. Astropart. Phys., 10, 2023, 072 arXiv:2307.12763 [astro-ph.CO].
Paraskevas, E.A., Perivolaropoulos, L., The density of virialized clusters as a probe of dark energy. Mon. Not. R. Astron. Soc. 531:1 (2024), 1021–1033 arXiv:2308.07046 [astro-ph.CO].
Wang, P., Su, B.-Y., Zu, L., Yang, Y., Feng, L., Exploring the dark energy equation of state with JWST. Eur. Phys. J. Plus, 139(8), 2024, 711 arXiv:2307.11374 [astro-ph.CO].
Jõeveer, M., Einasto, J., Tago, E., Spatial distribution of galaxies and of clusters of galaxies in the southern galactic hemisphere. Mon. Not. R. Astro. Soc. 185 (1978), 357–370.
Gregory, S.A., Thompson, L.A., The Coma/A1367 supercluster and its environs. Astrophys. J. 222 (1978), 784–799.
Kirshner, R.P., Oemler, A. Jr., Schechter, P.L., Shectman, S.A., A million cubic megaparsec void in Bootes. Astrophys. J. Lett. 248 (1981), L57–60.
de Lapparent, V., Geller, M.J., Huchra, J.P., A Slice of the universe. Astrophys. J. Lett. 302 (1986), L1–L5.
Zeldovich, Y.B., Einasto, J., Shandarin, S.F., Giant voids in the universe. Nature 300 (1982), 407–413.
Peebles, P.J.E., The void phenomenon. Astrophys. J. 557 (2001), 495–504 arXiv:astro-ph/0101127.
Padilla, N., Paz, D., Lares, M., Ceccarelli, L., Lambas, D.G., Cai, Y.-C., Li, B., Void dynamics. IAU Symp. 308 (2014), 530–537 arXiv:1410.8186 [astro-ph.CO].
Pisani, A., et al. Cosmic voids: a novel probe to shed light on our Universe. 2019 arXiv:1903.05161 [astro-ph.CO].
Pollina, G., Hamaus, N., Dolag, K., Weller, J., Baldi, M., Moscardini, L., On the linearity of tracer bias around voids. Mon. Not. R. Astron. Soc. 469:1 (2017), 787–799 arXiv:1610.06176 [astro-ph.CO].
Contarini, S., Ronconi, T., Marulli, F., Moscardini, L., Veropalumbo, A., Baldi, M., Cosmological exploitation of the size function of cosmic voids identified in the distribution of biased tracers. Mon. Not. R. Astron. Soc. 488:3 (2019), 3526–3540 arXiv:1904.01022 [astro-ph.CO].
Einasto, J., Liivamägi, L.J., Suhhonenko, I., Einasto, M., The biasing phenomenon. Astron. Astrophys., 630, 2019, A62 arXiv:1906.03617 [astro-ph.CO].
Colberg, J.M., et al. The aspen–amsterdam void finder comparison project. Mon. Not. R. Astron. Soc., 387, 2008, 933 arXiv:0803.0918 [astro-ph].
Neyrinck, M.C., ZOBOV: a parameter-free void-finding algorithm. Mon. Not. R. Astron. Soc., 386, 2008, 2101 arXiv:0712.3049 [astro-ph].
Elyiv, A., Marulli, F., Pollina, G., Baldi, M., Branchini, E., Cimatti, A., Moscardini, L., Cosmic voids detection without density measurements. Mon. Not. R. Astron. Soc. 448:1 (2015), 642–653 arXiv:1410.4559 [astro-ph.CO].
Paz, D.J., Correa, C.M., Gualpa, S.R., Ruiz, A.N., Bederián, C.S., Graña, R.D., Padilla, N.D., Guess the cheese flavour by the size of its holes: a cosmological test using the abundance of popcorn voids. Mon. Not. R. Astron. Soc. 522:2 (2023), 2553–2569 arXiv:2212.06849 [astro-ph.CO].
Ruiz, A.N., Paz, D.J., Lares, M., Luparello, H.E., Ceccarelli, L., Garcia Lambas, D., Clues on void evolution – III. Structure and dynamics in void shells. Mon. Not. R. Astron. Soc. 448:2 (2015), 1471–1482 arXiv:1501.02120 [astro-ph.CO].
Lambas, D.G., Lares, M., Ceccarelli, L., Ruiz, A.N., Paz, D.J., Maldonado, V.E., Luparello, H.E., The sparkling Universe: the coherent motions of cosmic voids. Mon. Not. R. Astron. Soc. 455:1 (2016), L99–L103 arXiv:1510.00712 [astro-ph.CO].
Schuster, N., Hamaus, N., Dolag, K., Weller, J., Why cosmic voids matter: mitigation of baryonic physics. J. Cosmol. Astropart. Phys., 08, 2024, 065 arXiv:2312.11241 [astro-ph.CO].
Paz, D., Lares, M., Ceccarelli, L., Padilla, N., Lambas, D.G., Clues on void evolution II: Measuring density and velocity profiles on SDSS galaxy redshift space distortions. Mon. Not. R. Astron. Soc., 436, 2013, 3480 arXiv:1306.5799 [astro-ph.CO].
Schuster, N., Hamaus, N., Dolag, K., Weller, J., Why cosmic voids matter: nonlinear structure & linear dynamics. J. Cosmol. Astropart. Phys., 05, 2023, 031 arXiv:2210.02457 [astro-ph.CO].
Szapudi, I., et al. The cold spot in the cosmic microwave background: the shadow of a supervoid. 49th Rencontres de Moriond on Cosmology, 2014, 33–41 arXiv:1406.3622 [astro-ph.CO].
Sheth, R.K., van de Weygaert, R., A Hierarchy of voids: Much ado about nothing. Mon. Not. R. Astron. Soc., 350, 2004, 517 arXiv:astro-ph/0311260.
Jennings, E., Li, Y., Hu, W., The abundance of voids and the excursion set formalism. Mon. Not. R. Astron. Soc., 434, 2013, 2167 arXiv:1304.6087 [astro-ph.CO].
Verza, G., Carbone, C., Pisani, A., Porciani, C., Matarrese, S., The universal multiplicity function: counting haloes and voids. J. Cosmol. Astropart. Phys., 10, 2024, 079 arXiv:2401.14451 [astro-ph.CO].
Hamaus, N., Pisani, A., Sutter, P.M., Lavaux, G., Escoffier, S., Wandelt, B.D., Weller, J., Constraints on cosmology and gravity from the dynamics of voids. Phys. Rev. Lett., 117(9), 2016, 091302 arXiv:1602.01784 [astro-ph.CO].
Cai, Y.-C., Taylor, A., Peacock, J.A., Padilla, N., Redshift-space distortions around voids. Mon. Not. R. Astron. Soc. 462:3 (2016), 2465–2477 arXiv:1603.05184 [astro-ph.CO].
Correa, C.M., Paz, D.J., Padilla, N.D., Ruiz, A.N., Angulo, R.E., Sánchez, A.G., Non-fiducial cosmological test from geometrical and dynamical distortions around voids. Mon. Not. R. Astron. Soc. 485:4 (2019), 5761–5772 arXiv:1811.12251 [astro-ph.CO].
Correa, C.M., Paz, D.J., Sánchez, A.G., Ruiz, A.N., Padilla, N.D., Angulo, R.E., Redshift-space effects in voids and their impact on cosmological tests. Part I: the void size function. Mon. Not. R. Astron. Soc. 500:1 (2020), 911–925 arXiv:2007.12064 [astro-ph.CO].
Correa, C.M., Paz, D.J., Padilla, N.D., Sánchez, A.G., Ruiz, A.N., Angulo, R.E., Redshift-space effects in voids and their impact on cosmological tests – II. The void-galaxy cross-correlation function. Mon. Not. R. Astron. Soc. 509:2 (2021), 1871–1884 arXiv:2107.01314 [astro-ph.CO].
Contarini, S., Pisani, A., Hamaus, N., Marulli, F., Moscardini, L., Baldi, M., The perspective of voids on rising cosmology tensions. Astron. Astrophys., 682, 2024, A20 arXiv:2212.07438 [astro-ph.CO].
Hamaus, N., Pisani, A., Choi, J.-A., Lavaux, G., Wandelt, B.D., Weller, J., Precision cosmology with voids in the final BOSS data. J. Cosmol. Astropart. Phys., 12, 2020, 023 arXiv:2007.07895 [astro-ph.CO].
Hamaus, N., et al., Euclid Collaboration. Euclid: Forecasts from redshift-space distortions and the Alcock–Paczynski test with cosmic voids. Astron. Astrophys., 658, 2022, A20 arXiv:2108.10347 [astro-ph.CO].
Contarini, S., et al., Euclid Collaboration. Euclid: Cosmological forecasts from the void size function. Astron. Astrophys., 667, 2022, A162 arXiv:2205.11525 [astro-ph.CO].
Bonici, M., et al., Euclid Collaboration. Euclid: Forecasts from the void-lensing cross-correlation. Astron. Astrophys., 670, 2023, A47 arXiv:2206.14211 [astro-ph.CO].
Raghunathan, S., Nadathur, S., Sherwin, B.D., Whitehorn, N., The gravitational lensing signatures of BOSS voids in the cosmic microwave background. Astrophys. J., 890(2), 2020, 168 arXiv:1911.08475 [astro-ph.CO].
Demirbozan, U., et al., DES Collaboration. The gravitational lensing imprints of DES Y3 superstructures on the CMB: a matched filtering approach. Mon. Not. R. Astron. Soc. 534:3 (2024), 2328–2343 arXiv:2404.18278 [astro-ph.CO].
Camacho-Ciurana, G., Lee, P., Arsenov, N., Kovács, A., Szapudi, I., Csabai, I., The cosmic microwave background lensing imprint of cosmic voids detected in the WISE-Pan-STARRS luminous red galaxy catalog. Astron. Astrophys., 689, 2024, A171 arXiv:2312.08483 [astro-ph.CO].
Sartori, S., et al. The imprint of cosmic voids from the DESI Legacy Survey DR9 LRGs in the Planck 2018 lensing map through spectroscopically calibrated mocks. 2024 arXiv:2412.02761 [astro-ph.CO].
Lorimer, D.R., Bailes, M., McLaughlin, M.A., Narkevic, D.J., Crawford, F., A bright millisecond radio burst of extragalactic origin. Science, 318, 2007, 777 arXiv:0709.4301 [astro-ph].
Tendulkar, S.P., et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. Lett., 834(2), 2017, L7 arXiv:1701.01100 [astro-ph.HE].
Walters, A., Weltman, A., Gaensler, B.M., Ma, Y.-Z., Witzemann, A., Future cosmological constraints from fast radio bursts. Astrophys. J., 856(1), 2018, 65 arXiv:1711.11277 [astro-ph.CO].
Deng, W., Zhang, B., Cosmological implications of fast radio burst/gamma-ray burst associations. Astrophys. J. Lett., 783, 2014, L35 arXiv:1401.0059 [astro-ph.HE].
Walters, A., Ma, Y.-Z., Sievers, J., Weltman, A., Probing diffuse gas with fast radio bursts. Phys. Rev. D, 100(10), 2019, 103519 arXiv:1909.02821 [astro-ph.CO].
Macquart, J.P., et al. A census of baryons in the Universe from localized fast radio bursts. Nature 581:7809 (2020), 391–395 arXiv:2005.13161 [astro-ph.CO].
Platts, E., Weltman, A., Walters, A., Tendulkar, S.P., Gordin, J.E.B., Kandhai, S., A living theory catalogue for fast radio bursts. Phys. Rep. 821 (2019), 1–27 arXiv:1810.05836 [astro-ph.HE].
Zhang, B., The physical mechanisms of fast radio bursts. Nature 587 (2020), 45–53 arXiv:2011.03500 [astro-ph.HE].
Zhang, B., The physics of fast radio bursts. Rev. Modern Phys., 95(3), 2023, 035005 arXiv:2212.03972 [astro-ph.HE].
Kalita, S., Weltman, A., Continuous gravitational wave detection to understand the generation mechanism of fast radio bursts. Mon. Not. R. Astron. Soc. 520:3 (2023), 3742–3748 arXiv:2211.00940 [astro-ph.HE].
Chibueze, J.O., et al., H.E.S.S. Collaboration. A MeerKAT, e-MERLIN, H.E.S.S., and Swift search for persistent and transient emission associated with three localized FRBs. Mon. Not. R. Astron. Soc. 515:1 (2022), 1365–1379 arXiv:2201.00069 [astro-ph.HE].
Zhou, B., Li, X., Wang, T., Fan, Y.-Z., Wei, D.-M., Fast radio bursts as a cosmic probe?. Phys. Rev. D, 89(10), 2014, 107303 arXiv:1401.2927 [astro-ph.CO].
Gao, H., Li, Z., Zhang, B., Fast radio burst/gamma-ray burst cosmography. Astrophys. J., 788, 2014, 189 arXiv:1402.2498 [astro-ph.CO].
Pleunis, Z., et al. LOFAR detection of 110–188 MHz emission and frequency-dependent activity from FRB 20180916B. Astrophys. J. Lett., 911(1), 2021, L3 arXiv:2012.08372 [astro-ph.HE].
Gajjar, V., et al. Highest frequency detection of FRB 121102 at 4–8 GHz using the breakthrough listen digital backend at the green bank telescope. Astrophys. J., 863(1), 2018, 2 arXiv:1804.04101 [astro-ph.HE].
Bonetti, L., Ellis, J., Mavromatos, N.E., Sakharov, A.S., Sarkisyan-Grinbaum, E.K.G., Spallicci, A.D.A.M., Photon mass limits from fast radio bursts. Phys. Lett. B 757 (2016), 548–552 arXiv:1602.09135 [astro-ph.HE].
Wang, H., Miao, X., Shao, L., Bounding the photon mass with cosmological propagation of fast radio bursts. Phys. Lett. B, 820, 2021, 136596 arXiv:2103.15299 [astro-ph.HE].
Lin, H.-N., Tang, L., Zou, R., Revised constraints on the photon mass from well-localized fast radio bursts. Mon. Not. R. Astron. Soc. 520:1 (2023), 1324–1331 arXiv:2301.12103 [gr-qc].
Reischke, R., Hagstotz, S., Consistent constraints on the equivalence principle from localized fast radio bursts. Mon. Not. R. Astron. Soc. 523:4 (2023), 6264–6271 arXiv:2302.10072 [astro-ph.CO].
Kalita, S., Constraining fundamental constants with fast radio bursts: unveiling the role of energy scale. Mon. Not. R. Astron. Soc. 533:1 (2024), L57–L63 arXiv:2407.01736 [gr-qc].
Lemos, T., Gonçalves, R., Carvalho, J., Alcaniz, J., A search for the fine-structure constant evolution from fast radio bursts and type Ia supernovae data. J. Cosmol. Astropart. Phys., 01, 2025, 059 arXiv:2406.11691 [astro-ph.CO].
Li, Z.-X., Gao, H., Ding, X.-H., Wang, G.-J., Zhang, B., Strongly lensed repeating fast radio bursts as precision probes of the universe. Nat. Commun., 9(1), 2018, 3833 arXiv:1708.06357 [astro-ph.CO].
Hagstotz, S., Reischke, R., Lilow, R., A new measurement of the Hubble constant using fast radio bursts. Mon. Not. R. Astron. Soc. 511:1 (2022), 662–667 arXiv:2104.04538 [astro-ph.CO].
Wu, Q., Zhang, G.-Q., Wang, F.-Y., An 8 per cent determination of the Hubble constant from localized fast radio bursts. Mon. Not. R. Astron. Soc. 515:1 (2022), L1–L5 arXiv:2108.00581 [astro-ph.CO] Mon. Not. Roy. Astron. Soc., 531, 2024, L8 (erratum).
James, C.W., et al. A measurement of hubble's constant using fast radio bursts. Mon. Not. R. Astron. Soc. 516:4 (2022), 4862–4881 arXiv:2208.00819 [astro-ph.CO].
Baptista, J., Prochaska, J.X., Mannings, A.G., James, C.W., Shannon, R.M., Ryder, S.D., Deller, A.T., Scott, D.R., Glowacki, M., Tejos, N., Measuring the variance of the macquart relation in redshift–extragalactic dispersion measure modeling. Astrophys. J., 965(1), 2024, 57 arXiv:2305.07022 [astro-ph.CO].
Liu, Y., Yu, H., Wu, P., Cosmological-model-independent determination of hubble constant from fast radio bursts and hubble parameter measurements. Astrophys. J. Lett., 946(2), 2023, L49 arXiv:2210.05202 [astro-ph.CO].
Wei, J.-J., Melia, F., Investigating cosmological models and the hubble tension using localized fast radio bursts. Astrophys. J., 955(2), 2023, 101 arXiv:2308.05918 [astro-ph.CO].
Zhao, Z.-W., Zhang, J.-G., Li, Y., Zhang, J.-F., Zhang, X., FRB dark sirens: Measuring the Hubble constant with unlocalized fast radio bursts. 2022 arXiv:2212.13433 [astro-ph.CO].
Gao, J., Zhou, Z., Du, M., Zou, R., Hu, J., Xu, L., A measurement of hubble constant using cosmographic approach from fast radio bursts and SNe Ia. 2023 arXiv:2307.08285 [astro-ph.CO].
Fortunato, J.A.S., Bacon, D.J., Hipólito-Ricaldi, W.S., Wands, D., Fast Radio Bursts and Artificial Neural Networks: a cosmological-model-independent estimation of the Hubble constant. J. Cosmol. Astropart. Phys., 01, 2025, 018 arXiv:2407.03532 [astro-ph.CO].
Kalita, S., Bhatporia, S., Weltman, A., Fast Radio Bursts as probes of the late-time universe: A new insight on the Hubble tension. Phys. Dark Univ., 48, 2025, 101926 arXiv:2410.01974 [astro-ph.CO].
Piratova-Moreno, E.F., García, L.A., Benavides-Gallego, C.A., Cabrera, C., Fast Radio Bursts as cosmological proxies: estimating the Hubble constant. 2025 arXiv:2502.08509 [astro-ph.CO].
Muñoz, J.B., Kovetz, E.D., Dai, L., Kamionkowski, M., Lensing of fast radio bursts as a probe of compact dark matter. Phys. Rev. Lett., 117(9), 2016, 091301 arXiv:1605.00008 [astro-ph.CO].
Sammons, M.W., Macquart, J.-P., Ekers, R.D., Shannon, R.M., Cho, H., Prochaska, J.X., Deller, A.T., Day, C.K., First constraints on compact dark matter from fast radio burst microstructure. Astrophys. J., 900(2), 2020, 122 arXiv:2002.12533 [astro-ph.CO].
Laha, R., Lensing of fast radio bursts: Future constraints on primordial black hole density with an extended mass function and a new probe of exotic compact fermion and boson stars. Phys. Rev. D, 102(2), 2020, 023016 arXiv:1812.11810 [astro-ph.CO].
Liao, K., Zhang, S.B., Li, Z., Gao, H., Constraints on compact dark matter with fast radio burst observations. Astrophys. J., 896(1), 2020, L11 arXiv:2003.13349 [astro-ph.CO].
Leung, C., et al. Constraining primordial black holes using fast radio burst gravitational-lens interferometry with CHIME/FRB. Phys. Rev. D, 106(4), 2022, 043017 arXiv:2204.06001 [astro-ph.HE].
Kalita, S., Bhatporia, S., Weltman, A., Gravitational lensing in modified gravity: a case study for Fast Radio Bursts. J. Cosmol. Astropart. Phys., 11, 2023, 059 arXiv:2308.16604 [gr-qc].
Crichton, D., et al. Hydrogen intensity and real-time analysis experiment: 256-element array status and overview. J. Astron. Telesc. Instrum. Syst., 8, 2022, 011019 arXiv:2109.13755 [astro-ph.IM].
Connor, L., Ravi, V., Stellar prospects for FRB gravitational lensing. Mon. Not. R. Astron. Soc. 521:3 (2023), 4024–4038 arXiv:2206.14310 [astro-ph.CO].
Ho, S.C.C., Hashimoto, T., Goto, T., Lin, Y.-W., Kim, S.J., Uno, Y., Hsiao, T.Y.Y., Future constraints on dark matter with gravitationally lensed fast radio bursts detected by BURSTT. Astrophys. J., 950(1), 2023, 53 arXiv:2304.04990 [astro-ph.HE].
Weltman, A., et al. Fundamental physics with the square kilometre array. Publ. Astron. Soc. Austral., 37, 2020, e002 arXiv:1810.02680 [astro-ph.CO].
Hauser, M.G., Dwek, E., The cosmic infrared background: measurements and implications. Ann. Rev. Astron. Astrophys. 39 (2001), 249–307 arXiv:astro-ph/0105539.
Gilmore, R.C., Madau, P., Primack, J.R., Somerville, R.S., Haardt, F., GeV gamma-ray attenuation and the high-redshift UV background. Mon. Not. R. Astron. Soc., 399, 2009, 1694 arXiv:0905.1144 [astro-ph.CO].
Cappelluti, N., et al. The Chandra COSMOS legacy survey: Energy Spectrum of the Cosmic X-ray Background and constraints on undetected populations. Astrophys. J., 837(1), 2017, 19 arXiv:1702.01660 [astro-ph.HE].
Ackermann, M., et al., Fermi-LAT Collaboration. Resolving the extragalactic γ-ray background above 50 GeV with the fermi large area telescope. Phys. Rev. Lett., 116(15), 2016, 151105 arXiv:1511.00693 [astro-ph.CO].
Singal, J., et al. The second radio synchrotron background workshop: conference summary and report. Publ. Astron. Soc. Pac., 135(1045), 2023, 036001 arXiv:2211.16547 [astro-ph.CO].
Fixsen, D.J., et al. ARCADE 2 measurement of the extra-galactic sky temperature at 3-90 GHz. Astrophys. J., 734, 2011, 5 arXiv:0901.0555 [astro-ph.CO].
Singal, J., et al. The ARCADE 2 instrument. Astrophys. J., 730, 2011, 138 arXiv:0901.0546 [astro-ph.IM].
Dowell, J., Taylor, G.B., The radio background below 100 MHz. Astrophys. J. Lett., 858(1), 2018, L9 arXiv:1804.08581 [astro-ph.CO].
Jóhannesson, G., Porter, T.A., Signatures of recent cosmic-ray acceleration in the high-latitude gamma-ray sky. Astrophys. J., 917(1), 2021, 30 arXiv:2104.13708 [astro-ph.HE].
Haslam, C.G.T., Salter, C.J., Stoffel, H., Wilson, W.E., A 408 MHz all-sky continuum survey. II. The atlas of contour maps. Astron. Astrophys. Suppl. Ser. 47 (1982), 1–142.
Maeda, K., Alvarez, H., Aparici, J., May, J., Reich, P., A 45-MHz continuum survey of the northern hemisphere. Astron. Astrophys. Suppl. Ser. 140 (1999), 145–154.
Roger, R.S., Costain, C.H., Landecker, T.L., Swerdlyk, C.M., The radio emission from the galaxy at 22 mhz. Astron. Astrophys. Suppl. Ser., 137, 1999, 7 arXiv:astro-ph/9902213.
Singal, J., et al. The radio synchrotron background: conference summary and report. Publ. Astron. Soc. Pac., 130(985), 2018, 036001 arXiv:1711.09979 [astro-ph.HE].
Condon, J.J., Cotton, W.D., Fomalont, E.B., Kellermann, K.I., Miller, N., Perley, R.A., Scott, D., Vernstrom, T., Wall, J.V., Resolving the radio source background: deeper understanding through confusion. Astrophys. J., 758, 2012, 23 arXiv:1207.2439 [astro-ph.CO].
Hardcastle, M.J., Shimwell, T.W., Tasse, C., Best, P.N., Drabent, A., Jarvis, M.J., Prandoni, I., Röttgering, H.J.A., Sabater, J., Schwarz, D.J., The contribution of discrete sources to the sky temperature at 144 MHz. Astron. Astrophys., 648, 2021, A10 arXiv:2011.08294 [astro-ph.CO].
Hale, C.L., Whittam, I.H., Jarvis, M.J., Best, P.N., Thomas, N.L., Heywood, I., Prescott, M., Adams, N., Afonso, J., An, F., Bowler, R.A.A., Collier, J.D., Cook, R.H.W., Davé, R., Frank, B.S., Glowacki, M., Hatfield, P.W., Kolwa, S., Lovell, C.C., Maddox, N., Marchetti, L., Morabito, L.K., Murphy, E., Prandoni, I., Randriamanakoto, Z., Taylor, A.R., MIGHTEE: deep 1.4 GHz source counts and the sky temperature contribution of star-forming galaxies and active galactic nuclei. Mon. Not. R. Astro. Soc. 520:2 (2023), 2668–2691 arXiv:2211.05741 [astro-ph.GA].
Kogut, A., et al. ARCADE 2 observations of galactic radio emission. Astrophys. J., 734, 2011, 4 arXiv:0901.0562 [astro-ph.GA].
Singal, J., Kogut, A., Jones, E., Dunlap, H., Axial ratio of edge-on spiral galaxies as a test for bright radio halos. Astrophys. J. Lett., 799(1), 2015, L10 arXiv:1501.00499 [astro-ph.GA].
Krause, M.G.H., Hardcastle, M.J., Can the Local Bubble explain the radio background?. Mon. Not. R. Astron. Soc. 502:2 (2021), 2807–2814 arXiv:2101.05255 [astro-ph.HE].
Offringa, A.R., Singal, J., Heston, S., Horiuchi, S., Lucero, D.M., Measurement of the anisotropy power spectrum of the radio synchrotron background. Mon. Not. R. Astron. Soc. 509:1 (2021), 114–121 arXiv:2110.00499 [astro-ph.CO].
Cowie, F.J., Offringa, A.R., Gehlot, B.K., Singal, J., Heston, S., Horiuchi, S., Lucero, D.M., Diffuse sources, clustering, and the excess anisotropy of the radio synchrotron background. Mon. Not. R. Astron. Soc. 523:4 (2023), 5034–5046 arXiv:2306.00829 [astro-ph.CO].
Ponente, P.P., Ascasibar, Y., Diego, J.M., The contribution of star-forming galaxies to the cosmic radio background. Mon. Not. R. Astron. Soc., 418, 2011, 691 arXiv:1104.3012 [astro-ph.CO].
Singal, J., Stawarz, L., Lawrence, A., Petrosian, V., Sources of the radio background considered. Mon. Not. R. Astron. Soc., 409, 2010, 1172 arXiv:0909.1997 [astro-ph.CO].
Todarello, E., Regis, M., Bianchini, F., Singal, J., Branchini, E., Cowie, F.J., Heston, S., Horiuchi, S., Lucero, D., Offringa, A., Constraints on the origin of the radio synchrotron background via angular correlations. Mon. Not. R. Astron. Soc. 530:3 (2024), 2994–3004 arXiv:2311.17641 [astro-ph.CO].
Fialkov, A., Barkana, R., Signature of excess radio background in the 21-cm global signal and power spectrum. Mon. Not. R. Astron. Soc. 486:2 (2019), 1763–1773 arXiv:1902.02438 [astro-ph.CO].
Biermann, P.L., Nath, B.B., Caramete, L.t.I., Harms, B.C., Stanev, T., Becker Tjus, J., Cosmic backgrounds due to the formation of the first generation of supermassive black holes. Mon. Not. R. Astron. Soc. 441:2 (2014), 1147–1156 arXiv:1403.3804 [astro-ph.CO].
Fang, K., Linden, T., Cluster mergers and the origin of the ARCADE-2 excess. J. Cosmol. Astropart. Phys., 10, 2016, 004 arXiv:1506.05807 [astro-ph.HE].
Fornengo, N., Lineros, R., Regis, M., Taoso, M., Possibility of a dark matter interpretation for the excess in isotropic radio emission reported by ARCADE. Phys. Rev. Lett., 107, 2011, 271302 arXiv:1108.0569 [hep-ph].
Hooper, D., Belikov, A.V., Jeltema, T.E., Linden, T., Profumo, S., Slatyer, T.R., The isotropic radio background and annihilating dark matter. Phys. Rev. D, 86, 2012, 103003 arXiv:1203.3547 [astro-ph.CO].
Fang, K., Linden, T., Anisotropy of the extragalactic radio background from dark matter annihilation. Phys. Rev. D, 91(8), 2015, 083501 arXiv:1412.7545 [astro-ph.HE].
Fortes, E.C.F.S., Miranda, O.D., Stecker, F.W., Wuensche, C.A., Some implications of the leptonic annihilation of dark matter: possible galactic radio emission signatures and the excess radio flux of extragalactic origin. J. Cosmol. Astropart. Phys., 11, 2019, 047 arXiv:1907.13184 [hep-ph].
Yang, Y., Yang, G., Huang, X., Chen, X., Lu, T., Zong, H., Contribution of ultracompact dark matter minihalos to the isotropic radio background. Phys. Rev. D, 87(8), 2013, 083519 arXiv:1206.3750 [astro-ph.HE].
Spolyar, D., Bodenheimer, P., Freese, K., Gondolo, P., Dark stars: a new look at the first stars in the universe. Astrophys. J. 705 (2009), 1031–1042 arXiv:0903.3070 [astro-ph.CO].
Rindler-Daller, T., Freese, K., Townsend, R.H.D., Visinelli, L., Stability and pulsation of the first dark stars. Mon. Not. R. Astron. Soc. 503:3 (2021), 3677–3691 arXiv:2011.00231 [astro-ph.CO].
Lawson, K., Zhitnitsky, A.R., Isotropic radio background from quark nugget dark matter. Phys. Lett. B 724 (2013), 17–21 arXiv:1210.2400 [astro-ph.CO].
Cappelluti, N., Hasinger, G., Natarajan, P., Exploring the high-redshift PBH-ΛCDM universe: early black hole seeding, the first stars and cosmic radiation backgrounds. Astrophys. J., 926(2), 2022, 205 arXiv:2109.08701 [astro-ph.CO].
Mittal, S., Kulkarni, G., Background of radio photons from primordial black holes. Mon. Not. R. Astron. Soc. 510:4 (2022), 4992–4997 arXiv:2110.11975 [astro-ph.CO].
Acharya, S.K., Dhandha, J., Chluba, J., Can accreting primordial black holes explain the excess radio background?. Mon. Not. R. Astron. Soc. 517:2 (2022), 2454–2461 arXiv:2208.03816 [astro-ph.CO].
Pospelov, M., Pradler, J., Ruderman, J.T., Urbano, A., Room for new physics in the rayleigh-jeans tail of the cosmic microwave background. Phys. Rev. Lett., 121(3), 2018, 031103 arXiv:1803.07048 [hep-ph].
Caputo, A., Liu, H., Mishra-Sharma, S., Pospelov, M., Ruderman, J.T., Radio excess from stimulated dark matter decay. Phys. Rev. D, 107(12), 2023, 123033 arXiv:2206.07713 [hep-ph].
Acharya, S.K., Chluba, J., A closer look at dark photon explanations of the excess radio background. Mon. Not. R. Astron. Soc. 521:3 (2023), 3939–3950 arXiv:2209.09063 [astro-ph.CO].
Acharya, S.K., Cyr, B., Chluba, J., Constraining broad photon spectrum injections from exotic and astrophysical sources. Mon. Not. R. Astron. Soc., 527, 2023, 2024 arXiv:2309.00975 [astro-ph.CO].
Cyr, B., Chluba, J., Acharya, S.K., Cosmic string solution to the radio synchrotron background. Phys. Rev. D, 109(12), 2024, L121301 arXiv:2308.03512 [astro-ph.CO].
Dev, P.S.B., Di Bari, P., Martínez-Soler, I., Roshan, R., Relic neutrino decay solution to the excess radio background. J. Cosmol. Astropart. Phys., 04, 2024, 046 arXiv:2312.03082 [hep-ph].
Bale, S.D., Bassett, N., Burns, J.O., Dorigo Jones, J., Goetz, K., Hellum-Bye, C., Hermann, S., Hibbard, J., Maksimovic, M., McLean, R., Monsalve, R., O'Connor, P., Parsons, A., Pulupa, M., Pund, R., Rapetti, D., Rotermund, K.M., Saliwanchik, B., Slosar, A., Sundkvist, D., Suzuki, A., LuSEE ’night’: the lunar surface electromagnetics experiment. 2023, 10.48550/arXiv.2301.10345 arXiv e-prints, arXiv:2301.10345 [astro-ph.IM].
Lee, E., Chluba, J., Holder, G.P., Refined modelling of the radio SZ signal: kinematic terms, relativistic temperature corrections, and anisotropies in the radio background. Mon. Not. R. Astron. Soc. 512:4 (2022), 5153–5164 arXiv:2112.10666 [astro-ph.CO].
Holder, G., Chluba, J., The radio SZ effect as a probe of the cosmological radio background. 2021 arXiv:2110.08373 [astro-ph.CO].
Watkins, R., Feldman, H.A., Hudson, M.J., Consistently large cosmic flows on scales of 100 Mpc/h: a challenge for the standard LCDM cosmology. Mon. Not. R. Astron. Soc. 392 (2009), 743–756 arXiv:0809.4041 [astro-ph].
Feldman, H.A., Watkins, R., Hudson, M.J., Cosmic flows on 100 Mpc/h scales: standardized minimum variance bulk flow, shear and octupole moments. Mon. Not. R. Astron. Soc. 407 (2010), 2328–2338 arXiv:0911.5516 [astro-ph.CO].
Bird, J.C., Stanek, K.Z., Prieto, J.L., Using ultra long period cepheids to extend the cosmic distance ladder to 100 Mpc and beyond. Astrophys. J. 695 (2009), 874–882 arXiv:0807.4933 [astro-ph].
Fiorentino, G., Ramos, R.C., Clementini, G., Marconi, M., Musella, I., Aloisi, A., Annibali, F., Saha, A., Tosi, M., van der Marel, R.P., Multi-epoch HST observations of IZw18: characterization of variable stars at ultra-low metallicities. Astrophys. J. 711 (2010), 808–817 arXiv:1001.4044 [astro-ph.SR].
Marconi, M., Musella, I., Fiorentino, G., Clementini, G., Aloisi, A., Annibali, F., Ramos, R.C., Saha, A., Tosi, M., van der Marel, R.P., Pulsation models for ultra-low (Z=0.0004) metallicity classical cepheids. Astrophys. J. 713 (2010), 615–625 arXiv:1002.4752 [astro-ph.SR].
Musella, I., Marconi, M., Molinaro, R., Fiorentino, G., Ripepi, V., De Somma, G., Moretti, M.I., New insights into the use of Ultra Long Period Cepheids as cosmological standard candles. Mon. Not. R. Astro. Soc. 501:1 (2021), 866–874 arXiv:2011.10533 [astro-ph.SR].
Musella, I., Ultra long period cepheids: observation and theory. Universe, 8(6), 2022, 335.
Musella, I., Leccia, S., Molinaro, R., Marconi, M., Cusano, F., Di Criscienzo, M., Fiorentino, G., Braga, V., Ripepi, V., De Somma, G., Gatto, M., Luongo, E., Sicignano, T., Ultra-long-period cepheids as standard candles from gaia to rubin-LSST. Astrophys. J. Suppl., 275(2), 2024, 26 arXiv:2410.12017 [astro-ph.GA].
Adame, A.G., et al., DESI Collaboration. The early data release of the dark energy spectroscopic instrument. Astron. J., 168(2), 2024, 58 arXiv:2306.06308 [astro-ph.CO].
Abdul Karim, M., et al., DESI Collaboration. Data release 1 of the dark energy spectroscopic instrument. 2025 arXiv:2503.14745 [astro-ph.CO].
Elbers, W., et al., DESI Collaboration. Constraints on neutrino physics from DESI DR2 BAO and DR1 full shape. 2025 arXiv:2503.14744 [astro-ph.CO].
Flaugher, B., et al., DES Collaboration. The dark energy camera. Astron. J., 150, 2015, 150 arXiv:1504.02900 [astro-ph.IM].
Abbott, T.M.C., et al., Linea Science Server, DES Collaboration. The dark energy survey data release 2. Astrophys. J. Supp., 255(2), 2021, 20 arXiv:2101.05765 [astro-ph.IM].
Miyazaki, S., et al. Hyper Suprime-Cam: System design and verification of image quality. Publ. Astron. Soc. Japan, 70, 2018, S1.
Aihara, H., et al. First data release of the hyper suprime-cam subaru strategic program. Publ. Astron. Soc. Jap., 70, 2018, S8 arXiv:1702.08449 [astro-ph.IM].
Aihara, H., et al. Third data release of the hyper suprime-cam subaru strategic program. Publ. Astron. Soc. Jap. 74:2 (2022), 247–272–272 arXiv:2108.13045 [astro-ph.IM].
Moriwaki, K., Nishimichi, T., Yoshida, N., Machine learning for observational cosmology. Rep. Progr. Phys., 86(7), 2023, 076901 arXiv:2303.15794 [astro-ph.IM].
Lewis, A., Efficient sampling of fast and slow cosmological parameters. Phys. Rev. D, 87(10), 2013, 103529 arXiv:1304.4473 [astro-ph.CO].
Audren, B., Lesgourgues, J., Benabed, K., Prunet, S., Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code. J. Cosmol. Astropart. Phys., 02, 2013, 001 arXiv:1210.7183 [astro-ph.CO].
Brinckmann, T., Lesgourgues, J., MontePython 3: boosted MCMC sampler and other features. Phys. Dark Univ., 24, 2019, 100260 arXiv:1804.07261 [astro-ph.CO].
Torrado, J., Lewis, A., Cobaya: Code for Bayesian Analysis of hierarchical physical models. J. Cosmol. Astropart. Phys., 05, 2021, 057 arXiv:2005.05290 [astro-ph.IM].
Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J., emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 125 (2013), 306–312 arXiv:1202.3665 [astro-ph.IM].
Karamanis, M., Beutler, F., Peacock, J.A., Nabergoj, D., Seljak, U., Accelerating astronomical and cosmological inference with preconditioned Monte Carlo. Mon. Not. R. Astron. Soc. 516:2 (2022), 1644–1653 arXiv:2207.05652 [astro-ph.IM].
Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan, B., Normalizing flows for probabilistic modeling and inference. J. Mach. Learn. Res. 22:57 (2021), 1–64 arXiv:1912.02762 [stat.ML], http://jmlr.org/papers/v22/19-1028.html.
Neal, R.M., Slice sampling. Ann. Statist. 31:3 (2003), 705–767.
Karamanis, M., Beutler, F., Peacock, J.A., zeus: a python implementation of ensemble slice sampling for efficient Bayesian parameter inference. Mon. Not. R. Astron. Soc. 508:3 (2021), 3589–3603 arXiv:2105.03468 [astro-ph.IM].
Hoffman, M.D., Gelman, A., The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15:47 (2014), 1593–1623 arXiv:1111.4246 [stat.CO], http://jmlr.org/papers/v15/hoffman14a.html.
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., Zhang, Q., JAX: composable transformations of Python+NumPy programs. 2018 http://github.com/jax-ml/jax.
Campagne, J.-E., Lanusse, F., Zuntz, J., Boucaud, A., Casas, S., Karamanis, M., Kirkby, D., Lanzieri, D., Li, Y., Peel, A., JAX-COSMO: an end-to-end differentiable and GPU accelerated cosmology library. Open J. Astrophys. 6 (2023), 1–15 arXiv:2302.05163 [astro-ph.CO].
Hahn, O., List, F., Porqueres, N., DISCO-DJ I: a differentiable Einstein-Boltzmann solver for cosmology. J. Cosmol. Astropart. Phys., 06, 2024, 063 arXiv:2311.03291 [astro-ph.CO].
Balkenhol, L., Trendafilova, C., Benabed, K., Galli, S., candl: cosmic microwave background analysis with a differentiable likelihood. Astron. Astrophys., 686, 2024, A10 arXiv:2401.13433 [astro-ph.CO].
Piras, D., Spurio Mancini, A., CosmoPower-JAX: high-dimensional Bayesian inference with differentiable cosmological emulators. 2023, 10.21105/astro.2305.06347 arXiv:2305.06347 [astro-ph.CO].
Ruiz-Zapatero, J., Alonso, D., García-García, C., Nicola, A., Mootoovaloo, A., Sullivan, J.M., Bonici, M., Ferreira, P.G., LimberJack.jl: auto-differentiable methods for angular power spectra analyses. 2023, 10.21105/astro.2310.08306 arXiv:2310.08306 [astro-ph.CO].
Bonici, M., Bianchini, F., Ruiz-Zapatero, J., Capse.jl: efficient and auto-differentiable CMB power spectra emulation. 2023, 10.21105/astro.2307.14339 arXiv:2307.14339 [astro-ph.CO].
Bonici, M., D'Amico, G., Bel, J., Carbone, C., Effort: a fast and differentiable emulator for the effective field theory of the large scale structure of the universe. 2025 arXiv:2501.04639 [astro-ph.CO].
Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P., Horsfall, P., Goodman, N.D., Pyro: deep universal probabilistic programming. 2018, 10.48550/arXiv.1810.09538 arXiv e-prints, arXiv:1810.09538 [cs.LG].
Piras, D., Polanska, A., Spurio Mancini, A., Price, M.A., McEwen, J.D., The future of cosmological likelihood-based inference: accelerated high-dimensional parameter estimation and model comparison. Open J. Astrophys., 7, 2024 arXiv:2405.12965 [astro-ph.CO].
Mootoovaloo, A., Ruiz-Zapatero, J., García-García, C., Alonso, D., Assessment of gradient-based samplers in standard cosmological likelihoods. Mon. Not. R. Astron. Soc. 534:3 (2024), 1668–1681 arXiv:2406.04725 [astro-ph.IM].
Skilling, J., Nested sampling for general Bayesian computation. Bayesian Anal. 1:4 (2006), 833–859 https://doi.org/10.1214/06-BA127.
Buchner, J., UltraNest - a robust, general purpose Bayesian inference engine. J. Open Source Softw., 6(60), 2021, 3001 https://doi.org/10.21105/joss.03001.
Colgáin, E.O., Pourojaghi, S., Sheikh-Jabbari, M.M., Sherwin, D., A comparison of Bayesian and frequentist confidence intervals in the presence of a late Universe degeneracy. Eur. Phys. J. C, 85(2), 2025, 124 arXiv:2307.16349 [astro-ph.CO].
Albert, J., Balazs, C., Fowlie, A., Handley, W., Hunt-Smith, N., de Austri, R.R., White, M., A comparison of Bayesian sampling algorithms for high-dimensional particle physics and cosmology applications. 2024 arXiv:2409.18464 [hep-ph].
Staicova, D., Modern Bayesian sampling methods for cosmological inference: a comparative study. Universe, 11(2), 2025, 68 arXiv:2501.06022 [astro-ph.CO].
Raghvendra, S., Shirzadian, P., Zhang, K., A new robust partial p-wasserstein-based metric for comparing distributions. 2024, 10.48550/arXiv.2405.03664 arXiv e-prints, arXiv:2405.03664 [cs.LG].
Lewis, A., Challinor, A., Lasenby, A., Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J. 538 (2000), 473–476 arXiv:astro-ph/9911177.
Blas, D., Lesgourgues, J., Tram, T., The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes. J. Cosmol. Astropart. Phys., 07, 2011, 034 arXiv:1104.2933 [astro-ph.CO].
Moser, B., Lorenz, C.S., Schmitt, U., Refregier, A., Fluri, J., Sgier, R., Tarsitano, F., Heisenberg, L., Symbolic implementation of extensions of the PyCosmo Boltzmann solver. Astron. Comput., 40, 2022, 100603 arXiv:2112.08395 [astro-ph.CO].
Zuntz, J., Paterno, M., Jennings, E., Rudd, D., Manzotti, A., Dodelson, S., Bridle, S., Sehrish, S., Kowalkowski, J., CosmoSIS: modular cosmological parameter estimation. Astron. Comput. 12 (2015), 45–59 arXiv:1409.3409 [astro-ph.CO].
Lewis, A., GetDist: a Python package for analysing Monte Carlo samples. 2019 arXiv:1910.13970 [astro-ph.IM].
Senatore, L., Zaldarriaga, M., The IR-resummed effective field theory of large scale structures. J. Cosmol. Astropart. Phys., 02, 2015, 013 arXiv:1404.5954 [astro-ph.CO].
Senatore, L., Bias in the effective field theory of large scale structures. J. Cosmol. Astropart. Phys., 11, 2015, 007 arXiv:1406.7843 [astro-ph.CO].
Senatore, L., Zaldarriaga, M., Redshift space distortions in the effective field theory of large scale structures. 2014 arXiv:1409.1225 [astro-ph.CO].
Carrilho, P., Moretti, C., Pourtsidou, A., Cosmology with the EFTofLSS and BOSS: dark energy constraints and a note on priors. J. Cosmol. Astropart. Phys., 01, 2023, 028 arXiv:2207.14784 [astro-ph.CO].
Simon, T., Zhang, P., Poulin, V., Smith, T.L., Consistency of effective field theory analyses of the BOSS power spectrum. Phys. Rev. D, 107(12), 2023, 123530 arXiv:2208.05929 [astro-ph.CO].
Maus, M., Chen, S.-F., White, M., A comparison of template vs. direct model fitting for redshift-space distortions in BOSS. J. Cosmol. Astropart. Phys., 06, 2023, 005 arXiv:2302.07430 [astro-ph.CO].
Holm, E.B., Herold, L., Simon, T., Ferreira, E.G.M., Hannestad, S., Poulin, V., Tram, T., Bayesian and frequentist investigation of prior effects in EFT of LSS analyses of full-shape BOSS and eBOSS data. Phys. Rev. D, 108(12), 2023, 123514 arXiv:2309.04468 [astro-ph.CO].
Donald-McCann, J., Gsponer, R., Zhao, R., Koyama, K., Beutler, F., Analysis of unified galaxy power spectrum multipole measurements. Mon. Not. R. Astron. Soc. 526:3 (2023), 3461–3481 arXiv:2307.07475 [astro-ph.CO].
Ivanov, M.M., Obuljen, A., Cuesta-Lazaro, C., Toomey, M.W., Full-shape analysis with simulation-based priors: Cosmological parameters and the structure growth anomaly. Phys. Rev. D, 111(6), 2025, 063548 arXiv:2409.10609 [astro-ph.CO].
Chudaykin, A., Ivanov, M.M., Nishimichi, T., On priors and scale cuts in EFT-based full-shape analyses. 2024 arXiv:2410.16358 [astro-ph.CO].
Zhang, H., Bonici, M., D'Amico, G., Paradiso, S., Percival, W.J., HOD-informed prior for EFT-based full-shape analyses of LSS. J. Cosmol. Astropart. Phys., 04, 2025, 041 arXiv:2409.12937 [astro-ph.CO].
Smith, T.L., Poulin, V., Current small-scale CMB constraints to axionlike early dark energy. Phys. Rev. D, 109(10), 2024, 103506 arXiv:2309.03265 [astro-ph.CO].
Murgia, R., Abellán, G.F., Poulin, V., Early dark energy resolution to the Hubble tension in light of weak lensing surveys and lensing anomalies. Phys. Rev. D, 103(6), 2021, 063502 arXiv:2009.10733 [astro-ph.CO].
Smith, T.L., Poulin, V., Bernal, J.L., Boddy, K.K., Kamionkowski, M., Murgia, R., Early dark energy is not excluded by current large-scale structure data. Phys. Rev. D, 103(12), 2021, 123542 arXiv:2009.10740 [astro-ph.CO].
Herold, L., Ferreira, E.G.M., Komatsu, E., New constraint on early dark energy from planck and BOSS data using the profile likelihood. Astrophys. J. Lett., 929(1), 2022, L16 arXiv:2112.12140 [astro-ph.CO].
Herold, L., Ferreira, E.G.M., Resolving the Hubble tension with early dark energy. Phys. Rev. D, 108(4), 2023, 043513 arXiv:2210.16296 [astro-ph.CO].
Reeves, A., Herold, L., Vagnozzi, S., Sherwin, B.D., Ferreira, E.G.M., Restoring cosmological concordance with early dark energy and massive neutrinos?. Mon. Not. R. Astron. Soc. 520:3 (2023), 3688–3695 arXiv:2207.01501 [astro-ph.CO].
Efstathiou, G., Rosenberg, E., Poulin, V., Improved planck constraints on axionlike early dark energy as a resolution of the hubble tension. Phys. Rev. Lett., 132(22), 2024, 221002 arXiv:2311.00524 [astro-ph.CO].
Niedermann, F., Sloth, M.S., Resolving the Hubble tension with new early dark energy. Phys. Rev. D, 102(6), 2020, 063527 arXiv:2006.06686 [astro-ph.CO].
Cruz, J.S., Hannestad, S., Holm, E.B., Niedermann, F., Sloth, M.S., Tram, T., Profiling cold new early dark energy. Phys. Rev. D, 108(2), 2023, 023518 arXiv:2302.07934 [astro-ph.CO].
Hamann, J., Hannestad, S., Raffelt, G.G., Wong, Y.Y.Y., Observational bounds on the cosmic radiation density. J. Cosmol. Astropart. Phys., 08, 2007, 021 arXiv:0705.0440 [astro-ph].
Hamann, J., Evidence for extra radiation? Profile likelihood versus Bayesian posterior. J. Cosmol. Astropart. Phys., 03, 2012, 021 arXiv:1110.4271 [astro-ph.CO].
Henrot-Versillé, S., Couchot, F., Garrido, X., Imada, H., Louis, T., Tristram, M., Vanneste, S., Comparison of results on Neff from various Planck likelihoods. Astron. Astrophys., 623, 2019, A9 arXiv:1807.05003 [astro-ph.CO].
Gómez-Valent, A., Fast test to assess the impact of marginalization in Monte Carlo analyses and its application to cosmology. Phys. Rev. D, 106(6), 2022, 063506 arXiv:2203.16285 [astro-ph.CO].
Holm, E.B., Herold, L., Hannestad, S., Nygaard, A., Tram, T., Decaying dark matter with profile likelihoods. Phys. Rev. D, 107(2), 2023, L021303 arXiv:2211.01935 [astro-ph.CO].
Liddle, A.R., Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. 377 (2007), L74–L78 arXiv:astro-ph/0701113.
Jeffreys, H., The theory of probability. Oxford Classic Texts in the Physical Sciences, 1939, Oxford University Press.
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A., Bayesian measures of model complexity and fit. J. Roy. Stat. Soc. B 64:4 (2002), 583–639.
Trotta, R., Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49 (2008), 71–104 arXiv:0803.4089 [astro-ph].
Marshall, P., Rajguru, N., Slosar, A.z., Bayesian evidence as a tool for comparing datasets. Phys. Rev. D, 73(6), 2006, 067302 arXiv:astro-ph/0412535 [astro-ph].
Handley, W., Lemos, P., Quantifying tensions in cosmological parameters: Interpreting the DES evidence ratio. Phys. Rev. D, 100(4), 2019, 043504 arXiv:1902.04029 [astro-ph.CO].
Raveri, M., Hu, W., Concordance and discordance in cosmology. Phys. Rev. D, 99, 2019, 043506 https://link.aps.org/doi/10.1103/PhysRevD.99.043506.
Raveri, M., Zacharegkas, G., Hu, W., Quantifying concordance of correlated cosmological data sets. Phys. Rev. D, 101, 2020, 103527 https://link.aps.org/doi/10.1103/PhysRevD.101.103527.
Raveri, M., Doux, C., Non-Gaussian estimates of tensions in cosmological parameters. Phys. Rev. D, 104, 2021, 043504 https://link.aps.org/doi/10.1103/PhysRevD.104.043504.
Leizerovich, M.a., Landau, S.J., Scóccola, C.G., Tensions in cosmology: A discussion of statistical tools to determine inconsistencies. Phys. Lett. B, 855, 2024, 138844 arXiv:2312.08542 [astro-ph.CO].
Lemos, P., Raveri, M., Campos, A., et al., DES Collaboration. Assessing tension metrics with dark energy survey and Planck data. Mon. Not. R. Astro. Soc. 505:4 (2021), 6179–6194 arXiv:2012.09554 [astro-ph.CO].
Ho, M., Rau, M.M., Ntampaka, M., Farahi, A., Trac, H., Poczos, B., A robust and efficient deep learning method for dynamical mass measurements of galaxy clusters. Astrophys. J., 887, 2019, 25 arXiv:1902.05950 [astro-ph.CO].
Peel, A., Lalande, F., Starck, J.-L., Pettorino, V., Merten, J., Giocoli, C., Meneghetti, M., Baldi, M., Distinguishing standard and modified gravity cosmologies with machine learning. Phys. Rev. D, 100(2), 2019, 023508 arXiv:1810.11030 [astro-ph.CO].
Caldeira, J.a., Wu, W.L.K., Nord, B., Avestruz, C., Trivedi, S., Story, K.T., DeepCMB: lensing reconstruction of the cosmic microwave background with deep neural networks. Astron. Comput., 28, 2019, 100307 arXiv:1810.01483 [astro-ph.CO].
He, S., Li, Y., Feng, Y., Ho, S., Ravanbakhsh, S., Chen, W., Póczos, B., Learning to predict the cosmological structure formation. Proc. Nat. Acad. Sci. 116:28 (2019), 13825–13832 arXiv:1811.06533 [astro-ph.CO].
Ravanbakhsh, S., Lanusse, F., Mandelbaum, R., Schneider, J., Poczos, B., Enabling dark energy science with deep generative models of galaxy images. 2016 arXiv:1609.05796 [astro-ph.IM].
Escamilla-Rivera, C., Quintero, M.A.C., Capozziello, S., A deep learning approach to cosmological dark energy models. J. Cosmol. Astropart. Phys., 03, 2020, 008 arXiv:1910.02788 [astro-ph.CO].
Narayan, G., et al., ANTARES Collaboration. Machine learning-based brokers for real-time classification of the LSST alert stream. Astrophys. J. Suppl., 236(1), 2018, 9 arXiv:1801.07323 [astro-ph.IM].
Lanusse, F., Ma, Q., Li, N., Collett, T.E., Li, C.-L., Ravanbakhsh, S., Mandelbaum, R., Poczos, B., CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding. Mon. Not. R. Astron. Soc. 473:3 (2018), 3895–3906 arXiv:1703.02642 [astro-ph.IM].
Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., Zdeborová, L., Machine learning and the physical sciences. Rev. Modern Phys., 91(4), 2019, 045002 arXiv:1903.10563 [physics.comp-ph].
Mehta, P., Bukov, M., Wang, C.-H., Day, A.G.R., Richardson, C., Fisher, C.K., Schwab, D.J., A high-bias, low-variance introduction to Machine Learning for physicists. Phys. Rep. 810 (2019), 1–124 arXiv:1803.08823 [physics.comp-ph].
Aggarwal, C., Neural Networks and Deep Learning: A Textbook. 2018, Springer International Publishing https://books.google.com.mt/books?id=achqDwAAQBAJ.
Wang, Y.-C., Xie, Y.-B., Zhang, T.-J., Huang, H.-C., Zhang, T., Liu, K., Likelihood-free cosmological constraints with artificial neural networks: an application on hubble parameters and SNe Ia. Astrophys. J. Supp., 254(2), 2021, 43 arXiv:2005.10628 [astro-ph.CO].
Gómez-Vargas, I., Esquivel, R.M., García-Salcedo, R., Vázquez, J.A., Neural network reconstructions for the Hubble parameter, growth rate and distance modulus. Eur. Phys. J. C, 83(4), 2023, 304 arXiv:2104.00595.
Wang, G.-J., Cheng, C., Ma, Y.-Z., Xia, J.-Q., Abebe, A., Beesham, A., CoLFI: Cosmological likelihood-free inference with neural density estimators. Astrophys. J. Suppl., 268(1), 2023, 7 arXiv:2306.11102.
Manrique-Yus, A., Sellentin, E., Euclid-era cosmology for everyone: neural net assisted MCMC sampling for the joint 3 × 2 likelihood. Mon. Not. R. Astron. Soc. 491:2 (2020), 2655–2663 arXiv:1907.05881.
Spurio Mancini, A., Piras, D., Alsing, J., Joachimi, B., Hobson, M.P., CosmoPower: emulating cosmological power spectra for accelerated Bayesian inference from next-generation surveys. Mon. Not. R. Astron. Soc. 511:2 (2022), 1771–1788 arXiv:2106.03846.
Albers, J., Fidler, C., Lesgourgues, J., Schöneberg, N., Torrado, J., CosmicNet. Part I. Physics-driven implementation of neural networks within Einstein-Boltzmann solvers. J. Cosmol. Astropart. Phys., 09, 2019, 028 arXiv:1907.05764.
Günther, S., Lesgourgues, J., Samaras, G., Schöneberg, N., Stadtmann, F., Fidler, C., Torrado, J., CosmicNet II: emulating extended cosmologies with efficient and accurate neural networks. J. Cosmol. Astropart. Phys., 11, 2022, 035 arXiv:2207.05707.
Auld, T., Bridges, M., Hobson, M.P., Gull, S.F., Fast cosmological parameter estimation using neural networks. Mon. Not. R. Astron. Soc. 376 (2007), L11–L15 arXiv:astro-ph/0608174.
Grandón, D., Sellentin, E., Bayesian error propagation for neural-net based parameter inference. Open J. Astrophys., 2022 arXiv:2205.11587.
Wang, G.-J., Li, S.-Y., Xia, J.-Q., ECoPANN: A framework for estimating cosmological parameters using artificial neural networks. Astrophys. J. Suppl., 249(2), 2020, 25 arXiv:2005.07089.
Asorey, J., Crocce, M., Gaztanaga, E., Lewis, A., Recovering 3D clustering information with angular correlations. Mon. Not. R. Astron. Soc., 427, 2012, 1891 arXiv:1207.6487.
Sabiu, C.G., Kadota, K., Asorey, J., Park, I., Probing ultra-light axion dark matter from 21 cm tomography using Convolutional Neural Networks. J. Cosmol. Astropart. Phys., 01(01), 2022, 020 arXiv:2108.07972.
Andrés-Carcasona, M., Martinez, M., Mir, L.M., Fast Bayesian gravitational wave parameter estimation using convolutional neural networks. Mon. Not. R. Astron. Soc. 527:2 (2023), 2887–2894 arXiv:2309.04303.
Jones, E., Do, T., Boscoe, B., Singal, J., Wan, Y., Nguyen, Z., Improving photometric redshift estimation for cosmology with LSST using Bayesian neural networks. Astrophys. J., 964(2), 2024, 130 arXiv:2306.13179.
Aihara, H., et al. Second data release of the hyper suprime-cam subaru strategic program. Publ. Astron. Soc. Jap., 71(6), 2019, 114 arXiv:1905.12221.
Mancarella, M., Kennedy, J., Bose, B., Lombriser, L., Seeking new physics in cosmology with Bayesian neural networks: Dark energy and modified gravity. Phys. Rev. D, 105(2), 2022, 023531 arXiv:2012.03992.
Thummel, L., Bose, B., Pourtsidou, A., Lombriser, L., Classifying modified gravity and dark energy theories with Bayesian neural networks: massive neutrinos, baryonic feedback, and the theoretical error. Mon. Not. R. Astron. Soc. 535:4 (2024), 3141–3161 arXiv:2403.16949.
Dvali, G.R., Gabadadze, G., Porrati, M., 4-D gravity on a brane in 5-D Minkowski space. Phys. Lett. B 485 (2000), 208–214 arXiv:hep-th/0005016.
Shah, R., Saha, S., Mukherjee, P., Garain, U., Pal, S., LADDER: Revisiting the cosmic distance ladder with deep learning approaches and exploring its applications. Astrophys. J. Suppl., 273(2), 2024, 27 arXiv:2401.17029.
Mukherjee, P., Levi Said, J., Mifsud, J., Neural network reconstruction of H’(z) and its application in teleparallel gravity. J. Cosmol. Astropart. Phys., 12, 2022, 029 arXiv:2209.01113.
Wang, G.-J., Ma, X.-J., Li, S.-Y., Xia, J.-Q., Reconstructing functions and estimating parameters with artificial neural networks: A test with a hubble parameter and SNe Ia. Astrophys. J. Suppl., 246(1), 2020, 13 arXiv:1910.03636.
Escamilla-Rivera, C., Carvajal, M., Zamora, C., Hendry, M., Neural networks and standard cosmography with newly calibrated high redshift GRB observations. J. Cosmol. Astropart. Phys., 04(04), 2022, 016 arXiv:2109.00636.
Olvera, J.d.R., Gómez-Vargas, I., Vázquez, J.A., Observational cosmology with artificial neural networks. Universe, 8(2), 2022, 120 arXiv:2112.12645.
Gómez-Vargas, I., Andrade, J.B., Vázquez, J.A., Neural networks optimized by genetic algorithms in cosmology. Phys. Rev. D, 107(4), 2023, 043509 arXiv:2209.02685.
Giambagli, L., Fanelli, D., Risaliti, G., Signorini, M., Nonparametric analysis of the Hubble diagram with neural networks. Astron. Astrophys., 678, 2023, A13 arXiv:2302.12582.
Dialektopoulos, K.F., Mukherjee, P., Levi Said, J., Mifsud, J., Neural network reconstruction of cosmology using the Pantheon compilation. Eur. Phys. J. C, 83(10), 2023, 956 arXiv:2305.15499.
Dialektopoulos, K.F., Mukherjee, P., Levi Said, J., Mifsud, J., Neural network reconstruction of scalar-tensor cosmology. Phys. Dark Univ., 43, 2024, 101383 arXiv:2305.15500.
Mukherjee, P., Dialektopoulos, K.F., Levi Said, J., Mifsud, J., A possible late-time transition of M B inferred via neural networks. J. Cosmol. Astropart. Phys., 09, 2024, 060 arXiv:2402.10502.
Zhang, B., Wang, H., Nong, X., Wang, G., Wu, P., Liang, N., Model-independent gamma-ray bursts constraints on cosmological models using machine learning. Astrophys. Space Sci., 370(1), 2025, 10 arXiv:2312.09440.
Zhang, J.-C., Hu, Y., Jiao, K., Wang, H.-F., Xie, Y.-B., Yu, B., Zhao, L.-L., Zhang, T.-J., A nonparametric reconstruction of the Hubble parameter H(z) based on radial basis function neural networks. Astrophys. J. Suppl., 270(2), 2024, 23 arXiv:2311.13938.
Xie, H., Nong, X., Wang, H., Zhang, B., Li, Z., Liang, N., Constraints on cosmological models with gamma-ray bursts in cosmology-independent way. Internat. J. Modern Phys. D, 34(02), 2025, 2450073 arXiv:2307.16467.
Tang, L., Li, X., Lin, H.-N., Liu, L., Model-independently calibrating the luminosity correlations of gamma-ray bursts using deep learning. Astrophys. J., 907(2), 2021, 121 arXiv:2011.14040.
Liu, L., Hu, L.-J., Tang, L., Wu, Y., Constraining the spatial curvature of the local universe with deep learning. Res. Astron. Astrophys., 23(12), 2023, 125012 arXiv:2309.11334.
Scolnic, D.M., et al., Pan-STARRS1 Collaboration. The complete light-curve sample of spectroscopically confirmed SNe ia from pan-STARRS1 and cosmological constraints from the combined pantheon sample. Astrophys. J., 859(2), 2018, 101 arXiv:1710.00845.
Shah, R., Mukherjee, P., Saha, S., Garain, U., Pal, S., Deep learning based recalibration of SDSS and DESI BAO alleviates hubble and clustering tensions. 2024 arXiv:2412.14750.
Papamakarios, G., Nalisnick, E., Jimenez Rezende, D., Mohamed, S., Lakshminarayanan, B., Normalizing flows for probabilistic modeling and inference. 2019, 10.48550/arXiv.1912.02762 arXiv E-Prints. arXiv:1912.02762.
Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S., Deep unsupervised learning using nonequilibrium thermodynamics. 2015, 10.48550/arXiv.1503.03585 arXiv E-Prints. arXiv:1503.03585.
Bevins, H.T.J., Handley, W.J., Lemos, P., Sims, P.H., Acedo, E.d., Fialkov, A., Alsing, J., Marginal post-processing of Bayesian inference products with normalizing flows and kernel density estimators. Mon. Not. R. Astron. Soc. 526:3 (2023), 4613–4626 arXiv:2205.12841.
Friedman, R., Hassan, S., HIGlow: Conditional normalizing flows for high-fidelity HI map modeling. 2022 arXiv:2211.12724.
Mootoovaloo, A., García-García, C., Alonso, D., Ruiz-Zapatero, J., emuflow: normalizing flows for joint cosmological analysis. Mon. Not. R. Astron. Soc. 536:1 (2024), 190–202 arXiv:2409.01407.
Raveri, M., Doux, C., Non-Gaussian estimates of tensions in cosmological parameters. Phys. Rev. D, 104(4), 2021, 043504 arXiv:2105.03324.
Dai, B., Seljak, U., Translation and rotation equivariant normalizing flow (TRENF) for optimal cosmological analysis. Mon. Not. R. Astron. Soc. 516:2 (2022), 2363–2373 arXiv:2202.05282.
Dai, B., Seljak, U., Multiscale flow for robust and optimal cosmological analysis. Proc. Nat. Acad. Sci., 121(9), 2024, e2309624121 arXiv:2306.04689.
Mudur, N., Cuesta-Lazaro, C., Finkbeiner, D.P., Cosmological field emulation and parameter inference with diffusion models. 37th Conference on Neural Information Processing Systems, 2023 arXiv:2312.07534.
Mudur, N., Cuesta-Lazaro, C., Finkbeiner, D.P., Diffusion-HMC: Parameter inference with diffusion-model-driven Hamiltonian Monte Carlo. Astrophys. J., 978(1), 2025, 64 arXiv:2405.05255.
Bernardo, R.C., Grandón, D., Said Levi, J., Cárdenas, V.H., Parametric and nonparametric methods hint dark energy evolution. Phys. Dark Univ., 36, 2022, 101017 arXiv:2111.08289.
Wang, M., Fu, X., Xu, B., Yang, Y., Chen, Z., Testing the FLRW metric with Hubble and transverse BAO measurements. Phys. Rev. D, 108(10), 2023, 103506 arXiv:2305.01268.
Rani, N., Jain, D., Mahajan, S., Mukherjee, A., Pires, N., Transition Redshift: New constraints from parametric and nonparametric methods. J. Cosmol. Astropart. Phys., 12, 2015, 045 arXiv:1503.08543.
Jassal, H.K., Bagla, J.S., Padmanabhan, T., WMAP constraints on low redshift evolution of dark energy. Mon. Not. R. Astron. Soc. 356 (2005), L11–L16 arXiv:astro-ph/0404378.
Wang, B., Abdalla, E., Atrio-Barandela, F., Pavon, D., Dark matter and dark energy interactions: Theoretical challenges, cosmological implications and observational signatures. Rep. Progr. Phys., 79(9), 2016, 096901 arXiv:1603.08299.
Cárdenas, V.H., Grandón, D., Lepe, S., Dark energy and dark matter interaction in light of the second law of thermodynamics. Eur. Phys. J. C, 79(4), 2019, 357 arXiv:1812.03540.
Grandón, D., Cárdenas, V.H., Exploring evidence of interaction between dark energy and dark matter. Gen. Relativity Gravitation, 51(3), 2019, 42 arXiv:1804.03296.
Sun, C.-Y., Yue, R.-H., New interaction between dark energy and dark matter changes sign during cosmological evolution. Phys. Rev. D, 85, 2012, 043010 arXiv:1009.1214.
Wang, Y., Garnavich, P.M., Measuring time dependence of dark energy density from type Ia supernova data. Astrophys. J., 552, 2001, 445 arXiv:astro-ph/0101040.
Wang, Y., Lovelace, G., Unbiased estimate of dark energy density from type IA supernova data. Astrophys. J. Lett. 562 (2001), L115–L120 arXiv:astro-ph/0109233.
Cardenas, V.H., Exploring hints for dark energy density evolution in light of recent data. Phys. Lett. B 750 (2015), 128–134 arXiv:1405.5116.
Grandon, D., Cardenas, V.H., Studies on dark energy evolution. Cl. Quant. Grav., 38(14), 2021, 145008 arXiv:2107.04876.
Linder, E.V., Cosmic growth history and expansion history. Phys. Rev. D, 72, 2005, 043529 arXiv:astro-ph/0507263.
Nguyen, N.-M., Huterer, D., Wen, Y., Evidence for suppression of structure growth in the concordance cosmological model. Phys. Rev. Lett., 131(11), 2023, 111001 arXiv:2302.01331.
Caldwell, R., Cooray, A., Melchiorri, A., Constraints on a new post-general relativity cosmological parameter. Phys. Rev. D, 76, 2007, 023507 arXiv:astro-ph/0703375.
Amendola, L., Fogli, S., Guarnizo, A., Kunz, M., Vollmer, A., Model-independent constraints on the cosmological anisotropic stress. Phys. Rev. D, 89(6), 2014, 063538 arXiv:1311.4765.
Ranjbar, M., Akhshabi, S., Shadmehri, M., Gravitational slip parameter and gravitational waves in Einstein–Cartan theory. Eur. Phys. J. C, 84(3), 2024, 316 arXiv:2401.02129.
Caldwell, R.R., A Phantom menace?. Phys. Lett. B 545 (2002), 23–29 arXiv:astro-ph/9908168.
Elizalde, E., Nojiri, S., Odintsov, S.D., Late-time cosmology in (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up. Phys. Rev. D, 70, 2004, 043539 arXiv:hep-th/0405034.
Guo, Z.-K., Piao, Y.-S., Zhang, X.-M., Zhang, Y.-Z., Cosmological evolution of a quintom model of dark energy. Phys. Lett. B 608 (2005), 177–182 arXiv:astro-ph/0410654.
Tot, J., Yildirim, B., Coley, A., Leon, G., The dynamics of scalar-field quintom cosmological models. Phys. Dark Univ., 39, 2023, 101155 arXiv:2204.06538.
Vázquez, J.A., Tamayo, D., Garcia-Arroyo, G., Gómez-Vargas, I., Quiros, I., Sen, A.A., Coupled multiscalar field dark energy. Phys. Rev. D, 109(2), 2024, 023511 arXiv:2305.11396.
Armendariz-Picon, C., Mukhanov, V.F., Steinhardt, P.J., Essentials of k essence. Phys. Rev. D, 63, 2001, 103510 arXiv:astro-ph/0006373.
Horndeski, G.W., Second-order scalar-tensor field equations in a four-dimensional space. Internat. J. Theoret. Phys. 10 (1974), 363–384.
Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C., Modified gravity and cosmology. Phys. Rep. 513 (2012), 1–189 arXiv:1106.2476.
Starobinsky, A.A., A new type of isotropic cosmological models without singularity. Khalatnikov, I.M., Mineev, V.P., (eds.) Phys. Lett. B, 91, 1980, 99–102.
Leizerovich, M., Kraiselburd, L., Landau, S.J., Scóccola, C.G., Testing f(R) gravity models with quasar x-ray and UV fluxes. Phys. Rev. D, 105(10), 2022, 103526 arXiv:2112.01492.
Pan, Y., He, Y., Qi, J., Li, J., Cao, S., Liu, T., Wang, J., Testing f(R) gravity with the simulated data of gravitational waves from the Einstein Telescope. Astrophys. J., 911(2), 2021, 135 arXiv:2103.05212.
Bode, P., Ostriker, J.P., Turok, N., Halo formation in warm dark matter models. Astrophys. J. 556 (2001), 93–107 arXiv:astro-ph/0010389.
Liu, B., Shan, H., Zhang, J., New galaxy UV luminosity constraints on warm dark matter from JWST. Astrophys. J., 968(2), 2024, 79 arXiv:2404.13596.
Lin, S., et al. Can we constrain warm dark matter masses with individual galaxies?. Astrophys. J., 970(2), 2024, 170 arXiv:2401.17940.
Oman, K.A., Frenk, C.S., Crain, R.A., Lovell, M.R., Pfeffer, J., A warm dark matter cosmogony may yield more low-mass galaxy detections in 21-cm surveys than a cold dark matter one. Mon. Not. R. Astron. Soc. 533:1 (2024), 67–78 arXiv:2401.11878.
Rose, J.C., Torrey, P., Villaescusa-Navarro, F., Vogelsberger, M., O'Neil, S., Medvedev, M.V., Low, R., Adhikari, R., Angles-Alcazar, D., Inferring warm dark matter masses with deep learning. Mon. Not. R. Astron. Soc. 527:1 (2023), 739–755 arXiv:2304.14432.
Spergel, D.N., Steinhardt, P.J., Observational evidence for selfinteracting cold dark matter. Phys. Rev. Lett. 84 (2000), 3760–3763 arXiv:astro-ph/9909386.
Cross, D., et al., DES Collaboration. Examining the self-interaction of dark matter through central cluster galaxy offsets. Mon. Not. R. Astron. Soc. 529:1 (2024), 52–58 arXiv:2304.10128.
Yang, D., Nadler, E.O., Yu, H.-B., Testing the parametric model for self-interacting dark matter using matched halos in cosmological simulations. Phys. Dark Univ., 47, 2025, 101807 arXiv:2406.10753.
Bringmann, T., Kahlhoefer, F., Schmidt-Hoberg, K., Walia, P., Strong constraints on self-interacting dark matter with light mediators. Phys. Rev. Lett., 118(14), 2017, 141802 arXiv:1612.00845.
Visser, M., Jerk and the cosmological equation of state. Cl. Quant. Grav. 21 (2004), 2603–2616 arXiv:gr-qc/0309109.
Visser, M., Cosmography: Cosmology without the Einstein equations. McClelland, D.E., Scott, S.M., (eds.) Gen. Relativity Gravitation, 37, 2005, 1541–1548 arXiv:gr-qc/0411131.
Cattoen, C., Visser, M., Cosmographic hubble fits to the supernova data. Phys. Rev. D, 78, 2008, 063501 arXiv:0809.0537.
Dunsby, P.K.S., Luongo, O., On the theory and applications of modern cosmography. Int. J. Geom. Meth. Mod. Phys., 13(03), 2016, 1630002 arXiv:1511.06532.
Capozziello, S., D'Agostino, R., Luongo, O., Extended gravity cosmography. Internat. J. Modern Phys. D, 28(10), 2019, 1930016 arXiv:1904.01427.
Tamayo, D., Vazquez, J.A., Fourier-series expansion of the dark-energy equation of state. Mon. Not. R. Astron. Soc. 487:1 (2019), 729–736 arXiv:1901.08679.
Deffayet, C., Pujolas, O., Sawicki, I., Vikman, A., Imperfect dark energy from kinetic gravity braiding. J. Cosmol. Astropart. Phys., 10, 2010, 026 arXiv:1008.0048.
Gruber, C., Luongo, O., Cosmographic analysis of the equation of state of the universe through Padé approximations. Phys. Rev. D, 89(10), 2014, 103506 arXiv:1309.3215.
Aviles, A., Bravetti, A., Capozziello, S., Luongo, O., Precision cosmology with Padé rational approximations: Theoretical predictions versus observational limits. Phys. Rev. D, 90(4), 2014, 043531 arXiv:1405.6935.
Wei, H., Yan, X.-P., Zhou, Y.-N., Cosmological applications of Padé approximant. J. Cosmol. Astropart. Phys., 01, 2014, 045 arXiv:1312.1117.
Capozziello, S., D'Agostino, R., Reconstructing the distortion function of non-local cosmology: A model-independent approach. Phys. Dark Univ., 42, 2023, 101346 arXiv:2310.03136.
Capozziello, S., D'Agostino, R., Luongo, O., Rational approximations of f(R) cosmography through Padé polynomials. J. Cosmol. Astropart. Phys., 05, 2018, 008 arXiv:1709.08407.
Hojjati, A., Pogosian, L., Zhao, G.-B., Detecting features in the dark energy equation of state: A wavelet approach. J. Cosmol. Astropart. Phys., 04, 2010, 007 arXiv:0912.4843.
Wagner, J., Meyer, S., Generalised model-independent characterisation of strong gravitational lenses V: reconstructing the lensing distance ratio by supernovae for a general friedmann universe. Mon. Not. R. Astron. Soc. 490:2 (2019), 1913–1927 arXiv:1812.04002.
Mignone, C., Bartelmann, M., Model-independent determination of the cosmic expansion rate. I. Application to type-Ia supernovae. Astron. Astrophys. 481:2 (2008), 295–303 arXiv:0711.0370.
Lorenz, C.S., Funcke, L., Löffler, M., Calabrese, E., Reconstruction of the neutrino mass as a function of redshift. Phys. Rev. D, 104(12), 2021, 123518 arXiv:2102.13618.
Hazra, D.K., Shafieloo, A., Smoot, G.F., Reconstruction of broad features in the primordial spectrum and inflaton potential from Planck. J. Cosmol. Astropart. Phys., 12, 2013, 035 arXiv:1310.3038.
Escamilla, L.A., Vazquez, J.A., Model selection applied to reconstructions of the dark energy. Eur. Phys. J. C, 83(3), 2023, 251 arXiv:2111.10457.
Wang, Y., Pogosian, L., Zhao, G.-B., Zucca, A., Evolution of dark energy reconstructed from the latest observations. Astrophys. J. Lett., 869, 2018, L8 arXiv:1807.03772.
Zhao, G.-B., Crittenden, R.G., Pogosian, L., Zhang, X., Examining the evidence for dynamical dark energy. Phys. Rev. Lett., 109, 2012, 171301 arXiv:1207.3804.
Zhao, G.-B., et al. Dynamical dark energy in light of the latest observations. Nat. Astron. 1:9 (2017), 627–632 arXiv:1701.08165.
Cai, R.-G., Su, Q., On the dark sector interactions. Phys. Rev. D— Part., Fields, Gravit., Cosmol., 81(10), 2010, 103514.
Moss, A., Copeland, E., Bamford, S., Clarke, T., A model-independent reconstruction of dark energy to very high redshift. 2021 arXiv:2109.14848.
Amendola, L., Kunz, M., Sapone, D., Measuring the dark side (with weak lensing). J. Cosmol. Astropart. Phys., 04, 2008, 013 arXiv:0704.2421.
Bertschinger, E., Zukin, P., Distinguishing modified gravity from dark energy. Phys. Rev. D, 78, 2008, 024015 arXiv:0801.2431.
Pogosian, L., Silvestri, A., Koyama, K., Zhao, G.-B., How to optimally parametrize deviations from general relativity in the evolution of cosmological perturbations. Phys. Rev. D, 81(10), 2010, 104023 arXiv:1002.2382.
Raveri, M., Pogosian, L., Martinelli, M., Koyama, K., Silvestri, A., Zhao, G.-B., Principal reconstructed modes of dark energy and gravity. J. Cosmol. Astropart. Phys., 02, 2023, 061 arXiv:2107.12990.
Pogosian, L., Raveri, M., Koyama, K., Martinelli, M., Silvestri, A., Zhao, G.-B., Li, J., Peirone, S., Zucca, A., Imprints of cosmological tensions in reconstructed gravity. Nat. Astron. 6:12 (2022), 1484–1490 arXiv:2107.12992.
Hee, S., Vázquez, J.A., Handley, W.J., Hobson, M.P., Lasenby, A.N., Constraining the dark energy equation of state using Bayes theorem and the Kullback–Leibler divergence. Mon. Not. R. Astron. Soc. 466:1 (2017), 369–377 arXiv:1607.00270.
Guo, Z.-K., Schwarz, D.J., Zhang, Y.-Z., Reconstruction of the primordial power spectrum from CMB data. J. Cosmol. Astropart. Phys., 08, 2011, 031 arXiv:1105.5916.
Ravenni, A., Verde, L., Cuesta, A.J., Red, straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure. J. Cosmol. Astropart. Phys., 08, 2016, 028 arXiv:1605.06637.
Aslanyan, G., Price, L.C., Abazajian, K.N., Easther, R., The knotted sky I: Planck constraints on the primordial power spectrum. J. Cosmol. Astropart. Phys., 08, 2014, 052 arXiv:1403.5849.
Alberto Vazquez, J., Bridges, M., Hobson, M.P., Lasenby, A.N., Reconstruction of the dark energy equation of state. J. Cosmol. Astropart. Phys., 09, 2012, 020 arXiv:1205.0847.
Tutusaus, I., Lamine, B., Blanchard, A., Model-independent cosmic acceleration and redshift-dependent intrinsic luminosity in type-Ia supernovae. Astron. Astrophys., 625, 2019, A15 arXiv:1803.06197.
Gerardi, F., Martinelli, M., Silvestri, A., Reconstruction of the dark energy equation of state from latest data: the impact of theoretical priors. J. Cosmol. Astropart. Phys., 07, 2019, 042 arXiv:1902.09423.
Aviles, A., Gruber, C., Luongo, O., Quevedo, H., Cosmography and constraints on the equation of state of the Universe in various parametrizations. Phys. Rev. D, 86, 2012, 123516 arXiv:1204.2007.
Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D., Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342 (2012), 155–228 arXiv:1205.3421.
Capozziello, S., D'Agostino, R., Luongo, O., Model-independent reconstruction of f(T) teleparallel cosmology. Gen. Relativity Gravitation, 49(11), 2017, 141 arXiv:1706.02962.
Capozziello, S., D'Agostino, R., Luongo, O., Thermodynamic parametrization of dark energy. Phys. Dark Univ., 36, 2022, 101045 arXiv:2202.03300.
Cattoen, C., Visser, M., The Hubble series: Convergence properties and redshift variables. Cl. Quant. Grav. 24 (2007), 5985–5998 arXiv:0710.1887.
Capozziello, S., D'Agostino, R., Model-independent reconstruction of f(Q) non-metric gravity. Phys. Lett. B, 832, 2022, 137229 arXiv:2204.01015.
Capozziello, S., D'Agostino, R., A cosmographic outlook on dark energy and modified gravity. Antonelli, A., Fusco Femiano, R., Morselli, A., Trinchero, G.C., (eds.) Frascati Phys. Ser., 74, 2022, 193–208 arXiv:2211.17194.
D'Agostino, R., Nunes, R.C., Cosmographic view on the H0 and σ8 tensions. Phys. Rev. D, 108(2), 2023, 023523 arXiv:2307.13464.
Capozziello, S., D'Agostino, R., Luongo, O., Cosmographic analysis with Chebyshev polynomials. Mon. Not. R. Astron. Soc. 476:3 (2018), 3924–3938 arXiv:1712.04380.
Capozziello, S., D'Agostino, R., Luongo, O., Cosmographic reconstruction to discriminate between modified gravity and dark energy. Acta Phys. Pol. Supp., 13, 2020, 271.
Gómez-Valent, A., Quantifying the evidence for the current speed-up of the universe with low and intermediate-redshift data. A more model-independent approach. J. Cosmol. Astropart. Phys., 05, 2019, 026 arXiv:1810.02278.
Rasmussen, C.E., Williams, C.K., et al. Gaussian Processes for Machine Learning. 2006, Springer.
Williams, C.K., Gaussian Processes for Machine Learning. 2005, MIT Press.
Seikel, M., Clarkson, C., Smith, M., Reconstruction of dark energy and expansion dynamics using Gaussian processes. J. Cosmol. Astropart. Phys., 06, 2012, 036 arXiv:1204.2832.
Sun, W., Jiao, K., Zhang, T.-J., Influence of the bounds of the hyperparameters on the reconstruction of the hubble constant with the Gaussian process. Astrophys. J., 915(2), 2021, 123 arXiv:2105.12618.
Hwang, S.-g., L'Huillier, B., Keeley, R.E., Jee, M.J., Shafieloo, A., How to use GP: effects of the mean function and hyperparameter selection on Gaussian process regression. J. Cosmol. Astropart. Phys., 02, 2023, 014 arXiv:2206.15081.
Avila, F., Bernui, A., Bonilla, A., Nunes, R.C., Inferring S8(z) and γ(z) with cosmic growth rate measurements using machine learning. Eur. Phys. J. C, 82(7), 2022, 594 arXiv:2201.07829.
Joudaki, S., Kaplinghat, M., Keeley, R., Kirkby, D., Model independent inference of the expansion history and implications for the growth of structure. Phys. Rev. D, 97(12), 2018, 123501 arXiv:1710.04236.
Calderón, R., L'Huillier, B., Polarski, D., Shafieloo, A., Starobinsky, A.A., Joint reconstructions of growth and expansion histories from stage-IV surveys with minimal assumptions: Dark energy beyond Λ. Phys. Rev. D, 106(8), 2022, 083513 arXiv:2206.13820.
Calderón, R., L'Huillier, B., Polarski, D., Shafieloo, A., Starobinsky, A.A., Joint reconstructions of growth and expansion histories from stage-IV surveys with minimal assumptions. II. Modified gravity and massive neutrinos. Phys. Rev. D, 108(2), 2023, 023504 arXiv:2301.00640.
Reyes, M., Escamilla-Rivera, C., On the degeneracy between fσ 8 tension and its Gaussian process forecasting. Universe, 8(8), 2022, 394 arXiv:2203.03574.
Sabogal, M.A., Akarsu, Ö., Bonilla, A., Di Valentino, E., Nunes, R.C., Exploring new physics in the late Universe's expansion through non-parametric inference. Eur. Phys. J. C, 84(7), 2024, 703 arXiv:2407.04223.
Zhang, M.-J., Li, H., Gaussian processes reconstruction of dark energy from observational data. Eur. Phys. J. C, 78(6), 2018, 460 arXiv:1806.02981.
Briffa, R., Capozziello, S., Levi Said, J., Mifsud, J., Saridakis, E.N., Constraining teleparallel gravity through Gaussian processes. Cl. Quant. Grav., 38(5), 2020, 055007 arXiv:2009.14582.
Banerjee, N., Mukherjee, P., Pavón, D., Spatial curvature and thermodynamics. Mon. Not. R. Astron. Soc. 521:4 (2023), 5473–5482 arXiv:2301.09823.
Banerjee, N., Mukherjee, P., Pavón, D., Checking the second law at cosmic scales. J. Cosmol. Astropart. Phys., 11, 2023, 092 arXiv:2309.12298.
Mukherjee, P., Banerjee, N., Revisiting a non-parametric reconstruction of the deceleration parameter from combined background and the growth rate data. Phys. Dark Univ., 36, 2022, 100998 arXiv:2007.15941.
Shafieloo, A., Kim, A.G., Linder, E.V., Gaussian process cosmography. Phys. Rev. D, 85(12), 2012, 123530 arXiv:1204.2272.
Zhang, M.-J., Xia, J.-Q., Test of the cosmic evolution using Gaussian processes. J. Cosmol. Astropart. Phys., 12, 2016, 005 arXiv:1606.04398.
Liao, K., Shafieloo, A., Keeley, R.E., Linder, E.V., A model-independent determination of the Hubble constant from lensed quasars and supernovae using Gaussian process regression. Astrophys. J. Lett., 886(1), 2019, L23 arXiv:1908.04967.
Mukherjee, P., Mukherjee, A., Assessment of the cosmic distance duality relation using Gaussian process. Mon. Not. R. Astron. Soc. 504:3 (2021), 3938–3946 arXiv:2104.06066.
Renzi, F., Hogg, N.B., Giarè, W., The resilience of the Etherington–Hubble relation. Mon. Not. R. Astron. Soc. 513:3 (2022), 4004–4014 arXiv:2112.05701.
Mukherjee, P., Banerjee, N., Non-parametric reconstruction of the cosmological jerk parameter. Eur. Phys. J. C, 81(1), 2021, 36 arXiv:2007.10124.
Jesus, J.F., Valentim, R., Escobal, A.A., Pereira, S.H., Benndorf, D., Gaussian processes reconstruction of the dark energy potential. J. Cosmol. Astropart. Phys., 11, 2022, 037 arXiv:2112.09722.
Wang, D., Meng, X.-H., Improved constraints on the dark energy equation of state using Gaussian processes. Phys. Rev. D, 95(2), 2017, 023508 arXiv:1708.07750.
Holsclaw, T., Alam, U., Sanso, B., Lee, H., Heitmann, K., Habib, S., Higdon, D., Nonparametric dark energy reconstruction from supernova data. Phys. Rev. Lett., 105, 2010, 241302 arXiv:1011.3079.
Aljaf, M., Gregoris, D., Khurshudyan, M., Constraints on interacting dark energy models through cosmic chronometers and Gaussian process. Eur. Phys. J. C, 81(6), 2021, 544 arXiv:2005.01891.
Bonilla, A., Kumar, S., Nunes, R.C., Pan, S., Reconstruction of the dark sectors’ interaction: A model-independent inference and forecast from GW standard sirens. Mon. Not. R. Astron. Soc. 512:3 (2022), 4231–4238 arXiv:2102.06149.
Escamilla, L.A., Akarsu, O., Di Valentino, E., Vazquez, J.A., Model-independent reconstruction of the interacting dark energy kernel: Binned and Gaussian process. J. Cosmol. Astropart. Phys., 11, 2023, 051 arXiv:2305.16290.
Mukherjee, P., Banerjee, N., Nonparametric reconstruction of interaction in the cosmic dark sector. Phys. Rev. D, 103(12), 2021, 123530 arXiv:2105.09995.
Pinho, A.M., Casas, S., Amendola, L., Model-independent reconstruction of the linear anisotropic stress η. J. Cosmol. Astropart. Phys., 11, 2018, 027 arXiv:1805.00027.
Mu, Y., Li, E.-K., Xu, L., Model-independent reconstruction of growth index via Gaussian process. Classical Quantum Gravity, 40(22), 2023, 225003.
Fortunato, J.A.S., Moraes, P.H.R.S., Júnior, J.G.d.L., Brito, E., Search for the f(R, T) gravity functional form via gaussian processes. Eur. Phys. J. C, 84(2), 2024, 198 arXiv:2305.01325.
Singha, A.K., Sardar, A., Debnath, U., F(Q) reconstruction: In the light of various modified gravity models. Phys. Dark Universe, 41, 2023, 101240.
Oliveira, F., Avila, F., Bernui, A., Bonilla, A., Nunes, R.C., Reconstructing the growth index γ with Gaussian processes. Eur. Phys. J. C, 84(6), 2024, 636 arXiv:2311.14216.
Gadbail, G.N., Mandal, S., Sahoo, P.K., Gaussian process approach for model-independent reconstruction of f(Q) gravity with direct hubble measurements. Astrophys. J., 972(2), 2024, 174 arXiv:2404.13095.
Mu, Y., Li, E.-K., Xu, L., Data-driven and almost model-independent reconstruction of modified gravity. J. Cosmol. Astropart. Phys., 06, 2023, 022 arXiv:2302.09777.
Sultana, J., Yennapureddy, M.K., Melia, F., Kazanas, D., Constraining f(R) models with cosmic chronometers and the H ii galaxy Hubble diagram. Mon. Not. R. Astron. Soc. 514:4 (2022), 5827–5839 arXiv:2206.10761.
Elizalde, E., Khurshudyan, M., Swampland criteria for f(r) gravity derived with a Gaussian process. Eur. Phys. J. C, 82(9), 2022, 811.
Wang, D., Pantheon+ constraints on dark energy and modified gravity: An evidence of dynamical dark energy. Phys. Rev. D, 106(6), 2022, 063515 arXiv:2207.07164.
Sardar, A., Debnath, U., Reconstruction of extended f(P) cubic gravity from other modified gravity models. Phys. Dark Universe, 35, 2022, 100926.
Ren, X., Yan, S.-F., Zhao, Y., Cai, Y.-F., Saridakis, E.N., Gaussian processes and effective field theory of f(T) gravity under the H0 tension. Astrophys. J., 932, 2022, 2 arXiv:2203.01926.
Cai, Y.-F., Khurshudyan, M., Saridakis, E.N., Model-independent reconstruction of f(T) gravity from Gaussian processes. Astrophys. J., 888, 2020, 62 arXiv:1907.10813.
Liu, Y., Cao, S., Liu, T., Li, X., Geng, S., Lian, Y., Guo, W., Model-independent constraints on cosmic curvature: implication from updated Hubble diagram of high-redshift standard candles. Astrophys. J., 901(2), 2020, 129 arXiv:2008.08378.
Mukherjee, P., Banerjee, N., Constraining the curvature density parameter in cosmology. Phys. Rev. D, 105(6), 2022, 063516 arXiv:2202.07886.
Pan, Y., Diao, J., Qi, J.-Z., Li, J., Cao, S., Jiang, Q.-Q., Testing the spatial geometry of the Universe with TianQin: Prospect of using supermassive black hole binaries. Astron. Astrophys., 683, 2024, A91 arXiv:2310.14723.
Qi, J.-Z., Meng, P., Zhang, J.-F., Zhang, X., Model-independent measurement of cosmic curvature with the latest H(z) and SNe Ia data: A comprehensive investigation. Phys. Rev. D, 108(6), 2023, 063522 arXiv:2302.08889.
Wang, Y.-J., Qi, J.-Z., Wang, B., Zhang, J.-F., Cui, J.-L., Zhang, X., Cosmological model-independent measurement of cosmic curvature using distance sum rule with the help of gravitational waves. Mon. Not. R. Astron. Soc. 516:4 (2022), 5187–5195 arXiv:2201.12553.
Wu, P.-J., Qi, J.-Z., Zhang, X., Null test for cosmic curvature using Gaussian process*. Chin. Phys. C, 47(5), 2023, 055106 arXiv:2209.08502.
Yang, Y., Gong, Y., Measurement on the cosmic curvature using the Gaussian process method. Mon. Not. R. Astron. Soc. 504:2 (2021), 3092–3097 arXiv:2007.05714.
Wang, G.-J., Ma, X.-J., Xia, J.-Q., Machine learning the cosmic curvature in a model-independent way. Mon. Not. R. Astron. Soc. 501:4 (2021), 5714–5722 arXiv:2004.13913.
Belgacem, E., Foffa, S., Maggiore, M., Yang, T., Gaussian processes reconstruction of modified gravitational wave propagation. Phys. Rev. D, 101(6), 2020, 063505 arXiv:1911.11497.
Zheng, X., Cao, S., Liu, Y., Biesiada, M., Liu, T., Geng, S., Lian, Y., Guo, W., Model-independent constraints on cosmic curvature: implication from the future space gravitational-wave antenna DECIGO. Eur. Phys. J. C, 81(1), 2021, 14 arXiv:2012.14607.
Shah, R., Bhaumik, A., Mukherjee, P., Pal, S., A thorough investigation of the prospects of eLISA in addressing the Hubble tension: Fisher forecast, MCMC and machine learning. J. Cosmol. Astropart. Phys., 06, 2023, 038 arXiv:2301.12708.
Cañas-Herrera, G., Torrado, J., Achúcarro, A., Bayesian reconstruction of the inflaton's speed of sound using CMB data. Phys. Rev. D, 103, 2021, 123531 arXiv:2012.04640.
Dinda, B.R., Banerjee, N., Model independent bounds on type Ia supernova absolute peak magnitude. Phys. Rev. D, 107(6), 2023, 063513 arXiv:2208.14740.
Favale, A., Gómez-Valent, A., Migliaccio, M., Quantification of 2D vs 3D BAO tension using SNIa as a redshift interpolator and test of the Etherington relation. Phys. Lett. B, 858, 2024, 139027 arXiv:2405.12142.
Rodrigues, G., Bengaly, C., A model-independent test of speed of light variability with cosmological observations. J. Cosmol. Astropart. Phys., 07(07), 2022, 029 arXiv:2112.01963.
Mukherjee, P., Shah, R., Bhaumik, A., Pal, S., Reconstructing the Hubble parameter with future gravitational-wave missions using machine learning. Astrophys. J., 960(1), 2024, 61 arXiv:2303.05169.
Li, J.-L., Yang, Y.-P., Yi, S.-X., Hu, J.-P., Wang, F.-Y., Qu, Y.-K., Constraints on the cosmological parameters with three-parameter correlation of Gamma-ray bursts. Astrophys. J., 953(1), 2023, 58 arXiv:2306.12840.
Mukherjee, P., Sen, A.A., Model-independent cosmological inference post DESI DR1 BAO measurements. Phys. Rev. D, 110(12), 2024, 123502 arXiv:2405.19178.
Khurshudyan, M., Elizalde, E., Constraints on prospective deviations from the cold dark matter model using a Gaussian process. Galaxies, 12(4), 2024, 31 arXiv:2402.08630.
von Marttens, R., Gonzalez, J.E., Alcaniz, J., Marra, V., Casarini, L., Model-independent reconstruction of dark sector interactions. Phys. Rev. D, 104(4), 2021, 043515 arXiv:2011.10846.
Mukherjee, P., Non-Parametric Reconstruction of Some Cosmological Parameters. (Ph.D. thesis), 2022, IISER, Kolkata arXiv:2207.07857.
Mukherjee, P., Rodrigues, G., Bengaly, C., Examining the validity of the minimal varying speed of light model through cosmological observations: Relaxing the null curvature constraint. Phys. Dark Univ., 43, 2024, 101380 arXiv:2302.00867.
Dialektopoulos, K., Said, J.L., Mifsud, J., Sultana, J., Adami, K.Z., Neural network reconstruction of late-time cosmology and null tests. J. Cosmol. Astropart. Phys., 02(02), 2022, 023 arXiv:2111.11462.
Sharma, M.K., Sami, M., Reconciling early and late time tensions with reinforcement learning. J. Cosmol. Astropart. Phys., 05, 2025, 002 arXiv:2408.04204.
Mitra, A., Gómez-Vargas, I., Zarikas, V., Dark energy reconstruction analysis with artificial neural networks: Application on simulated Supernova Ia data from Rubin Observatory. Phys. Dark Univ., 46, 2024, 101706 arXiv:2402.18124.
Mao, T.-X., Wang, J., Li, B., Cai, Y.-C., Falck, B., Neyrinck, M., Szalay, A., Baryon acoustic oscillations reconstruction using convolutional neural networks. Mon. Not. R. Astron. Soc. 501:1 (2021), 1499–1510 arXiv:2002.10218.
Garcia-Arroyo, G., Gómez-Vargas, I., Vázquez, J.A., Reconstructing rotation curves with artificial neural networks. 2024 arXiv:2404.05833.
Shafieloo, A., Alam, U., Sahni, V., Starobinsky, A.A., Smoothing Supernova data to reconstruct the expansion history of the universe and its age. Mon. Not. R. Astron. Soc. 366 (2006), 1081–1095 arXiv:astro-ph/0505329.
Shafieloo, A., Model independent reconstruction of the expansion history of the universe and the properties of dark energy. Mon. Not. R. Astron. Soc. 380 (2007), 1573–1580 arXiv:astro-ph/0703034.
Shafieloo, A., Clarkson, C., Model independent tests of the standard cosmological model. Phys. Rev. D, 81, 2010, 083537 arXiv:0911.4858.
Shafieloo, A., L'Huillier, B., Starobinsky, A.A., Falsifying ΛCDM: Model-independent tests of the concordance model with eBOSS DR14Q and Pantheon. Phys. Rev. D, 98(8), 2018, 083526 arXiv:1804.04320.
Shafieloo, A., Crossing statistic: Reconstructing the expansion history of the universe. J. Cosmol. Astropart. Phys., 08, 2012, 002 arXiv:1204.1109.
Koo, H., Shafieloo, A., Keeley, R.E., L'Huillier, B., Model selection and parameter estimation using the iterative smoothing method. J. Cosmol. Astropart. Phys., 03, 2021, 034 arXiv:2009.12045.
L'Huillier, B., Shafieloo, A., Model-independent test of the FLRW metric, the flatness of the universe, and non-local measurement of H0rd. J. Cosmol. Astropart. Phys., 01, 2017, 015 arXiv:1606.06832.
L'Huillier, B., Shafieloo, A., Kim, H., Model-independent cosmological constraints from growth and expansion. Mon. Not. R. Astron. Soc. 476:3 (2018), 3263–3268 arXiv:1712.04865.
L'Huillier, B., Mitra, A., Shafieloo, A., Keeley, R.E., Koo, H., Litmus tests of the flat ΛCDM model and model-independent measurement of H0rd with LSST and DESI. 2024 arXiv:2407.07847.
Montiel, A., Lazkoz, R., Sendra, I., Escamilla-Rivera, C., Salzano, V., Nonparametric reconstruction of the cosmic expansion with local regression smoothing and simulation extrapolation. Phys. Rev. D, 89(4), 2014, 043007 arXiv:1401.4188.
Fernández-Hernández, L.M., Montiel, A., Rodríguez-Meza, M.A., Galaxy rotation curves using a non-parametric regression method: core, cuspy and fuzzy scalar field dark matter models. Mon. Not. R. Astron. Soc. 488:4 (2019), 5127–5144 arXiv:1809.06875.
Escamilla-Rivera, C., Levi Said, J., Mifsud, J., Performance of non-parametric reconstruction techniques in the late-time universe. J. Cosmol. Astropart. Phys., 10, 2021, 016 arXiv:2105.14332.
Rana, A., Jain, D., Mahajan, S., Mukherjee, A., Revisiting the distance duality relation using a non-parametric regression method. J. Cosmol. Astropart. Phys., 07, 2016, 026 arXiv:1511.09223.
Escamilla-Rivera, C., Fabris, J.C., Nonparametric reconstruction of the Om diagnostic to test ΛCDM. Galaxies, 4(4), 2016, 76 arXiv:1511.07066.
Akrami, Y., Scott, P., Edsjo, J., Conrad, J., Bergstrom, L., A profile likelihood analysis of the constrained MSSM with genetic algorithms. JHEP, 04, 2010, 057 arXiv:0910.3950.
Crowder, J., Cornish, N.J., Reddinger, L., Darwin meets Einstein: LISA data analysis using genetic algorithms. Phys. Rev. D, 73, 2006, 063011 arXiv:gr-qc/0601036.
Bogdanos, C., Nesseris, S., Genetic algorithms and supernovae type Ia analysis. J. Cosmol. Astropart. Phys., 05, 2009, 006 arXiv:0903.2805.
Nesseris, S., Shafieloo, A., A model independent null test on the cosmological constant. Mon. Not. R. Astron. Soc. 408 (2010), 1879–1885 arXiv:1004.0960.
Nesseris, S., Garcia-Bellido, J., A new perspective on dark energy modeling via genetic algorithms. J. Cosmol. Astropart. Phys., 11, 2012, 033 arXiv:1205.0364.
Medel-Esquivel, R., Gómez-Vargas, I., Sánchez, A.A.M., García-Salcedo, R., Alberto Vázquez, J., Cosmological parameter estimation with genetic algorithms. Universe, 10(1), 2024, 11 arXiv:2311.05699.
Bernardo, R.C., Levi Said, J., Towards a model-independent reconstruction approach for late-time Hubble data. J. Cosmol. Astropart. Phys., 08, 2021, 027 arXiv:2106.08688.
Bainbridge, M.B., Webb, J.K., Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant. Mon. Not. R. Astron. Soc. 468:2 (2017), 1639–1670 arXiv:1606.07393.
Bainbridge, M.B., Webb, J.K., Evaluating the new automatic method for the analysis of absorption spectra using synthetic spectra. Universe, 3(2), 2017, 34 arXiv:1704.08710.
Lee, C.-C., Webb, J.K., Carswell, R.F., Milaković, D., Artificial intelligence and quasar absorption system modelling; application to fundamental constants at high redshift. Mon. Not. R. Astron. Soc. 504:2 (2021), 1787–1800 arXiv:2008.02583.
Webb, J.K., Lee, C.-C., Carswell, R.F., Milaković, D., Getting the model right: an information criterion for spectroscopy. Mon. Not. R. Astron. Soc. 501:2 (2021), 2268–2278 arXiv:2009.08336.
Escamilla-Rivera, C., Bayesian deep learning for dark energy. 2020, 10.5772/intechopen.91466 arXiv:2005.06412.
Escamilla-Rivera, C., Deep learning for cosmology. Escalante, B., Carminati, F., Barnafoldi, G., Paic, G., Nellen, L., Mayo, R., Schramm, S., Ivezic, Z., (eds.) PoS, AISIS2019, 2020, 021.
Munõz, C.Z., Escamilla-Rivera, C., Inverse Cosmography: testing the effectiveness of cosmographic polynomials using machine learning. J. Cosmol. Astropart. Phys., 12, 2020, 007 arXiv:2005.02807.
A modern introduction to memetic algorithms. Gendreau, M., Potvin, J.-Y., (eds.) Handbook of Metaheuristics, 2010, Springer US, Boston, MA, 141–183 http://dx.doi.org/10.1007/978-1-4419-1665-5_6.
Ross, O.H.M., A review of quantum-inspired metaheuristics: Going from classical computers to real quantum computers. IEEE Access 8 (2020), 814–838.
Acampora, G., Schiattarella, R., Vitiello, A., Using quantum amplitude amplification in genetic algorithms. Expert Syst. Appl., 209, 2022, 118203.
Acampora, G., Vitiello, A., Implementing evolutionary optimization on actual quantum processors. Info. Sci. 575 (2021), 542–562.
Ibarrondo, R., Gatti, G., Sanz, M., Quantum vs classical genetic algorithms: A numerical comparison shows faster convergence. 2022 IEEE Symposium Series on Computational Intelligence, 2022 arXiv:2207.09251.
Ibarrondo, R., Gatti, G., Sanz, M., Quantum genetic algorithm with individuals in multiple registers. IEEE Trans. Evol. Comput. 28 (2024), 788–797 arXiv:2203.15039.
Sarracino, G., et al. A quantum genetic algorithm for cosmological functions. 2024 (in preparation).
Ruiz, A.N., et al. Calibration of semi-analytic models of galaxy formation using particle swarm optimization. Astrophys. J., 801(2), 2015, 139 arXiv:1310.7034.
Skokos, C., Parsopoulos, K.E., Patsis, P.A., Vrahatis, M.N., Particle swarm optimization: An efficient method for tracing periodic orbits in 3-D Galactic potentials. Mon. Not. R. Astron. Soc. 359 (2005), 251–260 arXiv:astro-ph/0502164.
Balázs, C., et al., DarkMachines High Dimensional Sampling Group Collaboration. A comparison of optimisation algorithms for high-dimensional particle and astrophysics applications. JHEP, 05, 2021, 108 arXiv:2101.04525.
Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.H., Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6:31 (2010), 187–202 arXiv:0901.1925. URL https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2008.0172.
Toni, T., Stumpf, M.P.H., Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 26:1 (2009), 104–110 arXiv:0911.1705. http://dx.doi.org/10.1093/bioinformatics/btp619.
Toni, T., Stumpf, M.P.H., Tutorial on ABC rejection and ABC SMC for parameter estimation and model selection. 2009, 10.48550/arXiv.0910.4472 arXiv E-Prints. arXiv:0910.4472.
Bernardo, R.C., Grandón, D., Levi Said, J., Cárdenas, V.H., Dark energy by natural evolution: Constraining dark energy using approximate Bayesian computation. Phys. Dark Univ., 40, 2023, 101213 arXiv:2211.05482.
Bernardo, R.C., Lee, Y.-R., Hubble constant by natural selection: Evolution chips in the Hubble tension. Astron. Comput., 44, 2023, 100740 arXiv:2212.02203.
K.M. Sallam, S.M. Elsayed, R.K. Chakrabortty, M.J. Ryan, Improved Multi-operator Differential Evolution Algorithm for Solving Unconstrained Problems, in: 2020 IEEE Congress on Evolutionary Computation, CEC, 2020, pp. 1–8.
Bernardo, R.C., Mendoza, R., Enriquez, E.A., Velasco, A.C., Reyes, R., Metaheuristic cosmological parameter estimation: The Philippine Eagle hunts down cosmic expansion. 2025 (in preparation).
Kim, K.Y., Lee, H.W., Investigating the suitability of data-driven methods for extracting physical parameters in cosmological models. Astron. Comput., 45, 2023, 100762.
Lodha, K., Pinol, L., Nesseris, S., Shafieloo, A., Sohn, W., Fasiello, M., Searching for local features in primordial power spectrum using genetic algorithms. Mon. Not. R. Astron. Soc. 530:2 (2024), 1424–1435 arXiv:2308.04940.
Antony, A., Finelli, F., Hazra, D.K., Shafieloo, A., Discordances in cosmology and the violation of slow-roll inflationary dynamics. Phys. Rev. Lett., 130(11), 2023, 111001 arXiv:2202.14028.
Hazra, D.K., Antony, A., Shafieloo, A., One spectrum to cure them all: signature from early Universe solves major anomalies and tensions in cosmology. J. Cosmol. Astropart. Phys., 08(08), 2022, 063 arXiv:2201.12000.
Alestas, G., Kazantzidis, L., Nesseris, S., Machine learning constraints on deviations from general relativity from the large scale structure of the Universe. Phys. Rev. D, 106(10), 2022, 103519 arXiv:2209.12799.
Martinelli, M., et al., EUCLID Collaboration. Euclid: Forecast constraints on the cosmic distance duality relation with complementary external probes. Astron. Astrophys., 644, 2020, A80 arXiv:2007.16153.
Martinelli, M., et al., Euclid Collaboration. Euclid: Constraining dark energy coupled to electromagnetism using astrophysical and laboratory data. Astron. Astrophys., 654, 2021, A148 arXiv:2105.09746.
Nesseris, S., et al., Euclid Collaboration. Euclid: Forecast constraints on consistency tests of the ΛCDM model. Astron. Astrophys., 660, 2022, A67 arXiv:2110.11421.
Moresco, M., Jimenez, R., Verde, L., Cimatti, A., Pozzetti, L., Setting the stage for cosmic chronometers. II. Impact of stellar population synthesis models systematics and full covariance matrix. Astrophys. J., 898(1), 2020, 82 arXiv:2003.07362.
Brout, D., et al. The pantheon+ analysis: SuperCal-fragilistic cross calibration, retrained SALT2 light-curve model, and calibration systematic uncertainty. Astrophys. J., 938(2), 2022, 111 arXiv:2112.03864.
Bernardo, R.C., Chen, Y., Demystifying genetic algorithm for cosmological parameter estimation and such. 2024 (in preparation).
Abdessalem, A.B., Dervilis, N., Wagg, D.J., Worden, K., Automatic kernel selection for Gaussian processes regression with approximate Bayesian computation and sequential Monte Carlo. Front. Built Environ., 3, 2017, 52.
Zhang, H., Wang, Y.-C., Zhang, T.-J., Zhang, T.-t., Kernel selection for Gaussian process in cosmology: With approximate Bayesian computation rejection and nested sampling. Astrophys. J. Suppl., 266(2), 2023, 27 arXiv:2304.03911.
Oikonomou, V.K., Kafanelis, G., Primordial cosmology of an emergent-like universe from modified gravity: Reconstruction and phenomenology optimization with a genetic algorithm. Internat. J. Modern Phys. D, 33(1), 2024, 2350114 arXiv:2312.16324.
Aizpuru, A., Arjona, R., Nesseris, S., Machine learning improved fits of the sound horizon at the baryon drag epoch. Phys. Rev. D, 104(4), 2021, 043521 arXiv:2106.00428.
Arjona, R., Melchiorri, A., Nesseris, S., Testing the ΛCDM paradigm with growth rate data and machine learning. J. Cosmol. Astropart. Phys., 05(05), 2022, 047 arXiv:2107.04343.
Gangopadhyay, M.R., Sami, M., Sharma, M.K., Phantom dark energy as a natural selection of evolutionary processes a^ la genetic algorithm and cosmological tensions. Phys. Rev. D, 108(10), 2023, 103526 arXiv:2303.07301.
Kazantzidis, L., Perivolaropoulos, L., Evolution of the fσ8 tension with the Planck15/ΛCDM determination and implications for modified gravity theories. Phys. Rev. D, 97(10), 2018, 103503 arXiv:1803.01337.
Springel, V., Yoshida, N., White, S.D.M., GADGET: A code for collisionless and gasdynamical cosmological simulations. New Astron., 6, 2001, 79 arXiv:astro-ph/0003162.
Springel, V., The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364 (2005), 1105–1134 arXiv:astro-ph/0505010.
Springel, V., Pakmor, R., Zier, O., Reinecke, M., Simulating cosmic structure formation with the gadget-4 code. Mon. Not. R. Astron. Soc. 506:2 (2021), 2871–2949 arXiv:2010.03567.
Springel, V., E pur si muove: Galiliean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc., 401, 2010, 791 arXiv:0901.4107.
Hopkins, P.F., A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. R. Astron. Soc. 450:1 (2015), 53–110 arXiv:1409.7395.
Schaller, M., et al., SWIFT Collaboration. Swift: a modern highly parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications. Mon. Not. R. Astron. Soc. 530:2 (2024), 2378–2419 arXiv:2305.13380.
Teyssier, R., Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called RAMSES. Astron. Astrophys. 385 (2002), 337–364 arXiv:astro-ph/0111367.
Springel, V., et al. Simulating the joint evolution of quasars, galaxies and their large-scale distribution. Nature 435 (2005), 629–636 arXiv:astro-ph/0504097.
Kim, J., Park, C., Gott, R. III, Dubinski, J., The horizon run N-body simulation: Baryon acoustic oscillations and topology of large scale structure of the universe. Astrophys. J. 701 (2009), 1547–1559 arXiv:0812.1392.
Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., Snyder, G.F., Nelson, D., Hernquist, L., Introducing the illustris project: Simulating the coevolution of dark and visible matter in the universe. Mon. Not. R. Astron. Soc. 444:2 (2014), 1518–1547 arXiv:1405.2921.
Springel, V., et al. First results from the IllustrisTNG simulations: matter and galaxy clustering. Mon. Not. R. Astron. Soc. 475:1 (2018), 676–698 arXiv:1707.03397.
Klypin, A., Trujillo-Gomez, S., Primack, J., Halos and galaxies in the standard cosmological model: results from the bolshoi simulation. Astrophys. J., 740, 2011, 102 arXiv:1002.3660.
Schaye, J., et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446 (2015), 521–554 arXiv:1407.7040.
Crain, R.A., et al. The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. Mon. Not. R. Astron. Soc. 450:2 (2015), 1937–1961 arXiv:1501.01311.
Villaescusa-Navarro, F., et al. The quijote simulations. Astrophys. J. Suppl., 250(1), 2020, 2 arXiv:1909.05273.
Kauffmann, G., Colberg, J.M., Diaferio, A., White, S.D.M., Clustering of galaxies in a hierarchical universe: 1. Methods and results at z=0. Mon. Not. R. Astron. Soc. 303 (1999), 188–206 arXiv:astro-ph/9805283.
Mead, A., Peacock, J., Heymans, C., Joudaki, S., Heavens, A., An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models. Mon. Not. R. Astron. Soc. 454:2 (2015), 1958–1975 arXiv:1505.07833.
Hortua, H.J., Constraining cosmological parameters from N-body simulations with Bayesian neural networks. 35th Conference on Neural Information Processing Systems, 2021 arXiv:2112.11865.
Lazanu, A., Extracting cosmological parameters from N-body simulations using machine learning techniques. J. Cosmol. Astropart. Phys., 09, 2021, 039 arXiv:2106.11061.
Zhang, C., Zu, L., Chen, H.-Z., Tsai, Y.-L.S., Fan, Y.-Z., Weak lensing constraints on dark matter-baryon interactions with N-body simulations and machine learning. J. Cosmol. Astropart. Phys., 08, 2024, 003 arXiv:2402.18880.
Lovell, M.R., Frenk, C.S., Eke, V.R., Jenkins, A., Gao, L., Theuns, T., The properties of warm dark matter haloes. Mon. Not. R. Astron. Soc. 439 (2014), 300–317 arXiv:1308.1399.
Bose, S., Hellwing, W.A., Frenk, C.S., Jenkins, A., Lovell, M.R., Helly, J.C., Li, B., The copernicus complexio: Statistical properties of warm dark matter haloes. Mon. Not. R. Astron. Soc. 455:1 (2016), 318–333 arXiv:1507.01998.
Shtanov, Y., Zhdanov, V.I., Discreteness effects in N-body simulations of warm dark matter. Phys. Rev. D, 109(6), 2024, 063031 arXiv:2307.07778.
Villaescusa-Navarro, F., Marulli, F., Viel, M., Branchini, E., Castorina, E., Sefusatti, E., Saito, S., Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies. J. Cosmol. Astropart. Phys., 03, 2014, 011 arXiv:1311.0866.
Adamek, J., Durrer, R., Kunz, M., Relativistic N-body simulations with massive neutrinos. J. Cosmol. Astropart. Phys., 11, 2017, 004 arXiv:1707.06938.
Liu, J., Bird, S., Matilla, J.M.Z., Hill, J.C., Haiman, Z., Madhavacheril, M.S., Petri, A., Spergel, D.N., MassiveNuS: Cosmological massive neutrino simulations. J. Cosmol. Astropart. Phys., 03, 2018, 049 arXiv:1711.10524.
Li, B., Zhao, G.-B., Teyssier, R., Koyama, K., ECOSMOG: An efficient code for simulating modified gravity. J. Cosmol. Astropart. Phys., 01, 2012, 051 arXiv:1110.1379.
Puchwein, E., Baldi, M., Springel, V., Modified gravity-GADGET: A new code for cosmological hydrodynamical simulations of modified gravity models. Mon. Not. R. Astron. Soc., 436, 2013, 348 arXiv:1305.2418.
Zhang, J., An, R., Liao, S., Luo, W., Li, Z., Wang, B., Fully self-consistent cosmological simulation pipeline for interacting dark energy models. Phys. Rev. D, 98(10), 2018, 103530 arXiv:1811.01519.
Arnold, C., Leo, M., Li, B., Realistic simulations of galaxy formation in f(R) modified gravity. Nat. Astron. 3:10 (2019), 945–954 arXiv:1907.02977.
Wright, B.S., Winther, H.A., Koyama, K., COLA with massive neutrinos. J. Cosmol. Astropart. Phys., 10, 2017, 054 arXiv:1705.08165.
Baldi, M., Villaescusa-Navarro, F., Quijote simulations: Modified gravity. 2025 https://quijote-simulations.readthedocs.io/en/latest/mg.html. (Accessed 30 January 2025).
Chen, X.-l., Hannestad, S., Scherrer, R.J., Cosmic microwave background and large scale structure limits on the interaction between dark matter and baryons. Phys. Rev. D, 65, 2002, 123515 arXiv:astro-ph/0202496.
Nguyen, D.V., Sarnaaik, D., Boddy, K.K., Nadler, E.O., Gluscevic, V., Observational constraints on dark matter scattering with electrons. Phys. Rev. D, 104(10), 2021, 103521 arXiv:2107.12380.
Serra, P., Zalamea, F., Cooray, A., Mangano, G., Melchiorri, A., Constraints on neutrino – dark matter interactions from cosmic microwave background and large scale structure data. Phys. Rev. D, 81, 2010, 043507 arXiv:0911.4411.
Mangano, G., Melchiorri, A., Serra, P., Cooray, A., Kamionkowski, M., Cosmological bounds on dark matter-neutrino interactions. Phys. Rev. D, 74, 2006, 043517 arXiv:astro-ph/0606190.
Wilkinson, R.J., Boehm, C., Lesgourgues, J., Constraining dark matter-neutrino interactions using the CMB and large-scale structure. J. Cosmol. Astropart. Phys., 05, 2014, 011 arXiv:1401.7597.
Cyr-Racine, F.-Y., Sigurdson, K., Zavala, J., Bringmann, T., Vogelsberger, M., Pfrommer, C., ETHOS—an effective theory of structure formation: From dark particle physics to the matter distribution of the Universe. Phys. Rev. D, 93(12), 2016, 123527 arXiv:1512.05344.
Vogelsberger, M., Zavala, J., Cyr-Racine, F.-Y., Pfrommer, C., Bringmann, T., Sigurdson, K., ETHOS – an effective theory of structure formation: dark matter physics as a possible explanation of the small-scale CDM problems. Mon. Not. R. Astron. Soc. 460:2 (2016), 1399–1416 arXiv:1512.05349.
Zu, L., Zhang, C., Chen, H.-Z., Wang, W., Tsai, Y.-L.S., Tsai, Y., Luo, W., Fan, Y.-Z., Exploring mirror twin higgs cosmology with present and future weak lensing surveys. J. Cosmol. Astropart. Phys., 08, 2023, 023 arXiv:2304.06308.
Bohr, S., Zavala, J., Cyr-Racine, F.-Y., Vogelsberger, M., Bringmann, T., Pfrommer, C., ETHOS – an effective parametrization and classification for structure formation: the non-linear regime at z ≳ 5. Mon. Not. R. Astron. Soc. 498:3 (2020), 3403–3419 arXiv:2006.01842.
Harnois-Déraps, J., Martinet, N., Castro, T., Dolag, K., Giblin, B., Heymans, C., Hildebrandt, H., Xia, Q., Cosmic shear cosmology beyond two-point statistics: a combined peak count and correlation function analysis of DES-Y1. MNRAS 506:2 (2021), 1623–1650 arXiv:2012.02777.
Jasche, J., Wandelt, B.D., Bayesian physical reconstruction of initial conditions from large scale structure surveys. Mon. Not. R. Astron. Soc., 432, 2013, 894 arXiv:1203.3639.
Jasche, J., Lavaux, G., Physical Bayesian modelling of the non-linear matter distribution: new insights into the nearby universe. Astron. Astrophys., 625, 2019, A64 arXiv:1806.11117.
Porqueres, N., Heavens, A., Mortlock, D., Lavaux, G., Bayesian forward modelling of cosmic shear data. Mon. Not. R. Astron. Soc. 502:2 (2021), 3035–3044 arXiv:2011.07722.
Porqueres, N., Heavens, A., Mortlock, D., Lavaux, G., Lifting weak lensing degeneracies with a field-based likelihood. Mon. Not. R. Astron. Soc. 509:3 (2021), 3194–3202 arXiv:2108.04825.
Porqueres, N., Heavens, A., Mortlock, D., Lavaux, G., Makinen, T.L., Field-level inference of cosmic shear with intrinsic alignments and baryons. 2023 arXiv:2304.04785.
Jeffrey, N., et al., DES Collaboration. Dark Energy Survey Year 3 results: likelihood-free, simulation-based wCDM inference with neural compression of weak-lensing map statistics. Mon. Not. R. Astron. Soc. 536:2 (2025), 1303–1322 arXiv:2403.02314.
MacCrann, N., Zuntz, J., Bridle, S., Jain, B., Becker, M.R., Cosmic discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?. Mon. Not. R. Astron. Soc. 451:3 (2015), 2877–2888 arXiv:1408.4742.
Rubira, H., Mazoun, A., Garny, M., Full-shape BOSS constraints on dark matter interacting with dark radiation and lifting the S8 tension. J. Cosmol. Astropart. Phys., 01, 2023, 034 arXiv:2209.03974.
Brinckmann, T., Chang, J.H., Du, P., LoVerde, M., Confronting interacting dark radiation scenarios with cosmological data. Phys. Rev. D, 107(12), 2023, 123517 arXiv:2212.13264.
Chen, A., et al., DES Collaboration. Constraints on dark matter to dark radiation conversion in the late universe with DES-Y1 and external data. Phys. Rev. D, 103(12), 2021, 123528 arXiv:2011.04606.
He, A., Ivanov, M.M., An, R., Gluscevic, V., S8 tension in the context of dark matter–baryon scattering. Astrophys. J. Lett., 954(1), 2023, L8 arXiv:2301.08260.
Di Valentino, E., Bøehm, C., Hivon, E., Bouchet, F.R., Reducing the H0 and σ8 tensions with dark matter-neutrino interactions. Phys. Rev. D, 97(4), 2018, 043513 arXiv:1710.02559.
Zu, L., Giarè, W., Zhang, C., Di Valentino, E., Tsai, Y.-L.S., Trojanowski, S., Can νDM interactions solve the S8 discrepancy?. 2025 arXiv:2501.13785.
Zhan, H., The wide-field multiband imaging and slitless spectroscopy survey to be carried out by the Survey Space Telescope of China Manned Space Program. Chin. Sci. Bull. 66 (2021), 1290–1298.
Croft, R.A.C., Weinberg, D.H., Bolte, M., Burles, S., Hernquist, L., Katz, N., Kirkman, D., Tytler, D., Towards a precise measurement of matter clustering: Lyman alpha forest data at redshifts 2-4. Astrophys. J. 581 (2002), 20–52 arXiv:astro-ph/0012324.
M. Viel, The Lyman-α Forest as a Probe of the Coldness of Dark Matter, in: 19th Conference on High Energy Physics, 2008, pp. 255–260.
Viel, M., Becker, G.D., Bolton, J.S., Haehnelt, M.G., Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data. Phys. Rev. D, 88, 2013, 043502 arXiv:1306.2314.
Viel, M., Haehnelt, M.G., Springel, V., Inferring the dark matter power spectrum from the Lyman-alpha forest in high-resolution QSO absorption spectra. Mon. Not. R. Astron. Soc., 354, 2004, 684 arXiv:astro-ph/0404600.
Boyarsky, A., Lesgourgues, J., Ruchayskiy, O., Viel, M., Lyman-alpha constraints on warm and on warm-plus-cold dark matter models. J. Cosmol. Astropart. Phys., 05, 2009, 012 arXiv:0812.0010.
Rogers, K.K., Peiris, H.V., Strong bound on canonical ultralight axion dark matter from the lyman-alpha forest. Phys. Rev. Lett., 126(7), 2021, 071302 arXiv:2007.12705.
Garny, M., Konstandin, T., Sagunski, L., Viel, M., Neutrino mass bounds from confronting an effective model with BOSS Lyman-α data. J. Cosmol. Astropart. Phys., 03, 2021, 049 arXiv:2011.03050.
Palanque-Delabrouille, N., et al. Neutrino masses and cosmology with Lyman-alpha forest power spectrum. J. Cosmol. Astropart. Phys., 11, 2015, 011 arXiv:1506.05976.
Bolton, J.S., Caputo, A., Liu, H., Viel, M., Comparison of low-redshift Lyman-α forest observations to hydrodynamical simulations with dark photon dark matter. Phys. Rev. Lett., 129(21), 2022, 211102 arXiv:2206.13520.
Hooper, D.C., Lucca, M., Hints of dark matter-neutrino interactions in lyman-α data. Phys. Rev. D, 105(10), 2022, 103504 arXiv:2110.04024.
Furlanetto, S., Oh, S.P., Briggs, F., Cosmology at low frequencies: The 21 cm transition and the high-redshift universe. Phys. Rep. 433 (2006), 181–301 arXiv:astro-ph/0608032.
Schneider, A., Constraining noncold dark matter models with the global 21-cm signal. Phys. Rev. D, 98(6), 2018, 063021 arXiv:1805.00021.
Lopez-Honorez, L., Mena, O., Villanueva-Domingo, P., Dark matter microphysics and 21 cm observations. Phys. Rev. D, 99(2), 2019, 023522 arXiv:1811.02716.
Escudero, M., Lopez-Honorez, L., Mena, O., Palomares-Ruiz, S., Villanueva-Domingo, P., A fresh look into the interacting dark matter scenario. J. Cosmol. Astropart. Phys., 06, 2018, 007 arXiv:1803.08427.
Muñoz, J.B., Dvorkin, C., Cyr-Racine, F.-Y., Probing the small-scale matter power spectrum with large-scale 21-cm data. Phys. Rev. D, 101(6), 2020, 063526 arXiv:1911.11144.
Yoshiura, S., Takahashi, K., Takahashi, T., Probing small scale primordial power spectrum with 21cm line global signal. Phys. Rev. D, 101(8), 2020, 083520 arXiv:1911.07442.
Muñoz, J.B., Bohr, S., Cyr-Racine, F.-Y., Zavala, J., Vogelsberger, M., ETHOS - an effective theory of structure formation: Impact of dark acoustic oscillations on cosmic dawn. Phys. Rev. D, 103(4), 2021, 043512 arXiv:2011.05333.
Lovell, M.R., Zavala, J., Vogelsberger, M., Shen, X., Cyr-Racine, F.-Y., Pfrommer, C., Sigurdson, K., Boylan-Kolchin, M., Pillepich, A., ETHOS – an effective theory of structure formation: predictions for the high-redshift Universe – abundance of galaxies and reionization. Mon. Not. R. Astron. Soc. 477:3 (2018), 2886–2899 arXiv:1711.10497.
Hassan, S., Davé, R., Finlator, K., Santos, M.G., Simulating the 21 cm signal from reionization including non-linear ionizations and inhomogeneous recombinations. Mon. Not. R. Astron. Soc. 457:2 (2016), 1550–1567 arXiv:1510.04280.
van Haarlem, M.P., et al., LOFAR Collaboration. LOFAR: The LOw-frequency array. Astron. Astrophys., 556, 2013, A2 arXiv:1305.3550.
DeBoer, D.R., et al. Hydrogen epoch of reionization array (HERA). Publ. Astron. Soc. Pac., 129(974), 2017, 045001 arXiv:1606.07473.
Koopmans, L.V.E., et al. The cosmic dawn and epoch of reionization with the square kilometre array. Bourke, T.L., et al. (eds.) PoS, AASKA14, 2015, 001 arXiv:1505.07568.
Bullock, J.S., Boylan-Kolchin, M., Small-scale challenges to the ΛCDM paradigm. Ann. Rev. Astron. Astrophys. 55 (2017), 343–387 arXiv:1707.04256.
Navarro, J.F., Frenk, C.S., White, S.D.M., The structure of cold dark matter halos. Astrophys. J. 462 (1996), 563–575 arXiv:astro-ph/9508025.
de Blok, W.J.G., The core-cusp problem. Adv. Astron., 2010, 2010, 789293 arXiv:0910.3538.
Gentile, G., Salucci, P., Klein, U., Vergani, D., Kalberla, P., The cored distribution of dark matter in spiral galaxies. Mon. Not. R. Astron. Soc., 351, 2004, 903 arXiv:astro-ph/0403154.
Bullock, J.S., Kolatt, T.S., Sigad, Y., Somerville, R.S., Kravtsov, A.V., Klypin, A.A., Primack, J.R., Dekel, A., Profiles of dark haloes. Evolution, scatter, and environment. Mon. Not. R. Astron. Soc. 321 (2001), 559–575 arXiv:astro-ph/9908159.
Oman, K.A., et al. The unexpected diversity of dwarf galaxy rotation curves. Mon. Not. R. Astron. Soc. 452:4 (2015), 3650–3665 arXiv:1504.01437.
Klypin, A.A., Kravtsov, A.V., Valenzuela, O., Prada, F., Where are the missing galactic satellites?. Astrophys. J. 522 (1999), 82–92 arXiv:astro-ph/9901240.
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T.R., Stadel, J., Tozzi, P., Dark matter substructure within galactic halos. Astrophys. J. Lett. 524 (1999), L19–L22 arXiv:astro-ph/9907411.
Boylan-Kolchin, M., Bullock, J.S., Kaplinghat, M., Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc., 415, 2011, L40 arXiv:1103.0007.
Boylan-Kolchin, M., Bullock, J.S., Kaplinghat, M., The Milky Way's bright satellites as an apparent failure of LCDM. Mon. Not. R. Astron. Soc. 422 (2012), 1203–1218 arXiv:1111.2048.
Navarro, J.F., Eke, V.R., Frenk, C.S., The cores of dwarf galaxy halos. Mon. Not. R. Astron. Soc. 283 (1996), L72–L78 arXiv:astro-ph/9610187.
Oh, S.-H., Brook, C., Governato, F., Brinks, E., Mayer, L., de Blok, W.J.G., Brooks, A., Walter, F., The central slope of dark matter cores in dwarf galaxies: Simulations vs. THINGS. Astron. J., 142, 2011, 24 arXiv:1011.2777.
Zolotov, A., Brooks, A.M., Willman, B., Governato, F., Pontzen, A., Christensen, C., Dekel, A., Quinn, T., Shen, S., Wadsley, J., Baryons matter: Why luminous satellite galaxies have reduced central masses. Astrophys. J., 761, 2012, 71 arXiv:1207.0007.
Arraki, K.S., Klypin, A., More, S., Trujillo-Gomez, S., Effects of baryon removal on the structure of dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 438:2 (2014), 1466–1482 arXiv:1212.6651.
Brooks, A.M., Zolotov, A., Why baryons matter: The kinematics of dwarf spheroidal satellites. Astrophys. J., 786, 2014, 87 arXiv:1207.2468.
Brook, C.B., Di Cintio, A., Expanded haloes, abundance matching and too-big-to-fail in the local group. Mon. Not. R. Astron. Soc. 450:4 (2015), 3920–3934 arXiv:1410.3825.
Dutton, A.A., Macciò, A.V., Frings, J., Wang, L., Stinson, G.S., Penzo, C., Kang, X., NIHAO V: too big does not fail – reconciling the conflict between ACDM predictions and the circular velocities of nearby field galaxies. Mon. Not. R. Astron. Soc. 457:1 (2016), L74–L78 arXiv:1512.00453.
Hu, W., Barkana, R., Gruzinov, A., Cold and fuzzy dark matter. Phys. Rev. Lett. 85 (2000), 1158–1161 arXiv:astro-ph/0003365.
Moore, B., Gelato, S., Jenkins, A., Pearce, F.R., Quilis, V., Collisional versus collisionless dark matter. Astrophys. J. Lett. 535 (2000), L21–L24 arXiv:astro-ph/0002308.
Yoshida, N., Springel, V., White, S.D.M., Tormen, G., Collisional dark matter and the structure of dark halos. Astrophys. J. Lett., 535, 2000, L103 arXiv:astro-ph/0002362.
Burkert, A., The structure and evolution of weakly selfinteracting cold dark matter halos. Astrophys. J. Lett. 534 (2000), L143–L146 arXiv:astro-ph/0002409.
Kochanek, C.S., White, M.J., A quantitative study of interacting dark matter in halos. Astrophys. J., 543, 2000, 514 arXiv:astro-ph/0003483.
Yoshida, N., Springel, V., White, S.D.M., Tormen, G., Weakly self-interacting dark matter and the structure of dark halos. Astrophys. J. Lett. 544 (2000), L87–L90 arXiv:astro-ph/0006134.
Dave, R., Spergel, D.N., Steinhardt, P.J., Wandelt, B.D., Halo properties in cosmological simulations of selfinteracting cold dark matter. Astrophys. J. 547 (2001), 574–589 arXiv:astro-ph/0006218.
Miralda-Escude, J., A test of the collisional dark matter hypothesis from cluster lensing. Astrophys. J., 564, 2002, 60 arXiv:astro-ph/0002050.
Rocha, M., Peter, A.H.G., Bullock, J.S., Kaplinghat, M., Garrison-Kimmel, S., Onorbe, J., Moustakas, L.A., Cosmological simulations with self-interacting dark matter I: Constant density cores and substructure. Mon. Not. R. Astron. Soc. 430 (2013), 81–104 arXiv:1208.3025.
Peter, A.H.G., Rocha, M., Bullock, J.S., Kaplinghat, M., Cosmological simulations with self-interacting dark matter II: Halo shapes vs. Observations. Mon. Not. R. Astron. Soc., 430, 2013, 105 arXiv:1208.3026.
Vogelsberger, M., Zavala, J., Loeb, A., Subhaloes in self-interacting galactic dark matter haloes. Mon. Not. R. Astron. Soc., 423, 2012, 3740 arXiv:1201.5892.
Elbert, O.D., Bullock, J.S., Garrison-Kimmel, S., Rocha, M., Oñorbe, J., Peter, A.H.G., Core formation in dwarf haloes with self-interacting dark matter: no fine-tuning necessary. Mon. Not. R. Astron. Soc. 453:1 (2015), 29–37 arXiv:1412.1477.
Schive, H.-Y., Chiueh, T., Broadhurst, T., Cosmic structure as the quantum interference of a coherent dark wave. Nat. Phys. 10 (2014), 496–499 arXiv:1406.6586.
Mocz, P., Vogelsberger, M., Robles, V.H., Zavala, J., Boylan-Kolchin, M., Fialkov, A., Hernquist, L., Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes. Mon. Not. R. Astron. Soc. 471:4 (2017), 4559–4570 arXiv:1705.05845.
Veltmaat, J., Niemeyer, J.C., Schwabe, B., Formation and structure of ultralight bosonic dark matter halos. Phys. Rev. D, 98(4), 2018, 043509 arXiv:1804.09647.
Herold, L., Ferreira, E.G.M., Heinrich, L., Profile likelihoods in cosmology: When, why, and how illustrated with ΛCDM, massive neutrinos, and dark energy. Phys. Rev. D, 111(8), 2025, 083504 arXiv:2408.07700.
Neyman, J., Outline of a theory of statistical estimation based on the classical theory of probability. Phil. Trans. Roy. Soc. Lond. A 236:767 (1937), 333–380.
Wilks, S.S., The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9:1 (1938), 60–62.
Pawitan, Y., In All Likelihood: Statistical Modelling and Inference Using Likelihood. 2001, Oxford Science Publications, OUP Oxford URL https://books.google.com/books?id=M-3pSCVxV5oC.
Trotta, R., Bayesian methods in cosmology. 2017 arXiv E-Prints. arXiv:1701.01467.
Feldman, G.J., Cousins, R.D., A unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57 (1998), 3873–3889 arXiv:physics/9711021.
Cousins, R.D., Why isn't every physicist a Bayesian?. Am. J. Phys., 63, 1995, 398.
Campeti, P., et al., LiteBIRD Collaboration. LiteBIRD science goals and forecasts. A case study of the origin of primordial gravitational waves using large-scale CMB polarization. J. Cosmol. Astropart. Phys., 06, 2024, 008 arXiv:2312.00717.
Ade, P.A.R., et al., SPIDER Collaboration. A constraint on primordial B-modes from the first flight of the spider balloon-borne telescope. Astrophys. J., 927(2), 2022, 174 arXiv:2103.13334.
Reid, B.A., Verde, L., Jimenez, R., Mena, O., Robust neutrino constraints by combining low redshift observations with the CMB. J. Cosmol. Astropart. Phys., 01, 2010, 003 arXiv:0910.0008.
Giarè, W., Gómez-Valent, A., Di Valentino, E., van de Bruck, C., Hints of neutrino dark matter scattering in the CMB? Constraints from the marginalized and profile distributions. Phys. Rev. D, 109(6), 2024, 063516 arXiv:2311.09116.
Karwal, T., Patel, Y., Bartlett, A., Poulin, V., Smith, T.L., Pfeffer, D.N., Procoli: Profiles of cosmological likelihoods. 2024 arXiv:2401.14225.
Holm, E.B., Nygaard, A., Dakin, J., Hannestad, S., Tram, T., PROSPECT: a profile likelihood code for frequentist cosmological parameter inference. Mon. Not. R. Astron. Soc. 535:4 (2024), 3686–3699 arXiv:2312.02972.
James, F., Roos, M., Minuit - a system for function minimization and analysis of the parameter errors and correlations. Comput. Phys. Comm. 10:6 (1975), 343–367 URL https://www.sciencedirect.com/science/article/pii/0010465575900399.
Galloni, G., Henrot-Versillé, S., Tristram, M., Robust constraints on tensor perturbations from cosmological data: A comparative analysis from Bayesian and frequentist perspectives. Phys. Rev. D, 110(6), 2024, 063511 arXiv:2405.04455.
Moretti, C., Tsedrik, M., Carrilho, P., Pourtsidou, A., Modified gravity and massive neutrinos: constraints from the full shape analysis of BOSS galaxies and forecasts for stage IV surveys. J. Cosmol. Astropart. Phys., 12, 2023, 025 arXiv:2306.09275.
Campeti, P., Özsoy, O., Obata, I., Shiraishi, M., New constraints on axion-gauge field dynamics during inflation from Planck and BICEP/Keck data sets. J. Cosmol. Astropart. Phys., 07(07), 2022, 039 arXiv:2203.03401.
Campeti, P., Komatsu, E., New constraint on the tensor-to-scalar ratio from the Planck and BICEP/Keck array data using the profile likelihood. Astrophys. J., 941(2), 2022, 110 arXiv:2205.05617.
Ade, P.A.R., et al., Planck Collaboration. Planck intermediate results. XVI. Profile likelihoods for cosmological parameters. Astron. Astrophys., 566, 2014, A54 arXiv:1311.1657.
Hannestad, S., Stochastic optimization methods for extracting cosmological parameters from cosmic microwave background radiation power spectra. Phys. Rev. D, 61, 2000, 023002 arXiv:astro-ph/9911330.
Henrot-Versillé, S., Perdereau, O., Plaszczynski, S., d'Orfeuil, B.R., Spinelli, M., Tristram, M., Agnostic cosmology in the CAMEL framework. 2016 arXiv:1607.02964.
Nygaard, A., Holm, E.B., Hannestad, S., Tram, T., CONNECT: a neural network based framework for emulating cosmological observables and cosmological parameter inference. J. Cosmol. Astropart. Phys., 05, 2023, 025 arXiv:2205.15726.
Nygaard, A., Holm, E.B., Hannestad, S., Tram, T., Fast and effortless computation of profile likelihoods using CONNECT. J. Cosmol. Astropart. Phys., 11, 2023, 064 arXiv:2308.06379.
Bringmann, T., Kahlhoefer, F., Schmidt-Hoberg, K., Walia, P., Converting nonrelativistic dark matter to radiation. Phys. Rev. D, 98(2), 2018, 023543 arXiv:1803.03644.
Couchot, F., Henrot-Versillé, S., Perdereau, O., Plaszczynski, S., Rouillé d'Orfeuil, B., Spinelli, M., Tristram, M., Cosmological constraints on the neutrino mass including systematic uncertainties. Astron. Astrophys., 606, 2017, A104 arXiv:1703.10829.
Gonzalez-Morales, A.X., Poltis, R., Sherwin, B.D., Verde, L., Are priors responsible for cosmology favoring additional neutrino species?. 2011 arXiv:1106.5052.
Herold, L., Kamionkowski, M., Revisiting the impact of neutrino mass hierarchies on neutrino mass constraints in light of recent DESI data. Phys. Rev. D, 111(8), 2025, 083518 arXiv:2412.03546.
Henrot-Versille, S., et al. Improved constraint on the primordial gravitational-wave density using recent cosmological data and its impact on cosmic string models. Cl. Quant. Grav., 32(4), 2015, 045003 arXiv:1408.5299.
Capistrano, A.J.S., Nunes, R.C., Cabral, L.A., Lower tensor-to-scalar ratio as possible signature of modified gravity. Phys. Rev. D, 109(12), 2024, 123517 arXiv:2403.13860.
Hu, B., Torrado, J., Searching for primordial localized features with CMB and LSS spectra. Phys. Rev. D, 91(6), 2015, 064039 arXiv:1410.4804.
Avilez, A., Skordis, C., Cosmological constraints on Brans-Dicke theory. Phys. Rev. Lett., 113(1), 2014, 011101 arXiv:1303.4330.
de Cruz Pérez, J., Solà Peracaula, J., Brans–Dicke cosmology mimicking running vacuum. Modern Phys. Lett. A, 33(38), 2018, 1850228 arXiv:1809.03329.
Solà Peracaula, J., Gomez-Valent, A., de Cruz Pérez, J., Moreno-Pulido, C., Brans–Dicke gravity with a cosmological constant smoothes out ΛCDM tensions. Astrophys. J. Lett., 886(1), 2019, L6 arXiv:1909.02554.
Solà Peracaula, J., Gómez-Valent, A., de Cruz Pérez, J., Moreno-Pulido, C., Brans–Dicke cosmology with a Λ-term: a possible solution to ΛCDM tensions. Cl. Quant. Grav., 37(24), 2020, 245003 arXiv:2006.04273.
Joudaki, S., Ferreira, P.G., Lima, N.A., Winther, H.A., Testing gravity on cosmic scales: A case study of Jordan-Brans-Dicke theory. Phys. Rev. D, 105(4), 2022, 043522 arXiv:2010.15278.
Wetterich, C., The cosmon model for an asymptotically vanishing time dependent cosmological ’constant’. Astron. Astrophys. 301 (1995), 321–328 arXiv:hep-th/9408025.
Pettorino, V., Amendola, L., Baccigalupi, C., Quercellini, C., Constraints on coupled dark energy using CMB data from WMAP and SPT. Phys. Rev. D, 86, 2012, 103507 arXiv:1207.3293.
Pettorino, V., Testing modified gravity with Planck: the case of coupled dark energy. Phys. Rev. D, 88, 2013, 063519 arXiv:1305.7457.
Ade, P.A.R., et al., Planck Collaboration. Planck 2015 results. XIV. Dark energy and modified gravity. Astron. Astrophys., 594, 2016, A14 arXiv:1502.01590.
Barros, B.J., Amendola, L., Barreiro, T., Nunes, N.J., Coupled quintessence with a ΛCDM background: removing the σ8 tension. J. Cosmol. Astropart. Phys., 01, 2019, 007 arXiv:1802.09216.
Gómez-Valent, A., Pettorino, V., Amendola, L., Update on coupled dark energy and the H0 tension. Phys. Rev. D, 101(12), 2020, 123513 arXiv:2004.00610.
Gómez-Valent, A., Zheng, Z., Amendola, L., Wetterich, C., Pettorino, V., Coupled and uncoupled early dark energy, massive neutrinos, and the cosmological tensions. Phys. Rev. D, 106(10), 2022, 103522 arXiv:2207.14487.
Goh, L.W.K., Gómez-Valent, A., Pettorino, V., Kilbinger, M., Constraining constant and tomographic coupled dark energy with low-redshift and high-redshift probes. Phys. Rev. D, 107(8), 2023, 083503 arXiv:2211.13588.
Peebles, P.J.E., Ratra, B., Cosmology with a time variable cosmological constant. Astrophys. J. Lett., 325, 1988, L17.
Brax, P., van de Bruck, C., Di Valentino, E., Giarè, W., Trojanowski, S., New insights on ν–DM interactions. Mon. Not. R. Astron. Soc. 527:1 (2023), L122–L126 arXiv:2303.16895.
Brax, P., van de Bruck, C., Di Valentino, E., Giarè, W., Trojanowski, S., Extended analysis of neutrino-dark matter interactions with small-scale CMB experiments. Phys. Dark Univ., 42, 2023, 101321 arXiv:2305.01383.
Anderson, L., et al., BOSS Collaboration. The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample. Mon. Not. R. Astron. Soc. 427:4 (2013), 3435–3467 arXiv:1203.6594.
Ata, M., et al., eBOSS Collaboration. The clustering of the SDSS-IV extended baryon oscillation spectroscopic survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2. Mon. Not. R. Astron. Soc. 473:4 (2018), 4773–4794 arXiv:1705.06373.
Abbott, T.M.C., et al., DES Collaboration. Dark energy survey year 1 results: Measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1. Mon. Not. R. Astron. Soc. 483:4 (2019), 4866–4883 arXiv:1712.06209.
Chan, K.C., et al., DES Collaboration. BAO from angular clustering: Optimization and mitigation of theoretical systematics. Mon. Not. R. Astron. Soc. 480:3 (2018), 3031–3051 arXiv:1801.04390.
Ruggeri, R., Blake, C., How accurately can we measure the baryon acoustic oscillation feature?. Mon. Not. R. Astron. Soc. 498:3 (2020), 3744–3757 arXiv:1909.13011.
Cuceu, A., Font-Ribera, A., Joachimi, B., Bayesian methods for fitting baryon acoustic oscillations in the Lyman-α forest. J. Cosmol. Astropart. Phys., 07, 2020, 035 arXiv:2004.02761.
Sanchez, A.G., Arguments against using h−1Mpc units in observational cosmology. Phys. Rev. D, 102(12), 2020, 123511 arXiv:2002.07829.
Secco, L.F., Karwal, T., Hu, W., Krause, E., Role of the Hubble scale in the weak lensing versus CMB tension. Phys. Rev. D, 107(8), 2023, 083532 arXiv:2209.12997.
Forconi, M., Favale, A., Gómez-Valent, A., Illustrating the consequences of a misuse of σ8 in cosmology. 2025 arXiv:2501.11571.
Poulin, V., Smith, T.L., Calderón, R., Simon, T., Implications of the cosmic calibration tension beyond H0 and the synergy between early- and late-time new physics. Phys. Rev. D, 111(8), 2025, 083552 arXiv:2407.18292.
Pedrotti, D., Jiang, J.-Q., Escamilla, L.A., da Costa, S.S., Vagnozzi, S., Multidimensionality of the Hubble tension: The roles of Ωm and ωc. Phys. Rev. D, 111(2), 2025, 023506 arXiv:2408.04530.
Kamionkowski, M., Riess, A.G., The Hubble tension and early dark energy. Ann. Rev. Nucl. Part. Sci. 73 (2023), 153–180 arXiv:2211.04492.
Poulin, V., Smith, T.L., Karwal, T., The ups and downs of early dark energy solutions to the Hubble tension: A review of models, hints and constraints circa 2023. Phys. Dark Univ., 42, 2023, 101348 arXiv:2302.09032.
McDonough, E., Hill, J.C., Ivanov, M.M., La Posta, A., Toomey, M.W., Observational constraints on early dark energy. Internat. J. Modern Phys. D, 33(11), 2024, 2430003 arXiv:2310.19899.
Albrecht, A., Skordis, C., Phenomenology of a realistic accelerating universe using only Planck scale physics. Phys. Rev. Lett. 84 (2000), 2076–2079 arXiv:astro-ph/9908085.
Doran, M., Lilley, M.J., Schwindt, J., Wetterich, C., Quintessence and the separation of CMB peaks. Astrophys. J. 559 (2001), 501–506 arXiv:astro-ph/0012139.
Wetterich, C., Phenomenological parameterization of quintessence. Phys. Lett. B 594 (2004), 17–22 arXiv:astro-ph/0403289.
Doran, M., Robbers, G., Early dark energy cosmologies. J. Cosmol. Astropart. Phys., 06, 2006, 026 arXiv:astro-ph/0601544.
Kamionkowski, M., Pradler, J., Walker, D.G.E., Dark energy from the string axiverse. Phys. Rev. Lett., 113(25), 2014, 251302 arXiv:1409.0549.
Karwal, T., Kamionkowski, M., Dark energy at early times, the Hubble parameter, and the string axiverse. Phys. Rev. D, 94(10), 2016, 103523 arXiv:1608.01309.
Poulin, V., Smith, T.L., Grin, D., Karwal, T., Kamionkowski, M., Cosmological implications of ultralight axionlike fields. Phys. Rev. D, 98(8), 2018, 083525 arXiv:1806.10608.
Poulin, V., Smith, T.L., Karwal, T., Kamionkowski, M., Early dark energy can resolve the Hubble tension. Phys. Rev. Lett., 122(22), 2019, 221301 arXiv:1811.04083.
Smith, T.L., Poulin, V., Amin, M.A., Oscillating scalar fields and the Hubble tension: a resolution with novel signatures. Phys. Rev. D, 101(6), 2020, 063523 arXiv:1908.06995.
Khalife, A.R., Zanjani, M.B., Galli, S., Günther, S., Lesgourgues, J., Benabed, K., Review of Hubble tension solutions with new SH0ES and SPT-3G data. J. Cosmol. Astropart. Phys., 04, 2024, 059 arXiv:2312.09814.
Hill, J.C., McDonough, E., Toomey, M.W., Alexander, S., Early dark energy does not restore cosmological concordance. Phys. Rev. D, 102(4), 2020, 043507 arXiv:2003.07355.
Poulin, V., Smith, T.L., Bartlett, A., Dark energy at early times and ACT data: A larger Hubble constant without late-time priors. Phys. Rev. D, 104(12), 2021, 123550 arXiv:2109.06229.
McDonough, E., Lin, M.-X., Hill, J.C., Hu, W., Zhou, S., Early dark sector, the Hubble tension, and the swampland. Phys. Rev. D, 106(4), 2022, 043525 arXiv:2112.09128.
Alexander, S., McDonough, E., Axion-dilaton destabilization and the Hubble tension. Phys. Lett. B, 797, 2019, 134830 arXiv:1904.08912.
Cicoli, M., Licheri, M., Mahanta, R., McDonough, E., Pedro, F.G., Scalisi, M., Early dark energy in type IIB string theory. JHEP, 06, 2023, 052 arXiv:2303.03414.
McDonough, E., Scalisi, M., Towards early dark energy in string theory. JHEP, 10, 2023, 118 arXiv:2209.00011.
Kappl, R., Nilles, H.P., Winkler, M.W., Modulated natural inflation. Phys. Lett. B 753 (2016), 653–659 arXiv:1511.05560.
Yin, L., Reducing the H0 tension with exponential acoustic dark energy. Eur. Phys. J. C, 82(1), 2022, 78 arXiv:2012.13917.
Ye, G., Piao, Y.-S., Is the Hubble tension a hint of AdS phase around recombination?. Phys. Rev. D, 101(8), 2020, 083507 arXiv:2001.02451.
Adil, A., Albrecht, A., Knox, L., Quintessential cosmological tensions. Phys. Rev. D, 107(6), 2023, 063521 arXiv:2207.10235.
Agrawal, P., Cyr-Racine, F.-Y., Pinner, D., Randall, L., Rock ‘n’ roll solutions to the Hubble tension. Phys. Dark Univ., 42, 2023, 101347 arXiv:1904.01016.
Lin, M.-X., Benevento, G., Hu, W., Raveri, M., Acoustic dark energy: Potential conversion of the hubble tension. Phys. Rev. D, 100(6), 2019, 063542 arXiv:1905.12618.
Jackiw, R., Pi, S.Y., Chern-Simons modification of general relativity. Phys. Rev. D, 68, 2003, 104012 arXiv:gr-qc/0308071.
Duncan, M.J., Kaloper, N., Olive, K.A., Axion hair and dynamical torsion from anomalies. Nuclear Phys. B 387 (1992), 215–235.
Basilakos, S., Mavromatos, N.E., Solà Peracaula, J., Gravitational and chiral anomalies in the running vacuum universe and matter-antimatter asymmetry. Phys. Rev. D, 101(4), 2020, 045001 arXiv:1907.04890.
Basilakos, S., Mavromatos, N.E., Solà Peracaula, J., Quantum anomalies in string-inspired running vacuum universe: Inflation and axion dark matter. Phys. Lett. B, 803, 2020, 135342 arXiv:2001.03465.
Mavromatos, N.E., Solà Peracaula, J., Stringy-running-vacuum-model inflation: from primordial gravitational waves and stiff axion matter to dynamical dark energy. Eur. Phys. J. ST 230:9 (2021), 2077–2110 arXiv:2012.07971.
Guendelman, E., Herrera, R., Benisty, D., Unifying inflation with early and late dark energy with multiple fields: Spontaneously broken scale invariant two measures theory. Phys. Rev. D, 105(12), 2022, 124035 arXiv:2201.06470.
Perico, E.L.D., Lima, J.A.S., Basilakos, S., Sola, J., Complete cosmic history with a dynamical Λ=Λ(H) term. Phys. Rev. D, 88, 2013, 063531 arXiv:1306.0591.
Lima, J.A.S., Basilakos, S., Sola, J., Expansion history with decaying vacuum: A complete cosmological scenario. Mon. Not. R. Astron. Soc. 431 (2013), 923–929 arXiv:1209.2802.
Solà, J., Gómez-Valent, A., The Λ̄CDM cosmology: From inflation to dark energy through running Λ. Internat. J. Modern Phys. D, 24, 2015, 1541003 arXiv:1501.03832.
Solà Peracaula, J., Yu, H., Particle and entropy production in the running vacuum universe. Gen. Relativity Gravitation, 52(2), 2020, 17 arXiv:1910.01638.
Mavromatos, N.E., Solà Peracaula, J., Inflationary physics and trans-Planckian conjecture in the stringy running vacuum model: from the phantom vacuum to the true vacuum. Eur. Phys. J. Plus, 136(11), 2021, 1152 arXiv:2105.02659.
Svrcek, P., Witten, E., Axions in string theory. JHEP, 06, 2006, 051 arXiv:hep-th/0605206.
Mavromatos, N.E., Dorlis, P., Vlachos, S.-N., Torsion-induced axions in string theory, quantum gravity and the cosmological tensions. Workshop on the Standard Model and beyond, 2024 arXiv:2404.18741.
McAllister, L., Silverstein, E., Westphal, A., Gravity waves and linear inflation from axion monodromy. Phys. Rev. D, 82, 2010, 046003 arXiv:0808.0706.
Gómez-Valent, A., Mavromatos, N.E., Solà Peracaula, J., Stringy running vacuum model and current tensions in cosmology. Cl. Quant. Grav., 41(1), 2024, 015026 arXiv:2305.15774.
Gomez-Valent, A., Solà Peracaula, J., Phantom matter: A challenging solution to the cosmological tensions. Astrophys. J., 975(1), 2024, 64 arXiv:2404.18845.
Kallosh, R., Linde, A., Universality class in conformal inflation. J. Cosmol. Astropart. Phys., 07, 2013, 002 arXiv:1306.5220.
Kallosh, R., Linde, A., Roest, D., Superconformal inflationary α-attractors. JHEP, 11, 2013, 198 arXiv:1311.0472.
Galante, M., Kallosh, R., Linde, A., Roest, D., Unity of cosmological inflation attractors. Phys. Rev. Lett., 114(14), 2015, 141302 arXiv:1412.3797.
Braglia, M., Emond, W.T., Finelli, F., Gumrukcuoglu, A.E., Koyama, K., Unified framework for early dark energy from α-attractors. Phys. Rev. D, 102(8), 2020, 083513 arXiv:2005.14053.
Brissenden, L., Dimopoulos, K., Sánchez López, S., Non-oscillating early dark energy and quintessence from α-attractors. Astropart. Phys., 157, 2024, 102925 arXiv:2301.03572.
Chowdhury, D., Tasinato, G., Zavala, I., Dark energy, D-branes and pulsar timing arrays. J. Cosmol. Astropart. Phys., 11, 2023, 090 arXiv:2307.01188.
Ramadan, O.F., Karwal, T., Sakstein, J., Attractive proposal for resolving the Hubble tension: Dynamical attractors that unify early and late dark energy. Phys. Rev. D, 109(6), 2024, 063525 arXiv:2309.08082.
Copeland, E.J., Liddle, A.R., Wands, D., Exponential potentials and cosmological scaling solutions. Phys. Rev. D 57 (1998), 4686–4690 arXiv:gr-qc/9711068.
Gómez-Valent, A., Zheng, Z., Amendola, L., Pettorino, V., Wetterich, C., Early dark energy in the pre- and postrecombination epochs. Phys. Rev. D, 104(8), 2021, 083536 arXiv:2107.11065.
Pettorino, V., Amendola, L., Wetterich, C., How early is early dark energy?. Phys. Rev. D, 87, 2013, 083009 arXiv:1301.5279.
Copeland, E.J., Moss, A., Sevillano Muñoz, S., White, J.M.M., Scaling solutions as early dark energy resolutions to the Hubble tension. J. Cosmol. Astropart. Phys., 05, 2024, 078 arXiv:2309.15295.
Karwal, T., Raveri, M., Jain, B., Khoury, J., Trodden, M., Chameleon early dark energy and the Hubble tension. Phys. Rev. D, 105(6), 2022, 063535 arXiv:2106.13290.
Lin, M.-X., McDonough, E., Hill, J.C., Hu, W., Dark matter trigger for early dark energy coincidence. Phys. Rev. D, 107(10), 2023, 103523 arXiv:2212.08098.
Garcia-Arroyo, G., Ureña-López, L.A., Vázquez, J.A., Interacting scalar fields: Dark matter and early dark energy. Phys. Rev. D, 110(2), 2024, 023529 arXiv:2402.08815.
Talebian, A., Early dark energy and dark photon dark matter from waterfall symmetry breaking. Phys. Rev. D, 109(12), 2024, 123526 arXiv:2312.08254.
Berghaus, K.V., Karwal, T., Thermal friction as a solution to the hubble tension. Phys. Rev. D, 101(8), 2020, 083537 arXiv:1911.06281.
Sakstein, J., Trodden, M., Early dark energy from massive neutrinos as a natural resolution of the hubble tension. Phys. Rev. Lett., 124(16), 2020, 161301 arXiv:1911.11760.
Carrillo González, M., Liang, Q., Sakstein, J., Trodden, M., Neutrino-assisted early dark energy: Theory and cosmology. J. Cosmol. Astropart. Phys., 04, 2021, 063 arXiv:2011.09895.
de Souza, D.H.F., Rosenfeld, R., Can neutrino-assisted early dark energy models ameliorate the H0 tension in a natural way?. Phys. Rev. D, 108(8), 2023, 083512 arXiv:2302.04644.
Carrillo González, M., Liang, Q., Sakstein, J., Trodden, M., Neutrino-assisted early dark energy is a natural resolution of the hubble tension. 2023 arXiv:2302.09091.
Li, X., Shafieloo, A., A simple phenomenological emergent dark energy model can resolve the hubble tension. Astrophys. J. Lett., 883(1), 2019, L3 arXiv:1906.08275.
García, L.Á., Castañeda, L., Tejeiro, J.M., A novel early dark energy model. New Astron., 84, 2021, 101503 arXiv:2009.07357.
Benaoum, H.B., García, L.Á., Castañeda, L., Early dark energy induced by non-linear electrodynamics. 2023 arXiv:2307.05917.
Li, X., Shafieloo, A., Evidence for emergent dark energy. Astrophys. J., 902(1), 2020, 58 arXiv:2001.05103.
Nojiri, S., Odintsov, S.D., Saez-Chillon Gomez, D., Sharov, G.S., Modeling and testing the equation of state for (Early) dark energy. Phys. Dark Univ., 32, 2021, 100837 arXiv:2103.05304.
Sabla, V.I., Caldwell, R.R., Microphysics of early dark energy. Phys. Rev. D, 106(6), 2022, 063526 arXiv:2202.08291.
Moshafi, H., Firouzjahi, H., Talebian, A., Multiple transitions in vacuum dark energy and H 0 tension. Astrophys. J., 940(2), 2022, 121 arXiv:2208.05583.
Ross, A.J., Samushia, L., Howlett, C., Percival, W.J., Burden, A., Manera, M., The clustering of the SDSS DR7 main galaxy sample – I. A 4 per cent distance measure at z=0.15. Mon. Not. R. Astron. Soc. 449:1 (2015), 835–847 arXiv:1409.3242.
Mueller, E.-M., Percival, W., Linder, E., Alam, S., Zhao, G.-B., Sánchez, A.G., Beutler, F., Brinkmann, J., The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: constraining modified gravity. Mon. Not. R. Astron. Soc. 475:2 (2018), 2122–2131 arXiv:1612.00812.
Riess, A.G., et al. Milky way cepheid standards for measuring cosmic distances and application to gaia DR2: Implications for the hubble constant. Astrophys. J., 861(2), 2018, 126 arXiv:1804.10655.
Vagnozzi, S., Consistency tests of ΛCDM from the early integrated Sachs-Wolfe effect: Implications for early-time new physics and the Hubble tension. Phys. Rev. D, 104(6), 2021, 063524 arXiv:2105.10425.
Ye, G., Hu, B., Piao, Y.-S., Implication of the Hubble tension for the primordial universe in light of recent cosmological data. Phys. Rev. D, 104(6), 2021, 063510 arXiv:2103.09729.
Pedreira, I.d.O.C., Benetti, M., Ferreira, E.G.M., Graef, L.L., Herold, L., Visual tool for assessing tension-resolving models in the H0-σ8 plane. Phys. Rev. D, 109(10), 2024, 103525 arXiv:2311.04977.
Gil-Marín, H., et al., BOSS Collaboration. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies. Mon. Not. R. Astron. Soc. 460:4 (2016), 4188–4209 arXiv:1509.06386.
Gil-Marín, H., et al., BOSS Collaboration. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies. Mon. Not. R. Astron. Soc. 460:4 (2016), 4210–4219 arXiv:1509.06373.
de Sainte Agathe, V., et al., eBOSS Collaboration. Baryon acoustic oscillations at z=2.34 from the correlations of lyα absorption in eBOSS DR14. Astron. Astrophys., 629, 2019, A85 arXiv:1904.03400.
Ivanov, M.M., McDonough, E., Hill, J.C., Simonović, M., Toomey, M.W., Alexander, S., Zaldarriaga, M., Constraining early dark energy with large-scale structure. Phys. Rev. D, 102(10), 2020, 103502 arXiv:2006.11235.
D'Amico, G., Senatore, L., Zhang, P., Zheng, H., The hubble tension in light of the full-shape analysis of large-scale structure data. J. Cosmol. Astropart. Phys., 05, 2021, 072 arXiv:2006.12420.
Beutler, F., McDonald, P., Unified galaxy power spectrum measurements from 6dFGS, BOSS, and eBOSS. J. Cosmol. Astropart. Phys., 11, 2021, 031 arXiv:2106.06324.
Piras, D., Herold, L., Lucie-Smith, L., Komatsu, E., ΛCDM and early dark energy in latent space: A data-driven parametrization of the CMB temperature power spectrum. Phys. Rev. D, 111(8), 2025, 083537 arXiv:2502.09810.
Hill, J.C., et al. Atacama Cosmology Telescope: Constraints on prerecombination early dark energy. Phys. Rev. D, 105(12), 2022, 123536 arXiv:2109.04451.
La Posta, A., Louis, T., Garrido, X., Hill, J.C., Constraints on prerecombination early dark energy from SPT-3G public data. Phys. Rev. D, 105(8), 2022, 083519 arXiv:2112.10754.
Smith, T.L., Lucca, M., Poulin, V., Abellan, G.F., Balkenhol, L., Benabed, K., Galli, S., Murgia, R., Hints of early dark energy in Planck, SPT, and ACT data: New physics or systematics?. Phys. Rev. D, 106(4), 2022, 043526 arXiv:2202.09379.
Jiang, J.-Q., Piao, Y.-S., Toward early dark energy and ns=1 with Planck, ACT, and SPT observations. Phys. Rev. D, 105(10), 2022, 103514 arXiv:2202.13379.
Benevento, G., Hu, W., Raveri, M., Can late dark energy transitions raise the hubble constant?. Phys. Rev. D, 101(10), 2020, 103517 arXiv:2002.11707.
Camarena, D., Marra, V., On the use of the local prior on the absolute magnitude of type Ia supernovae in cosmological inference. Mon. Not. R. Astron. Soc. 504 (2021), 5164–5171 arXiv:2101.08641.
Efstathiou, G., To H0 or not to H0?. Mon. Not. R. Astron. Soc. 505:3 (2021), 3866–3872 arXiv:2103.08723.
Efstathiou, G., Gratton, S., A detailed description of the CamSpec likelihood pipeline and a reanalysis of the Planck high frequency maps. 2019 arXiv:1910.00483.
Akrami, Y., et al., Planck Collaboration. Planck intermediate results. VII. Joint Planck LFI and HFI data processing. Astron. Astrophys., 643, 2020, A42 arXiv:2007.04997.
Jiang, J.-Q., Ye, G., Piao, Y.-S., Impact of the Hubble tension on the r- ns contour. Phys. Lett. B, 851, 2024, 138588 arXiv:2303.12345.
Liu, W., Zhan, H., Gong, Y., Wang, X., Can early dark energy be probed by the high-redshift galaxy abundance?. Mon. Not. R. Astron. Soc. 533:1 (2024), 860–871 arXiv:2402.14339.
Boylan-Kolchin, M., Weisz, D.R., Uncertain times: the redshift–time relation from cosmology and stars. Mon. Not. R. Astron. Soc. 505:2 (2021), 2764–2783 arXiv:2103.15825.
Diego-Palazuelos, P., et al. Cosmic birefringence from Planck public release 4. 56th Rencontres de Moriond on Cosmology, 2022 arXiv:2203.04830.
Murai, K., Naokawa, F., Namikawa, T., Komatsu, E., Isotropic cosmic birefringence from early dark energy. Phys. Rev. D, 107(4), 2023, L041302 arXiv:2209.07804.
Eskilt, J.R., Herold, L., Komatsu, E., Murai, K., Namikawa, T., Naokawa, F., Constraints on early dark energy from isotropic cosmic birefringence. Phys. Rev. Lett., 131(12), 2023, 121001 arXiv:2303.15369.
Yin, L., Kochappan, J., Ghosh, T., Lee, B.-H., Is cosmic birefringence model-dependent?. J. Cosmol. Astropart. Phys., 10, 2023, 007 arXiv:2305.07937.
Hart, L., Chluba, J., Using the cosmological recombination radiation to probe early dark energy and fundamental constant variations. Mon. Not. R. Astron. Soc. 519:3 (2023), 3664–3680 arXiv:2209.12290.
Rudelius, T., Constraints on early dark energy from the axion weak gravity conjecture. J. Cosmol. Astropart. Phys., 01, 2023, 014 arXiv:2203.05575.
Hebecker, A., Mangat, P., Theisen, S., Witkowski, L.T., Can gravitational instantons really constrain axion inflation?. JHEP, 02, 2017, 097 arXiv:1607.06814.
Heidenreich, B., Reece, M., Rudelius, T., Sharpening the weak gravity conjecture with dimensional reduction. JHEP, 02, 2016, 140 arXiv:1509.06374.
Jiang, J.-Q., Ye, G., Piao, Y.-S., Return of Harrison–Zeldovich spectrum in light of recent cosmological tensions. Mon. Not. R. Astron. Soc. 527:1 (2023), L54–L59 arXiv:2210.06125.
Peng, Z.-Y., Piao, Y.-S., Testing the ns-H0 scaling relation with Planck-independent CMB data. Phys. Rev. D, 109(2), 2024, 023519 arXiv:2308.01012.
Wang, H., Ye, G., Jiang, J.-Q., Piao, Y.-S., Towards primordial gravitational waves and ns=1 in light of BICEP/Keck, DESI BAO and Hubble tension. 2024 arXiv:2409.17879.
Kallosh, R., Linde, A., Hybrid cosmological attractors. Phys. Rev. D, 106(2), 2022, 023522 arXiv:2204.02425.
Ye, G., Jiang, J.-Q., Piao, Y.-S., Toward inflation with ns=1 in light of the Hubble tension and implications for primordial gravitational waves. Phys. Rev. D, 106(10), 2022, 103528 arXiv:2205.02478.
Niedermann, F., Sloth, M.S., New early dark energy as a solution to the H0 and S8 tensions. 2023 arXiv:2307.03481.
Niedermann, F., Sloth, M.S., New early dark energy. Phys. Rev. D, 103(4), 2021, L041303 arXiv:1910.10739.
Freese, K., Winkler, M.W., Chain early dark energy: A proposal for solving the Hubble tension and explaining today's dark energy. Phys. Rev. D, 104(8), 2021, 083533 arXiv:2102.13655.
Cruz, J.S., Niedermann, F., Sloth, M.S., Cold new early dark energy pulls the trigger on the H 0 and S 8 tensions: a simultaneous solution to both tensions without new ingredients. J. Cosmol. Astropart. Phys., 11, 2023, 033 arXiv:2305.08895.
Niedermann, F., Sloth, M.S., New early dark energy is compatible with current LSS data. Phys. Rev. D, 103(10), 2021, 103537 arXiv:2009.00006.
Haridasu, B.S., Khoraminezhad, H., Viel, M., Scrutinizing early dark energy models through CMB lensing. 2022 arXiv:2212.09136.
Cruz, J.S., Niedermann, F., Sloth, M.S., A grounded perspective on new early dark energy using ACT, SPT, and BICEP/Keck. J. Cosmol. Astropart. Phys., 02, 2023, 041 arXiv:2209.02708.
Allali, I.J., Hertzberg, M.P., Rompineve, F., Dark sector to restore cosmological concordance. Phys. Rev. D, 104(8), 2021, L081303 arXiv:2104.12798.
Aloni, D., Berlin, A., Joseph, M., Schmaltz, M., Weiner, N., A step in understanding the Hubble tension. Phys. Rev. D, 105(12), 2022, 123516 arXiv:2111.00014.
Niedermann, F., Sloth, M.S., Hot new early dark energy. Phys. Rev. D, 105(6), 2022, 063509 arXiv:2112.00770.
Niedermann, F., Sloth, M.S., Hot new early dark energy: Towards a unified dark sector of neutrinos, dark energy and dark matter. Phys. Lett. B, 835, 2022, 137555 arXiv:2112.00759.
Garny, M., Niedermann, F., Rubira, H., Sloth, M.S., Hot new early dark energy bridging cosmic gaps: Supercooled phase transition reconciles stepped dark radiation solutions to the Hubble tension with BBN. Phys. Rev. D, 110(2), 2024, 023531 arXiv:2404.07256.
Schöneberg, N., Franco Abellán, G., A step in the right direction? Analyzing the Wess Zumino Dark Radiation solution to the Hubble tension. J. Cosmol. Astropart. Phys., 12, 2022, 001 arXiv:2206.11276.
Berlin, A., Blinov, N., Thermal dark matter below an MeV. Phys. Rev. Lett., 120(2), 2018, 021801 arXiv:1706.07046.
Berbig, M., Jana, S., Trautner, A., The Hubble tension and a renormalizable model of gauged neutrino self-interactions. Phys. Rev. D, 102(11), 2020, 115008 arXiv:2004.13039.
Escudero, M., Schwetz, T., Terol-Calvo, J., A seesaw model for large neutrino masses in concordance with cosmology. JHEP, 02, 2023, 142 arXiv:2211.01729.
Addendum: JHEP, 06, 2024, 119.
Aloni, D., Joseph, M., Schmaltz, M., Weiner, N., Dark radiation from neutrino mixing after big bang nucleosynthesis. Phys. Rev. Lett., 131(22), 2023, 221001 arXiv:2301.10792.
Fischler, W., Meyers, J., Dark radiation emerging after big bang nucleosynthesis?. Phys. Rev. D, 83, 2011, 063520 arXiv:1011.3501.
Hooper, D., Queiroz, F.S., Gnedin, N.Y., Non-thermal dark matter mimicking an additional neutrino species in the early universe. Phys. Rev. D, 85, 2012, 063513 arXiv:1111.6599.
Bjaelde, O.E., Das, S., Moss, A., Origin of delta N_eff as a result of an interaction between dark radiation and dark matter. J. Cosmol. Astropart. Phys., 10, 2012, 017 arXiv:1205.0553.
Choi, K., Choi, K.-Y., Shin, C.S., Dark radiation and small-scale structure problems with decaying particles. Phys. Rev. D, 86, 2012, 083529 arXiv:1208.2496.
Nygaard, A., Holm, E.B., Tram, T., Hannestad, S., Decaying dark matter and the hubble tension. 2023 arXiv:2307.00418.
Gariazzo, S., Mena, O., On the dark radiation role in the Hubble constant tension. 2023 arXiv:2306.15067.
Steigman, G., Schramm, D.N., Gunn, J.E., Cosmological limits to the number of massive leptons. Phys. Lett. B 66 (1977), 202–204.
Archidiacono, M., Giusarma, E., Hannestad, S., Mena, O., Cosmic dark radiation and neutrinos. Adv. High Energy Phys., 2013, 2013, 191047 arXiv:1307.0637.
Archidiacono, M., Gariazzo, S., Two sides of the same coin: Sterile neutrinos and dark radiation, status and perspectives. Universe, 8(3), 2022, 175 arXiv:2201.10319.
Akita, K., Yamaguchi, M., A precision calculation of relic neutrino decoupling. J. Cosmol. Astropart. Phys., 08, 2020, 012 arXiv:2005.07047.
Froustey, J., Pitrou, C., Volpe, M.C., Neutrino decoupling including flavour oscillations and primordial nucleosynthesis. J. Cosmol. Astropart. Phys., 12, 2020, 015 arXiv:2008.01074.
Bennett, J.J., Buldgen, G., De Salas, P.F., Drewes, M., Gariazzo, S., Pastor, S., Wong, Y.Y.Y., Towards a precision calculation of Neff in the standard model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED. J. Cosmol. Astropart. Phys., 04, 2021, 073 arXiv:2012.02726.
Drewes, M., Georis, Y., Klasen, M., Wiggering, L.P., Wong, Y.Y.Y., Towards a precision calculation of N eff in the standard model. Part III. Improved estimate of NLO contributions to the collision integral. J. Cosmol. Astropart. Phys., 06, 2024, 032 arXiv:2402.18481.
García, L., Tejeiro, J., Castañeda, L., Primordial nucleosynthesis in the presence of sterile neutrinos. Bracco, A., Nappi, E., (eds.) Proc. Int. Sch. Phys. Fermi, 178, 2011, 309–316.
Anchordoqui, L.A., Goldberg, H., Neutrino cosmology after WMAP 7-year data and LHC first Z’ bounds. Phys. Rev. Lett., 108, 2012, 081805 arXiv:1111.7264.
Anchordoqui, L.A., Goldberg, H., Steigman, G., Right-handed neutrinos as the dark radiation: Status and forecasts for the LHC. Phys. Lett. B 718 (2013), 1162–1165 arXiv:1211.0186.
Lin, W., Visinelli, L., Xu, D., Yanagida, T.T., Neutrino astronomy as a probe of physics beyond the standard model: Decay of sub-MeV B-L gauge boson dark matter. Phys. Rev. D, 106(7), 2022, 075011 arXiv:2202.04496.
Arias, P., Cadamuro, D., Goodsell, M., Jaeckel, J., Redondo, J., Ringwald, A., WISPy cold dark matter. J. Cosmol. Astropart. Phys., 06, 2012, 013 arXiv:1201.5902.
Semertzidis, Y.K., Youn, S., Axion dark matter: How to see it?. Sci. Adv., 8(8), 2022, abm9928 arXiv:2104.14831.
Chadha-Day, F., Ellis, J., Marsh, D.J.E., Axion dark matter: What is it and why now?. Sci. Adv., 8(8), 2022, abj3618 arXiv:2105.01406.
Green, D., Guo, Y., Wallisch, B., Cosmological implications of axion-matter couplings. J. Cosmol. Astropart. Phys., 02(02), 2022, 019 arXiv:2109.12088.
O'Hare, C.A.J., Cosmology of axion dark matter. PoS, COSMICWISPers, 2024, 040 arXiv:2403.17697.
Caloni, L., Gerbino, M., Lattanzi, M., Visinelli, L., Novel cosmological bounds on thermally-produced axion-like particles. J. Cosmol. Astropart. Phys., 09, 2022, 021 arXiv:2205.01637.
D'Eramo, F., Di Valentino, E., Giarè, W., Hajkarim, F., Melchiorri, A., Mena, O., Renzi, F., Yun, S., Cosmological bound on the QCD axion mass, redux. J. Cosmol. Astropart. Phys., 09, 2022, 022 arXiv:2205.07849.
Cline, J.M., Liu, Z., Xue, W., Millicharged atomic dark matter. Phys. Rev. D, 85, 2012, 101302 arXiv:1201.4858.
Fan, J., Katz, A., Randall, L., Reece, M., Double-disk dark matter. Phys. Dark Univ. 2 (2013), 139–156 arXiv:1303.1521.
Vogel, H., Redondo, J., Dark radiation constraints on minicharged particles in models with a hidden photon. J. Cosmol. Astropart. Phys., 02, 2014, 029 arXiv:1311.2600.
Petraki, K., Pearce, L., Kusenko, A., Self-interacting asymmetric dark matter coupled to a light massive dark photon. J. Cosmol. Astropart. Phys., 07, 2014, 039 arXiv:1403.1077.
Foot, R., Vagnozzi, S., Dissipative hidden sector dark matter. Phys. Rev. D, 91, 2015, 023512 arXiv:1409.7174.
Foot, R., Vagnozzi, S., Diurnal modulation signal from dissipative hidden sector dark matter. Phys. Lett. B 748 (2015), 61–66 arXiv:1412.0762.
Foot, R., Vagnozzi, S., Solving the small-scale structure puzzles with dissipative dark matter. J. Cosmol. Astropart. Phys., 07, 2016, 013 arXiv:1602.02467.
Flambaum, V.V., Samsonov, I.B., Ultralight dark photon as a model for early universe dark matter. Phys. Rev. D, 100(6), 2019, 063541 arXiv:1908.09432.
Anchordoqui, L.A., Perez Bergliaffa, S.E., Hot thermal universe endowed with massive dark vector fields and the hubble tension. Phys. Rev. D, 100(12), 2019, 123525 arXiv:1910.05860.
Steigman, G., Equivalent neutrinos, light WIMPs, and the chimera of dark radiation. Phys. Rev. D, 87(10), 2013, 103517 arXiv:1303.0049.
Brust, C., Kaplan, D.E., Walters, M.T., New light species and the CMB. JHEP, 12, 2013, 058 arXiv:1303.5379.
Nunes, R.C., Bonilla, A., Probing the properties of relic neutrinos using the cosmic microwave background, the Hubble Space Telescope and galaxy clusters. Mon. Not. R. Astron. Soc. 473:4 (2018), 4404–4409 arXiv:1710.10264.
Bonilla, A., Nunes, R.C., Abreu, E.M.C., Forecast on lepton asymmetry from future CMB experiments. Mon. Not. R. Astron. Soc. 485:2 (2019), 2486–2491 arXiv:1810.06356.
Arzoumanian, Z., et al., NANOGrav Collaboration. The NANOGrav 12.5 yr data set: Search for an isotropic stochastic gravitational-wave background. Astrophys. J. Lett., 905(2), 2020, L34 arXiv:2009.04496.
Goncharov, B., et al. On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the parkes pulsar timing array. Astrophys. J. Lett., 917(2), 2021, L19 arXiv:2107.12112.
Chen, S., et al., EPTA Collaboration. Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: inferences in the stochastic gravitational-wave background search. Mon. Not. R. Astron. Soc. 508:4 (2021), 4970–4993 arXiv:2110.13184.
Antoniadis, J., et al. The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Mon. Not. R. Astron. Soc. 510:4 (2022), 4873–4887 arXiv:2201.03980.
Allen, B., Romano, J.D., Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Phys. Rev. D, 59, 1999, 102001 arXiv:gr-qc/9710117.
Smith, T.L., Pierpaoli, E., Kamionkowski, M., A new cosmic microwave background constraint to primordial gravitational waves. Phys. Rev. Lett., 97, 2006, 021301 arXiv:astro-ph/0603144.
Boyle, L.A., Buonanno, A., Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: Implications for the early Universe. Phys. Rev. D, 78, 2008, 043531 arXiv:0708.2279.
Kuroyanagi, S., Takahashi, T., Yokoyama, S., Blue-tilted tensor spectrum and thermal history of the universe. J. Cosmol. Astropart. Phys., 02, 2015, 003 arXiv:1407.4785.
Cabass, G., Pagano, L., Salvati, L., Gerbino, M., Giusarma, E., Melchiorri, A., Updated constraints and forecasts on primordial tensor modes. Phys. Rev. D, 93(6), 2016, 063508 arXiv:1511.05146.
Ben-Dayan, I., Keating, B., Leon, D., Wolfson, I., Constraints on scalar and tensor spectra from Neff. J. Cosmol. Astropart. Phys., 06, 2019, 007 arXiv:1903.11843.
Aich, M., Ma, Y.-Z., Dai, W.-M., Xia, J.-Q., How much primordial tensor mode is allowed?. Phys. Rev. D, 101(6), 2020, 063536 arXiv:1912.00995.
Giarè, W., Forconi, M., Di Valentino, E., Melchiorri, A., Towards a reliable calculation of relic radiation from primordial gravitational waves. Mon. Not. R. Astron. Soc., 520, 2023, 2 arXiv:2210.14159.
Afzal, A., et al., NANOGrav Collaboration. The NANOGrav 15 yr data set: Search for signals from new physics. Astrophys. J. Lett., 951(1), 2023, L11 arXiv:2306.16219.
Erratum: Astrophys. J. Lett., 971, 2024 L27.
Erratum: Astrophys. J., 971, 2024 L27.
Benetti, M., Graef, L.L., Vagnozzi, S., Primordial gravitational waves from NANOGrav: A broken power-law approach. Phys. Rev. D, 105(4), 2022, 043520 arXiv:2111.04758.
Vagnozzi, S., Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments. JHEAp 39 (2023), 81–98 arXiv:2306.16912.
Kawasaki, M., Kohri, K., Sugiyama, N., Cosmological constraints on late time entropy production. Phys. Rev. Lett., 82, 1999, 4168 arXiv:astro-ph/9811437.
Gelmini, G., Palomares-Ruiz, S., Pascoli, S., Low reheating temperature and the visible sterile neutrino. Phys. Rev. Lett., 93, 2004, 081302 arXiv:astro-ph/0403323.
de Salas, P.F., Lattanzi, M., Mangano, G., Miele, G., Pastor, S., Pisanti, O., Bounds on very low reheating scenarios after Planck. Phys. Rev. D, 92(12), 2015, 123534 arXiv:1511.00672.
Gerbino, M., Freese, K., Vagnozzi, S., Lattanzi, M., Mena, O., Giusarma, E., Ho, S., Impact of neutrino properties on the estimation of inflationary parameters from current and future observations. Phys. Rev. D, 95(4), 2017, 043512 arXiv:1610.08830.
Hou, Z., Keisler, R., Knox, L., Millea, M., Reichardt, C., How massless neutrinos affect the cosmic microwave background damping tail. Phys. Rev. D, 87, 2013, 083008 arXiv:1104.2333.
Baumann, D., Primordial cosmology. PoS, TASI2017, 2018, 009 arXiv:1807.03098.
Vagnozzi, S., Cosmological searches for the neutrino mass scale and mass ordering. 2019 arXiv:1907.08010.
Di Valentino, E., Melchiorri, A., Silk, J., Reconciling Planck with the local value of H0 in extended parameter space. Phys. Lett. B 761 (2016), 242–246 arXiv:1606.00634.
Vagnozzi, S., New physics in light of the H0 tension: An alternative view. Phys. Rev. D, 102(2), 2020, 023518 arXiv:1907.07569.
Bashinsky, S., Seljak, U., Neutrino perturbations in CMB anisotropy and matter clustering. Phys. Rev. D, 69, 2004, 083002 arXiv:astro-ph/0310198.
Follin, B., Knox, L., Millea, M., Pan, Z., First detection of the acoustic oscillation phase shift expected from the cosmic neutrino background. Phys. Rev. Lett., 115(9), 2015, 091301 arXiv:1503.07863.
Di Valentino, E., Melchiorri, A., Silk, J., Cosmological constraints in extended parameter space from the Planck 2018 Legacy release. J. Cosmol. Astropart. Phys., 01, 2020, 013 arXiv:1908.01391.
Seto, O., Toda, Y., Comparing early dark energy and extra radiation solutions to the hubble tension with BBN. Phys. Rev. D, 103(12), 2021, 123501 arXiv:2101.03740.
Hagstotz, S., de Salas, P.F., Gariazzo, S., Gerbino, M., Lattanzi, M., Vagnozzi, S., Freese, K., Pastor, S., Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches. Phys. Rev. D, 104(12), 2021, 123524 arXiv:2003.02289.
Barenboim, G., Kinney, W.H., Park, W.-I., Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology. Eur. Phys. J. C, 77(9), 2017, 590 arXiv:1609.03200.
Seto, O., Toda, Y., Hubble tension in lepton asymmetric cosmology with an extra radiation. Phys. Rev. D, 104(6), 2021, 063019 arXiv:2104.04381.
Baumann, D., Green, D., Meyers, J., Wallisch, B., Phases of new physics in the CMB. J. Cosmol. Astropart. Phys., 01, 2016, 007 arXiv:1508.06342.
Blinov, N., Marques-Tavares, G., Interacting radiation after Planck and its implications for the hubble tension. J. Cosmol. Astropart. Phys., 09, 2020, 029 arXiv:2003.08387.
Kaplan, D.E., Krnjaic, G.Z., Rehermann, K.R., Wells, C.M., Atomic dark matter. J. Cosmol. Astropart. Phys., 05, 2010, 021 arXiv:0909.0753.
Cyr-Racine, F.-Y., Sigurdson, K., Cosmology of atomic dark matter. Phys. Rev. D, 87(10), 2013, 103515 arXiv:1209.5752.
Bansal, S., Barron, J., Curtin, D., Tsai, Y., Precision cosmological constraints on atomic dark matter. JHEP, 10, 2023, 095 arXiv:2212.02487.
Chacko, Z., Curtin, D., Geller, M., Tsai, Y., Cosmological signatures of a mirror twin higgs. JHEP, 09, 2018, 163 arXiv:1803.03263.
Cyr-Racine, F.-Y., Sigurdson, K., Limits on neutrino-neutrino scattering in the early universe. Phys. Rev. D, 90(12), 2014, 123533 arXiv:1306.1536.
Archidiacono, M., Hannestad, S., Updated constraints on non-standard neutrino interactions from Planck. J. Cosmol. Astropart. Phys., 07, 2014, 046 arXiv:1311.3873.
Lancaster, L., Cyr-Racine, F.-Y., Knox, L., Pan, Z., A tale of two modes: Neutrino free-streaming in the early universe. J. Cosmol. Astropart. Phys., 07, 2017, 033 arXiv:1704.06657.
Oldengott, I.M., Tram, T., Rampf, C., Wong, Y.Y.Y., Interacting neutrinos in cosmology: exact description and constraints. J. Cosmol. Astropart. Phys., 11, 2017, 027 arXiv:1706.02123.
Barenboim, G., Denton, P.B., Oldengott, I.M., Constraints on inflation with an extended neutrino sector. Phys. Rev. D, 99(8), 2019, 083515 arXiv:1903.02036.
Das, A., Ghosh, S., Flavor-specific interaction favors strong neutrino self-coupling in the early universe. J. Cosmol. Astropart. Phys., 07, 2021, 038 arXiv:2011.12315.
Roy Choudhury, S., Hannestad, S., Tram, T., Updated constraints on massive neutrino self-interactions from cosmology in light of the H0 tension. J. Cosmol. Astropart. Phys., 03, 2021, 084 arXiv:2012.07519.
Brinckmann, T., Chang, J.H., LoVerde, M., Self-interacting neutrinos, the Hubble parameter tension, and the cosmic microwave background. Phys. Rev. D, 104(6), 2021, 063523 arXiv:2012.11830.
Roy Choudhury, S., Hannestad, S., Tram, T., Massive neutrino self-interactions and inflation. J. Cosmol. Astropart. Phys., 10, 2022, 018 arXiv:2207.07142.
Das, A., Ghosh, S., The magnificent ACT of flavor-specific neutrino self-interaction. J. Cosmol. Astropart. Phys., 09, 2023, 042 arXiv:2303.08843.
Camarena, D., Cyr-Racine, F.-Y., Houghteling, J., Confronting self-interacting neutrinos with the full shape of the galaxy power spectrum. Phys. Rev. D, 108(10), 2023, 103535 arXiv:2309.03941.
He, A., An, R., Ivanov, M.M., Gluscevic, V., Self-interacting neutrinos in light of large-scale structure data. Phys. Rev. D, 109(10), 2024, 103527 arXiv:2309.03956.
Bostan, N., Roy Choudhury, S., First constraints on non-minimally coupled Natural and Coleman-Weinberg inflation and massive neutrino self-interactions with Planck+BICEP/Keck. J. Cosmol. Astropart. Phys., 07, 2024, 032 arXiv:2310.01491.
Blinov, N., Kelly, K.J., Krnjaic, G.Z., McDermott, S.D., Constraining the self-interacting neutrino interpretation of the hubble tension. Phys. Rev. Lett., 123(19), 2019, 191102 arXiv:1905.02727.
da Costa, S.S., da Silva, D.R., de Jesus, Á.S., Pinto-Neto, N., Queiroz, F.S., The H 0 trouble: confronting non-thermal dark matter and phantom cosmology with the CMB, BAO, and type Ia supernovae data. J. Cosmol. Astropart. Phys., 04, 2024, 035 arXiv:2311.07420.
Escudero, M., Witte, S.J., A CMB search for the neutrino mass mechanism and its relation to the Hubble tension. Eur. Phys. J. C, 80(4), 2020, 294 arXiv:1909.04044.
Barenboim, G., Nierste, U., Modified majoron model for cosmological anomalies. Phys. Rev. D, 104(2), 2021, 023013 arXiv:2005.13280.
Escudero, M., Witte, S.J., The hubble tension as a hint of leptogenesis and neutrino mass generation. Eur. Phys. J. C, 81(6), 2021, 515 arXiv:2103.03249.
Archidiacono, M., Hannestad, S., Hansen, R.S., Tram, T., Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model. Phys. Rev. D, 91(6), 2015, 065021 arXiv:1404.5915.
Forastieri, F., Lattanzi, M., Mangano, G., Mirizzi, A., Natoli, P., Saviano, N., Cosmic microwave background constraints on secret interactions among sterile neutrinos. J. Cosmol. Astropart. Phys., 07, 2017, 038 arXiv:1704.00626.
Archidiacono, M., Gariazzo, S., Giunti, C., Hannestad, S., Tram, T., Sterile neutrino self-interactions: H0 tension and short-baseline anomalies. J. Cosmol. Astropart. Phys., 12, 2020, 029 arXiv:2006.12885.
Corona, M.A., Murgia, R., Cadeddu, M., Archidiacono, M., Gariazzo, S., Giunti, C., Hannestad, S., Pseudoscalar sterile neutrino self-interactions in light of Planck, SPT and ACT data. J. Cosmol. Astropart. Phys., 06(06), 2022, 010 arXiv:2112.00037.
Joseph, M., Aloni, D., Schmaltz, M., Sivarajan, E.N., Weiner, N., A step in understanding the S8 tension. Phys. Rev. D, 108(2), 2023, 023520 arXiv:2207.03500.
Bagherian, H., Joseph, M., Schmaltz, M., Sivarajan, E.N., Confronting interacting radiation models for the Hubble tension with Lyman-α data. Phys. Rev. D, 111(4), 2025, 043513 arXiv:2405.17554.
Cho, W., Choi, K.-Y., Mahapatra, S., Reconciling cosmological tensions with inelastic dark matter and dark radiation in a U(1)D framework. J. Cosmol. Astropart. Phys., 09, 2024, 065 arXiv:2408.03004.
Yang, W., Di Valentino, E., Pan, S., Wu, Y., Lu, J., Dynamical dark energy after Planck CMB final release and H0 tension. Mon. Not. R. Astron. Soc. 501:4 (2021), 5845–5858 arXiv:2101.02168.
Dong, F., Park, C., Hong, S.E., Kim, J., Seong Hwang, H., Park, H., Appleby, S., Tomographic Alcock–Paczyński test with Redshift-space correlation function: Evidence for the dark energy equation-of-state parameter w > −1. Astrophys. J., 953(1), 2023, 98 arXiv:2305.00206.
Najafi, M., Pan, S., Di Valentino, E., Firouzjaee, J.T., Dynamical dark energy confronted with multiple CMB missions. Phys. Dark Univ., 45, 2024, 101539 arXiv:2407.14939.
Vagnozzi, S., Visinelli, L., Mena, O., Mota, D.F., Do we have any hope of detecting scattering between dark energy and baryons through cosmology?. Mon. Not. R. Astron. Soc. 493:1 (2020), 1139–1152 arXiv:1911.12374.
Alestas, G., Kazantzidis, L., Perivolaropoulos, L., w−M Phantom transition at zt <0.1 as a resolution of the Hubble tension. Phys. Rev. D, 103(8), 2021, 083517 arXiv:2012.13932.
Yang, W., Pan, S., Di Valentino, E., Saridakis, E.N., Chakraborty, S., Observational constraints on one-parameter dynamical dark-energy parametrizations and the H0 tension. Phys. Rev. D, 99(4), 2019, 043543 arXiv:1810.05141.
Marra, V., Perivolaropoulos, L., Rapid transition of Geff at zt≃0.01 as a possible solution of the Hubble and growth tensions. Phys. Rev. D, 104(2), 2021, L021303 arXiv:2102.06012.
Alestas, G., Camarena, D., Di Valentino, E., Kazantzidis, L., Marra, V., Nesseris, S., Perivolaropoulos, L., Late-transition versus smooth H(z)-deformation models for the resolution of the Hubble crisis. Phys. Rev. D, 105(6), 2022, 063538 arXiv:2110.04336.
Alestas, G., Perivolaropoulos, L., Late-time approaches to the Hubble tension deforming H(z), worsen the growth tension. Mon. Not. R. Astron. Soc. 504:3 (2021), 3956–3962 arXiv:2103.04045.
Heisenberg, L., Villarrubia-Rojo, H., Zosso, J., Can late-time extensions solve the H0 and σ8 tensions?. Phys. Rev. D, 106(4), 2022, 043503 arXiv:2202.01202.
Frion, E., Camarena, D., Giani, L., Miranda, T., Bertacca, D., Marra, V., Piattella, O.F., Bayesian analysis of a Unified Dark Matter model with transition: can it alleviate the H0 tension?. Open J. Astrophys., 7, 2024 arXiv:2307.06320.
Kumar, S., Nunes, R.C., Pan, S., Yadav, P., New late-time constraints on f(R) gravity. Phys. Dark Univ., 42, 2023, 101281 arXiv:2301.07897.
Capozziello, S., Sarracino, G., De Somma, G., A critical discussion on the H0 tension. Universe, 10(3), 2024, 140 arXiv:2403.12796.
Bousis, D., Perivolaropoulos, L., Hubble tension tomography: BAO vs SN Ia distance tension. Phys. Rev. D, 110(10), 2024, 103546 arXiv:2405.07039.
Briffa, R., Escamilla-Rivera, C., Said Levi, J., Mifsud, J., Pullicino, N.L., Impact of H0 priors on f(T) late time cosmology. Eur. Phys. J. Plus, 137(5), 2022, 532 arXiv:2108.03853.
Levi Said, J., Mifsud, J., Sultana, J., Adami, K.Z., Reconstructing teleparallel gravity with cosmic structure growth and expansion rate data. J. Cosmol. Astropart. Phys., 06, 2021, 015 arXiv:2103.05021.
Theodoropoulos, A., Perivolaropoulos, L., The Hubble tension, the M crisis of late time H(z) deformation models and the reconstruction of quintessence Lagrangians. Universe, 7(8), 2021, 300 arXiv:2109.06256.
Alestas, G., Perivolaropoulos, L., Tanidis, K., Constraining a late time transition of Geff using low-z galaxy survey data. Phys. Rev. D, 106(2), 2022, 023526 arXiv:2201.05846.
Perivolaropoulos, L., Skara, F., Gravitational transitions via the explicitly broken symmetron screening mechanism. Phys. Rev. D, 106(4), 2022, 043528 arXiv:2203.10374.
Paraskevas, E.A., Cam, A., Perivolaropoulos, L., Akarsu, O., Transition dynamics in the ΛsCDM model: Implications for bound cosmic structures. Phys. Rev. D, 109(10), 2024, 103522 arXiv:2402.05908.
Paraskevas, E.A., Perivolaropoulos, L., Effects of a late gravitational transition on gravitational waves and anticipated constraints. Universe, 9(7), 2023, 317 arXiv:2307.00298.
Perivolaropoulos, L., Skara, F., A reanalysis of the latest SH0ES data for H0: Effects of new degrees of freedom on the Hubble tension. Universe, 8(10), 2022, 502 arXiv:2208.11169.
Perivolaropoulos, L., Is the Hubble crisis connected with the extinction of dinosaurs?. Universe, 8(5), 2022, 263 arXiv:2201.08997.
Akarsu, Ö., Barrow, J.D., Escamilla, L.A., Vazquez, J.A., Graduated dark energy: Observational hints of a spontaneous sign switch in the cosmological constant. Phys. Rev. D, 101(6), 2020, 063528 arXiv:1912.08751.
Anchordoqui, L.A., Antoniadis, I., Lust, D., Noble, N.T., Soriano, J.F., From infinite to infinitesimal: Using the Universe as a dataset to probe Casimir corrections to the vacuum energy from fields inhabiting the dark dimension. Phys. Dark Univ., 46, 2024, 101715 arXiv:2404.17334.
De Felice, A., Kumar, S., Mukohyama, S., Nunes, R.C., Observational bounds on extended minimal theories of massive gravity: new limits on the graviton mass. J. Cosmol. Astropart. Phys., 04, 2024, 013 arXiv:2311.10530.
’t Hooft, G., Dimensional reduction in quantum gravity. Conf. Proc. C 930308 (1993), 284–296 arXiv:gr-qc/9310026.
Susskind, L., The world as a hologram. J. Math. Phys. 36 (1995), 6377–6396 arXiv:hep-th/9409089.
Bousso, R., A covariant entropy conjecture. JHEP, 07, 1999, 004 arXiv:hep-th/9905177.
Cohen, A.G., Kaplan, D.B., Nelson, A.E., Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 82 (1999), 4971–4974 arXiv:hep-th/9803132.
Wang, S., Wang, Y., Li, M., Holographic dark energy. Phys. Rep. 696 (2017), 1–57 arXiv:1612.00345.
Nojiri, S., Odintsov, S.D., Paul, T., Different faces of generalized holographic dark energy. Symmetry, 13(6), 2021, 928 arXiv:2105.08438.
Nojiri, S., Odintsov, S.D., Oikonomou, V.K., Paul, T., Unifying holographic inflation with holographic dark energy: a covariant approach. Phys. Rev. D, 102(2), 2020, 023540 arXiv:2007.06829.
Trivedi, O., Khlopov, M., Timoshkin, A.V., Tsallis holographic dark energy with power law Ansatz approach. Symmetry, 16(4), 2024, 446 arXiv:2402.05784.
Tavayef, M., Sheykhi, A., Bamba, K., Moradpour, H., Tsallis holographic dark energy. Phys. Lett. B 781 (2018), 195–200 arXiv:1804.02983.
Moradpour, H., Moosavi, S.A., Lobo, I.P., Morais Graça, J.P., Jawad, A., Salako, I.G., Thermodynamic approach to holographic dark energy and the Rényi entropy. Eur. Phys. J. C, 78(10), 2018, 829 arXiv:1803.02195.
Drepanou, N., Lymperis, A., Saridakis, E.N., Yesmakhanova, K., Kaniadakis holographic dark energy and cosmology. Eur. Phys. J. C, 82(5), 2022, 449 arXiv:2109.09181.
Granda, L.N., Oliveros, A., Infrared cut-off proposal for the Holographic density. Phys. Lett. B 669 (2008), 275–277 arXiv:0810.3149.
Mukherjee, P., Mukherjee, A., Jassal, H.K., Dasgupta, A., Banerjee, N., Holographic dark energy: constraints on the interaction from diverse observational data sets. Eur. Phys. J. Plus, 134(4), 2019, 147 arXiv:1710.02417.
Adhikary, P., Das, S., Basilakos, S., Saridakis, E.N., Barrow holographic dark energy in a nonflat universe. Phys. Rev. D, 104(12), 2021, 123519 arXiv:2104.13118.
Moradpour, H., Ziaie, A.H., Kord Zangeneh, M., Generalized entropies and corresponding holographic dark energy models. Eur. Phys. J. C, 80(8), 2020, 732 arXiv:2005.06271.
Sayahian Jahromi, A., Moosavi, S.A., Moradpour, H., Morais Graça, J.P., Lobo, I.P., Salako, I.G., Jawad, A., Generalized entropy formalism and a new holographic dark energy model. Phys. Lett. B 780 (2018), 21–24 arXiv:1802.07722.
Trivedi, O., Bidlan, A., Moniz, P., Fractional holographic dark energy. Phys. Lett. B, 858, 2024, 139074 arXiv:2407.16685.
Moradpour, H., Jalalzadeh, S., Sharma, U.K., On the thermodynamics of reconciling quantum and gravity. Eur. Phys. J. Plus, 139(2), 2024, 170 arXiv:2304.06494.
Guo, R.-Y., Zhang, J.-F., Zhang, X., Can the H0 tension be resolved in extensions to ΛCDM cosmology?. J. Cosmol. Astropart. Phys., 02, 2019, 054 arXiv:1809.02340.
Jacobson, T., Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 75 (1995), 1260–1263 arXiv:gr-qc/9504004.
Verlinde, E.P., On the origin of gravity and the laws of Newton. JHEP, 04, 2011, 029 arXiv:1001.0785.
Padmanabhan, T., Gravitational entropy of static space-times and microscopic density of states. Cl. Quant. Grav. 21 (2004), 4485–4494 arXiv:gr-qc/0308070.
Cai, R.-G., Kim, S.P., First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. JHEP, 02, 2005, 050 arXiv:hep-th/0501055.
Bekenstein, J.D., Black holes and entropy. Phys. Rev. D 7 (1973), 2333–2346.
Hawking, S.W., Black hole explosions. Nature 248 (1974), 30–31.
Gibbons, G.W., Hawking, S.W., Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15 (1977), 2738–2751.
Easson, D.A., Frampton, P.H., Smoot, G.F., Entropic accelerating universe. Phys. Lett. B 696 (2011), 273–277 arXiv:1002.4278.
Gohar, H., Salzano, V., Generalized mass-to-horizon relation: A new global approach to entropic cosmologies and its connection to ΛCDM. Phys. Rev. D, 109(8), 2024, 084075 arXiv:2307.06239.
Komatsu, N., Kimura, S., Entropic cosmology for a generalized black-hole entropy. Phys. Rev. D, 88, 2013, 083534 arXiv:1307.5949.
Nunes, R.C., Barboza, E.M. Jr., Abreu, E.M.C., Neto, J.A., Probing the cosmological viability of non-gaussian statistics. J. Cosmol. Astropart. Phys., 08, 2016, 051 arXiv:1509.05059.
Moradpour, H., Nunes, R.C., Abreu, E.M.C., Neto, J.A., A note on the relations between thermodynamics, energy definitions and Friedmann equations. Modern Phys. Lett. A, 32(13), 2017, 1750078 arXiv:1603.01465.
Abreu, E.M.C., Neto, J.A., Barboza, E.M., Nunes, R.C., Tsallis and Kaniadakis statistics from the viewpoint of entropic gravity formalism. Internat. J. Modern Phys. A, 32(05), 2017, 1750028 arXiv:1701.06898.
Tsallis, C., Cirto, L.J.L., Black hole thermodynamical entropy. Eur. Phys. J. C, 73, 2013, 2487 arXiv:1202.2154.
Barrow, J.D., The area of a rough black hole. Phys. Lett. B, 808, 2020, 135643 arXiv:2004.09444.
Cimidiker, I., Dabrowski, M.P., Gohar, H., Generalized uncertainty principle impact on nonextensive black hole thermodynamics. Cl. Quant. Grav., 40(14), 2023, 145001 arXiv:2301.00609.
Bekenstein, J.D., Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 23:2 (1981), 287–298.
van Putten, M.H.P.M., On the hubble expansion in a big bang quantum cosmology. JHEAp 45 (2025), 194–199 arXiv:2403.10865.
Camarena, D., Marra, V., Local determination of the hubble constant and the deceleration parameter. Phys. Rev. Res., 2(1), 2020, 013028 arXiv:1906.11814.
De Simone, B., van Putten, M.H.P.M., Dainotti, M.G., Lambiase, G., A doublet of cosmological models to challenge the H0 tension in the Pantheon Supernovae Ia catalog. JHEAp 45 (2025), 290–298 arXiv:2411.05744.
Basilakos, S., Lymperis, A., Petronikolou, M., Saridakis, E.N., Alleviating both H0 and σ8 tensions in Tsallis cosmology. Eur. Phys. J. C, 84(3), 2024, 297 arXiv:2308.01200.
Asghari, M., Sheykhi, A., Observational constraints on Tsallis modified gravity. Mon. Not. R. Astron. Soc. 508:2 (2021), 2855–2861 arXiv:2106.15551.
Gohar, H., Salzano, V., Cosmological constraints on entropic cosmology with matter creation. Eur. Phys. J. C, 81(4), 2021, 338 arXiv:2008.09635.
da Silva, W.J.C., Silva, R., Cosmological perturbations in the Tsallis holographic dark energy scenarios. Eur. Phys. J. Plus, 136(5), 2021, 543 arXiv:2011.09520.
Melchiorri, A., Mersini-Houghton, L., Odman, C.J., Trodden, M., The state of the dark energy equation of state. Phys. Rev. D, 68, 2003, 043509 arXiv:astro-ph/0211522.
Melchiorri, A., Mersini-Houghton, L., Does the low CMB quadrupole provide a new cosmic coincidence problem?. 2004 arXiv:hep-ph/0403222.
Roy, N., Gonzalez-Morales, A.X., Urena-Lopez, L.A., New general parametrization of quintessence fields and its observational constraints. Phys. Rev. D, 98(6), 2018, 063530 arXiv:1803.09204.
Linares Cedeño, F.X., Roy, N., Ureña-López, L.A., Tracker phantom field and a cosmological constant: Dynamics of a composite dark energy model. Phys. Rev. D, 104(12), 2021, 123502 arXiv:2105.07103.
Roy, N., Goswami, S., Das, S., Quintessence or phantom: Study of scalar field dark energy models through a general parametrization of the Hubble parameter. Phys. Dark Univ., 36, 2022, 101037 arXiv:2201.09306.
Nájera, J.A., Escamilla-Rivera, C., Phantom scalar field cosmologies constrained by early cosmic measurements. Universe, 10(6), 2024, 232 arXiv:2403.16562.
Feng, B., Wang, X.-L., Zhang, X.-M., Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 607 (2005), 35–41 arXiv:astro-ph/0404224.
Qiu, T., Theoretical aspects of quintom models. Bamba, K., Geng, C.-Q., (eds.) Modern Phys. Lett. A, 25, 2010, 909–921 arXiv:1002.3971.
Zhang, M.-J., Li, H., Observational constraint on the dark energy scalar field. Chin. Phys. C, 45(4), 2021, 045103 arXiv:1809.08936.
Leon, G., Paliathanasis, A., Morales-Martínez, J.L., The past and future dynamics of quintom dark energy models. Eur. Phys. J. C, 78(9), 2018, 753 arXiv:1808.05634.
Panpanich, S., Burikham, P., Ponglertsakul, S., Tannukij, L., Resolving Hubble tension with quintom dark energy model. Chin. Phys. C, 45(1), 2021, 015108 arXiv:1908.03324.
Wang, D., Zhang, W., Meng, X.-H., Searching for the evidence of dynamical dark energy. Eur. Phys. J. C, 79(3), 2019, 211 arXiv:1903.08913.
Escamilla, L.A., Pan, S., Di Valentino, E., Paliathanasis, A., Vázquez, J.A., Yang, W., Testing an oscillatory behavior of dark energy. Phys. Rev. D, 111(2), 2025, 023531 arXiv:2404.00181.
Vázquez, J.A., Tamayo, D., Sen, A.A., Quiros, I., Bayesian model selection on scalar ϵ-field dark energy. Phys. Rev. D, 103(4), 2021, 043506 arXiv:2009.01904.
Xia, J.-Q., Li, H., Zhang, X., Dark energy constraints after Planck. Phys. Rev. D, 88, 2013, 063501 arXiv:1308.0188.
Fu, L., Chen, L., Yang, M., Wang, J., Zhang, M.-J., A better reconciliation of hubble tension in the dark energy scalar field. Res. Astron. Astrophys., 23(3), 2023, 035004.
Roy, N., Ureña-López, L.A., Tracker behaviour of quintom dark energy and the Hubble tension. 2023 arXiv:2312.04003.
Cicoli, M., Dibitetto, G., Pedro, F.G., New accelerating solutions in late-time cosmology. Phys. Rev. D, 101(10), 2020, 103524 arXiv:2002.02695.
Cicoli, M., Dibitetto, G., Pedro, F.G., Out of the swampland with multifield quintessence?. JHEP, 10, 2020, 035 arXiv:2007.11011.
Akrami, Y., Sasaki, M., Solomon, A.R., Vardanyan, V., Multi-field dark energy: Cosmic acceleration on a steep potential. Phys. Lett. B, 819, 2021, 136427 arXiv:2008.13660.
Anguelova, L., Dumancic, J., Gass, R., Wijewardhana, L.C.R., Dark energy from inspiraling in field space. J. Cosmol. Astropart. Phys., 03(03), 2022, 018 arXiv:2111.12136.
Anguelova, L., Dumancic, J., Gass, R., Wijewardhana, L.C.R., Dynamics of inspiraling dark energy. Eur. Phys. J. C, 84(4), 2024, 365 arXiv:2311.07839.
Armendariz-Picon, C., Damour, T., Mukhanov, V.F., k - inflation. Phys. Lett. B 458 (1999), 209–218 arXiv:hep-th/9904075.
Garriga, J., Mukhanov, V.F., Perturbations in k-inflation. Phys. Lett. B 458 (1999), 219–225 arXiv:hep-th/9904176.
Batista, R.C., A short review on clustering dark energy. Universe, 8(1), 2021, 22 arXiv:2204.12341.
Dakin, J., Hannestad, S., Tram, T., Knabenhans, M., Stadel, J., Dark energy perturbations in N-body simulations. J. Cosmol. Astropart. Phys., 08, 2019, 013 arXiv:1904.05210.
Hassani, F., Adamek, J., Kunz, M., Vernizzi, F., k-Evolution: a relativistic N-body code for clustering dark energy. J. Cosmol. Astropart. Phys., 12, 2019, 011 arXiv:1910.01104.
Blot, L., Corasaniti, P.S., Schmidt, F., Non-linear Eulerian hydrodynamics of dark energy: Riemann problem and finite volume schemes. J. Cosmol. Astropart. Phys., 05, 2023, 001 arXiv:2210.04800.
Batista, R.C., de Oliveira, H.P., Abramo, L.R.W., Spherical collapse of non-top-hat profiles in the presence of dark energy with arbitrary sound speed. J. Cosmol. Astropart. Phys., 02, 2023, 037 arXiv:2210.14769.
Ben-Dayan, I., Kumar, U., Theoretical priors and the dark energy equation of state. Eur. Phys. J. C, 84(2), 2024, 167 arXiv:2310.03092.
Dinda, B.R., Banerjee, N., Constraints on the speed of sound in the k-essence model of dark energy. Eur. Phys. J. C, 84(2), 2024, 177 arXiv:2309.10538.
Bastero-Gil, M., Frampton, P.H., Mersini-Houghton, L., Modified dispersion relations from closed strings in toroidal cosmology. Phys. Rev. D, 65, 2002, 106002 arXiv:hep-th/0110167.
Mersini-Houghton, L., Bastero-Gil, M., Kanti, P., Relic dark energy from transPlanckian regime. Phys. Rev. D, 64, 2001, 043508 arXiv:hep-ph/0101210.
Mersini-Houghton, L., Bastero-Gil, M., Dark energy may probe string theory. 3rd International Sakharov Conference on Physics, 2002 arXiv:hep-th/0212153.
Bastero-Gil, M., Mersini-Houghton, L., SN1A data and the CMB of modified curvature at short and long distances. Phys. Rev. D, 65, 2002, 023502 arXiv:astro-ph/0107256.
Bastero-Gil, M., Mersini-Houghton, L., Equation of state of the transPlanckian dark energy and the coincidence problem. Phys. Rev. D, 67, 2003, 103519 arXiv:hep-th/0205271.
Bastero-Gil, M., Freese, K., Mersini-Houghton, L., What can WMAP tell us about the very early universe? New physics as an explanation of suppressed large scale power and running spectral index. Phys. Rev. D, 68, 2003, 123514 arXiv:hep-ph/0306289.
Shapiro, I.L., Sola, J., Scaling behavior of the cosmological constant: Interface between quantum field theory and cosmology. JHEP, 02, 2002, 006 arXiv:hep-th/0012227.
Sola, J., Dark energy: A quantum fossil from the inflationary Universe?. Bordag, M., Mostepanenko, V.M., (eds.) J. Phys. A, 41, 2008, 164066 arXiv:0710.4151.
Shapiro, I.L., Sola, J., On the possible running of the cosmological ’constant’. Phys. Lett. B 682 (2009), 105–113 arXiv:0910.4925.
Moreno-Pulido, C., Sola, J., Running vacuum in quantum field theory in curved spacetime: renormalizing ρvac without ∼m4 terms. Eur. Phys. J. C, 80(8), 2020, 692 arXiv:2005.03164.
Moreno-Pulido, C., Sola Peracaula, J., Renormalizing the vacuum energy in cosmological spacetime: implications for the cosmological constant problem. Eur. Phys. J. C, 82(6), 2022, 551 arXiv:2201.05827.
Moreno-Pulido, C., Sola Peracaula, J., Cheraghchi, S., Running vacuum in QFT in FLRW spacetime: the dynamics of ρvac(H) from the quantized matter fields. Eur. Phys. J. C, 83(7), 2023, 637 arXiv:2301.05205.
Sola, J., Cosmological constant and vacuum energy: old and new ideas. Papakostas, T., Pliakis, D.A., (eds.) J. Phys. Conf. Ser., 453, 2013, 012015 arXiv:1306.1527.
Sola Peracaula, J., The cosmological constant problem and running vacuum in the expanding universe. Phil. Trans. Roy. Soc. Lond. A, 380, 2022, 20210182 arXiv:2203.13757.
Basilakos, S., Lima, J.A.S., Sola, J., From inflation to dark energy through a dynamical Lambda: an attempt at alleviating fundamental cosmic puzzles. Internat. J. Modern Phys. D, 22, 2013, 1342008 arXiv:1307.6251.
Basilakos, S., Mavromatos, N.E., Solà Peracaula, J., Scalar field theory description of the running vacuum model: the vacuumon. J. Cosmol. Astropart. Phys., 12, 2019, 025 arXiv:1901.06638.
Fritzsch, H., Sola, J., Matter non-conservation in the universe and dynamical dark energy. Cl. Quant. Grav., 29, 2012, 215002 arXiv:1202.5097.
Gomez-Valent, A., Sola, J., Vacuum models with a linear and a quadratic term in H: structure formation and number counts analysis. Mon. Not. R. Astron. Soc. 448 (2015), 2810–2821 arXiv:1412.3785.
Gomez-Valent, A., Karimkhani, E., Sola, J., Background history and cosmic perturbations for a general system of self-conserved dynamical dark energy and matter. J. Cosmol. Astropart. Phys., 12, 2015, 048 arXiv:1509.03298.
Fritzsch, H., Sola, J., Fundamental constants and cosmic vacuum: the micro and macro connection. Modern Phys. Lett. A, 30(22), 2015, 1540034 arXiv:1502.01411.
Fritzsch, H., Solà, J., Nunes, R.C., Running vacuum in the universe and the time variation of the fundamental constants of nature. Eur. Phys. J. C, 77(3), 2017, 193 arXiv:1605.06104.
Solà Peracaula, J., The dynamics of vacuum, gravity and matter: Implications on the fundamental constants. Internat. J. Modern Phys. A, 39(09n10), 2024, 2441016 arXiv:2308.13349.
Sola, J., Gomez-Valent, A., de Cruz Pérez, J., Hints of dynamical vacuum energy in the expanding universe. Astrophys. J. Lett., 811, 2015, L14 arXiv:1506.05793.
Solà, J., Gómez-Valent, A., de Cruz Pérez, J., First evidence of running cosmic vacuum: challenging the concordance model. Astrophys. J., 836(1), 2017, 43 arXiv:1602.02103.
Solà Peracaula, J., de Cruz Pérez, J., Gómez-Valent, A., Dynamical dark energy vs. Λ=const in light of observations. EPL, 121(3), 2018, 39001 arXiv:1606.00450.
Solà Peracaula, J., de Cruz Pérez, J., Gomez-Valent, A., Possible signals of vacuum dynamics in the Universe. Mon. Not. R. Astron. Soc. 478:4 (2018), 4357–4373 arXiv:1703.08218.
Solà, J., Gómez-Valent, A., de Cruz Pérez, J., The H0 tension in light of vacuum dynamics in the Universe. Phys. Lett. B 774 (2017), 317–324 arXiv:1705.06723.
Gomez-Valent, A., Sola, J., Relaxing the σ8-tension through running vacuum in the universe. EPL, 120(3), 2017, 39001 arXiv:1711.00692.
Gómez-Valent, A., Solà Peracaula, J., Density perturbations for running vacuum: a successful approach to structure formation and to the σ8-tension. Mon. Not. R. Astron. Soc. 478:1 (2018), 126–145 arXiv:1801.08501.
Gómez-Valent, A., Solà, J., Basilakos, S., Dynamical vacuum energy in the expanding universe confronted with observations: a dedicated study. J. Cosmol. Astropart. Phys., 01, 2015, 004 arXiv:1409.7048.
Geng, C.-Q., Lee, C.-C., Yin, L., Constraints on running vacuum model with H(z) and fσ8. J. Cosmol. Astropart. Phys., 08, 2017, 032 arXiv:1704.02136.
Tsiapi, P., Basilakos, S., Testing dynamical vacuum models with CMB power spectrum from Planck. Mon. Not. R. Astron. Soc. 485:2 (2019), 2505–2510 arXiv:1810.12902.
Asimakis, P., Basilakos, S., Mavromatos, N.E., Saridakis, E.N., Big bang nucleosynthesis constraints on higher-order modified gravities. Phys. Rev. D, 105(8), 2022, 084010 arXiv:2112.10863.
Solà Peracaula, J., Gómez-Valent, A., de Cruz Perez, J., Moreno-Pulido, C., Running vacuum against the H0 and σ8 tensions. EPL, 134(1), 2021, 19001 arXiv:2102.12758.
Sola Peracaula, J., Gomez-Valent, A., de Cruz Perez, J., Moreno-Pulido, C., Running vacuum in the universe: Phenomenological status in light of the latest observations, and its impact on the σ 8 and H0 tensions. Universe, 9(6), 2023, 262 arXiv:2304.11157.
de Cruz Perez, J., Sola Peracaula, J., Running vacuum in Brans & Dicke theory: A possible cure for the σ8 and H0 tensions. Phys. Dark Univ., 43, 2024, 101406 arXiv:2302.04807.
Mavromatos, N.E., Geometrical origins of the universe dark sector: string-inspired torsion and anomalies as seeds for inflation and dark matter. Phil. Trans. A. Math. Phys. Eng. Sci., 380(2222), 2022, 20210188 arXiv:2108.02152.
Yang, W., Di Valentino, E., Pan, S., Shafieloo, A., Li, X., Generalized emergent dark energy model and the Hubble constant tension. Phys. Rev. D, 104(6), 2021, 063521 arXiv:2103.03815.
Banihashemi, A., Khosravi, N., Shirazi, A.H., Phase transition in the dark sector as a proposal to lessen cosmological tensions. Phys. Rev. D, 101(12), 2020, 123521 arXiv:1808.02472.
Banihashemi, A., Khosravi, N., Shirazi, A.H., Ginzburg-Landau theory of dark energy: A framework to study both temporal and spatial cosmological tensions simultaneously. Phys. Rev. D, 99(8), 2019, 083509 arXiv:1810.11007.
Banihashemi, A., Khosravi, N., Shafieloo, A., Dark energy as a critical phenomenon: a hint from Hubble tension. J. Cosmol. Astropart. Phys., 06, 2021, 003 arXiv:2012.01407.
Ginzburg, V.L., Landau, L.D., On the theory of superconductivity. ter Haar, D., (eds.) Zh. Eksp. Teor. Fiz., 20, 1950, 1064–1082.
Banihashemi, A., Khosravi, N., Fluctuations in the Ginzburg–Landau theory of dark energy: Internal (in)consistencies in the Planck data set. Astrophys. J., 931(2), 2022, 148 arXiv:2201.04119.
Rezaei, M., Naderi, T., Malekjani, M., Mehrabi, A., A Bayesian comparison between ΛCDM and phenomenologically emergent dark energy models. Eur. Phys. J. C, 80(5), 2020, 374 arXiv:2004.08168.
Pan, S., Yang, W., Di Valentino, E., Shafieloo, A., Chakraborty, S., Reconciling H0 tension in a six parameter space?. J. Cosmol. Astropart. Phys., 06(06), 2020, 062 arXiv:1907.12551.
Shah, R., Mukherjee, P., Pal, S., Reconciling S8: insights from interacting dark sectors. Mon. Not. R. Astron. Soc. 536:3 (2024), 2404–2420 arXiv:2404.06396.
Hernández-Almada, A., Leon, G., Magaña, J., García-Aspeitia, M.A., Motta, V., Generalized emergent dark energy: observational hubble data constraints and stability analysis. Mon. Not. R. Astron. Soc. 497:2 (2020), 1590–1602 arXiv:2002.12881.
Yang, W., Di Valentino, E., Pan, S., Mena, O., Emergent dark energy, neutrinos and cosmological tensions. Phys. Dark Univ., 31, 2021, 100762 arXiv:2007.02927.
Liu, Z., Miao, H., Update constraints on neutrino mass and mass hierarchy in light of dark energy models. Internat. J. Modern Phys. D, 29(13), 2020, 2050088 arXiv:2002.05563.
Di Valentino, E., Gariazzo, S., Giunti, C., Mena, O., Pan, S., Yang, W., Minimal dark energy: Key to sterile neutrino and Hubble constant tensions?. Phys. Rev. D, 105(10), 2022, 103511 arXiv:2110.03990.
García-Aspeitia, M.A., Fernandez-Anaya, G., Hernández-Almada, A., Leon, G., Magaña, J., Cosmology under the fractional calculus approach. Mon. Not. R. Astron. Soc. 517:4 (2022), 4813–4826 arXiv:2207.00878.
Pizzuti, L., Saltas, I.D., Amendola, L., Mg-mamposst: a code to test modifications of gravity with internal kinematics and lensing analyses of galaxy clusters. Mon. Not. R. Astron. Soc. 506:1 (2021), 595–612 arXiv:2011.15089.
Benaoum, H.B., Yang, W., Pan, S., Di Valentino, E., Modified emergent dark energy and its astronomical constraints. Internat. J. Modern Phys. D, 31(03), 2022, 2250015 arXiv:2008.09098.
Parker, L., Raval, A., New quantum aspects of a vacuum dominated universe. Phys. Rev. D, 62, 2000, 083503 arXiv:gr-qc/0003103.
Erratum: Phys. Rev. D, 67, 2003 029903.
Parker, L., Vanzella, D.A.T., Acceleration of the universe, vacuum metamorphosis, and the large time asymptotic form of the heat kernel. Phys. Rev. D, 69, 2004, 104009 arXiv:gr-qc/0312108.
Caldwell, R.R., Komp, W., Parker, L., Vanzella, D.A.T., A sudden gravitational transition. Phys. Rev. D, 73, 2006, 023513 arXiv:astro-ph/0507622.
Di Valentino, E., Linder, E.V., Melchiorri, A., H0 Ex machina: Vacuum metamorphosis and beyond H0. Phys. Dark Univ., 30, 2020, 100733 arXiv:2006.16291.
Lambiase, G., Mohanty, S., Narang, A., Parashari, P., Testing dark energy models in the light of σ8 tension. Eur. Phys. J. C, 79(2), 2019, 141 arXiv:1804.07154.
Battye, R.A., Moss, A., Evidence for massive neutrinos from cosmic microwave background and lensing observations. Phys. Rev. Lett., 112(5), 2014, 051303 arXiv:1308.5870.
Wang, Y., Freese, K., Gondolo, P., Lewis, M., Future type IA supernova data as tests of dark energy from modified Friedmann equations. Astrophys. J. 594 (2003), 25–32 arXiv:astro-ph/0302064.
Lazkoz, R., Salzano, V., Fernandez-Jambrina, L., Bouhmadi-López, M., Ripped ΛCDM: An observational contender to the consensus cosmological model. Phys. Dark Univ., 45, 2024, 101511 arXiv:2311.10526.
Huang, L., Wang, S.-J., Yu, W.-W., No-go guide for the Hubble tension: Late-time or local-scale new physics. Sci. China Phys. Mech. Astron., 68(2), 2025, 220413 arXiv:2401.14170.
Kitazawa, N., Late-time data require smaller sound horizon at recombination. 2023 arXiv:2310.10017.
Ruchika, 2D BAO vs 3D BAO: Hints for new physics?. 2024 arXiv:2406.05453.
Keeley, R.E., Shafieloo, A., Ruling out new physics at low redshift as a solution to the H0 tension. Phys. Rev. Lett., 131(11), 2023, 111002 arXiv:2206.08440.
Hossain, M.W., Maqsood, A., Comparison between axionlike and power law potentials in a cosmological background. Phys. Rev. D, 109(10), 2024, 103512 arXiv:2311.17825.
Boiza, C.G., Bouhmadi-López, M., Speeding up the Universe with a generalised axion-like potential. 2024 arXiv:2409.18184.
Boiza, C.G., Bouhmadi-López, M., Cosmological perturbations in a generalised axion-like dark energy model. Phys. Dark Univ., 48, 2025, 101845 arXiv:2410.22467.
Hossain, M.W., Maqsood, A., Cosmological implications of tracker scalar fields as dynamical dark energy. 2025 arXiv:2502.19274.
Chiang, H.-W., Boiza, C.G., Bouhmadi-López, M., Observational constraints on generalised axion-like potentials for the late universe. 2025 arXiv:2503.04898.
Benaoum, H., Accelerated universe from modified Chaplygin gas and tachyonic fluid. Universe, 8(7), 2022, 340 arXiv:hep-th/0205140.
Stefancic, H., Expansion around the vacuum equation of state - Sudden future singularities and asymptotic behavior. Phys. Rev. D, 71, 2005, 084024 arXiv:astro-ph/0411630.
Bouhmadi-López, M., Brilenkov, M., Brilenkov, R., Morais, J., Zhuk, A., Scalar perturbations in the late Universe: viability of the Chaplygin gas models. J. Cosmol. Astropart. Phys., 12, 2015, 037 arXiv:1509.06963.
Yang, W., Pan, S., Vagnozzi, S., Di Valentino, E., Mota, D.F., Capozziello, S., Dawn of the dark: unified dark sectors and the EDGES Cosmic Dawn 21-cm signal. J. Cosmol. Astropart. Phys., 11, 2019, 044 arXiv:1907.05344.
Albarran, I., Bouhmadi-López, M., Morais, J., Cosmological perturbations in an effective and genuinely phantom dark energy Universe. Phys. Dark Univ. 16 (2017), 94–108 arXiv:1611.00392.
Dienes, K.R., Heurtier, L., Huang, F., Kim, D., Tait, T.M.P., Thomas, B., Stasis in an expanding universe: A recipe for stable mixed-component cosmological eras. Phys. Rev. D, 105(2), 2022, 023530 arXiv:2111.04753.
Dienes, K.R., Heurtier, L., Huang, F., Tait, T.M.P., Thomas, B., Cosmological stasis from dynamical scalars: Tracking solutions and the possibility of a stasis-induced inflation. Phys. Rev. D, 110(12), 2024, 123514 arXiv:2406.06830.
Abramo, L.R.W., Brandenberger, R.H., Mukhanov, V.F., The energy - momentum tensor for cosmological perturbations. Phys. Rev. D 56 (1997), 3248–3257 arXiv:gr-qc/9704037.
Brandenberger, R.H., Back reaction of cosmological perturbations. 3rd International Conference on Particle Physics and the Early Universe, 2000, 198–206 arXiv:hep-th/0004016.
Alvarez, M.A.C., Graef, L., Brandenberger, R., Back-reaction of super-hubble fluctuations, late time tracking and recent observational results. 2025 arXiv:2502.17395.
Escamilla, L.A., Özülker, E., Akarsu, Ö., Di Valentino, E., Vázquez, J.A., Do we need wavelets in the late universe?. 2024 arXiv:2408.12516.
Akarsu, Ö., Çam, A., Paraskevas, E.A., Perivolaropoulos, L., Linear matter density perturbations in the ΛsCDM model: Examining growth dynamics and addressing the S8 tension. 2025 arXiv:2502.20384.
Biagetti, M., Franciolini, G., Riotto, A., Enhancing massive galaxy formation at high redshift in non-standard cosmologies. Astrophys. J., 944(2), 2023, 113 arXiv:2210.04812.
Wang, D., Liu, Y., JWST high redshift galaxy observations have a strong tension with Planck CMB measurements. 2022 arXiv:2301.00347.
Dutta, K., Ruchika, Roy, A., Sen, A.A., Sheikh-Jabbari, M.M., Beyond ΛCDM with low and high redshift data: implications for dark energy. Gen. Relativity Gravitation, 52(2), 2020, 15 arXiv:1808.06623.
Acquaviva, G., Akarsu, Ö., Katirci, N., Vazquez, J.A., Simple-graduated dark energy and spatial curvature. Phys. Rev. D, 104(2), 2021, 023505 arXiv:2104.02623.
Akarsu, Ö., Perivolaropoulos, L., Tsikoundoura, A., Yükselci, A.E., Zhuk, A., Dynamical dark energy with AdS-to-dS and dS-to-dS transitions: Implications for the H0 tension. 2025 arXiv:2502.14667.
Ozulker, E., Is the dark energy equation of state parameter singular?. Phys. Rev. D, 106(6), 2022, 063509 arXiv:2203.04167.
Akarsu, O., De Felice, A., Di Valentino, E., Kumar, S., Nunes, R.C., Ozulker, E., Vazquez, J.A., Yadav, A., ΛsCDM cosmology from a type-II minimally modified gravity. 2024 arXiv:2402.07716.
Green, D., Meyers, J., Cosmological preference for a negative neutrino mass. Phys. Rev. D, 111(8), 2025, 083507 arXiv:2407.07878.
Elbers, W., Frenk, C.S., Jenkins, A., Li, B., Pascoli, S., Negative neutrino masses as a mirage of dark energy. Phys. Rev. D, 111(6), 2025, 063534 arXiv:2407.10965.
Ge, S.-F., Tan, L., Identifying neutrino mass ordering with cosmic gravitational focusing. Phys. Rev. D, 111(8), 2025, 083539 arXiv:2409.11115.
De Felice, A., Doll, A., Mukohyama, S., A theory of type-II minimally modified gravity. J. Cosmol. Astropart. Phys., 09, 2020, 034 arXiv:2004.12549.
De Felice, A., Mukohyama, S., Pookkillath, M.C., Addressing H0 tension by means of VCDM. Phys. Lett. B, 816, 2021, 136201 arXiv:2009.08718.
Erratum: Phys. Lett. B, 818, 2021 136364.
Vazquez, J.A., Hee, S., Hobson, M.P., Lasenby, A.N., Ibison, M., Bridges, M., Observational constraints on conformal time symmetry, missing matter and double dark energy. J. Cosmol. Astropart. Phys., 07, 2018, 062 arXiv:1208.2542.
Delubac, T., et al., BOSS Collaboration. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars. Astron. Astrophys., 574, 2015, A59 arXiv:1404.1801.
Sahni, V., Shtanov, Y., Brane world models of dark energy. J. Cosmol. Astropart. Phys., 11, 2003, 014 arXiv:astro-ph/0202346.
Bag, S., Sahni, V., Shafieloo, A., Shtanov, Y., Phantom braneworld and the Hubble tension. Astrophys. J., 923(2), 2021, 212 arXiv:2107.03271.
Di Valentino, E., Linder, E.V., Melchiorri, A., Vacuum phase transition solves the H0 tension. Phys. Rev. D, 97(4), 2018, 043528 arXiv:1710.02153.
Mörtsell, E., Dhawan, S., Does the hubble constant tension call for new physics?. J. Cosmol. Astropart. Phys., 09, 2018, 025 arXiv:1801.07260.
Poulin, V., Boddy, K.K., Bird, S., Kamionkowski, M., Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions. Phys. Rev. D, 97(12), 2018, 123504 arXiv:1803.02474.
Capozziello, S., Ruchika, Sen, A.A., Model independent constraints on dark energy evolution from low-redshift observations. Mon. Not. R. Astron. Soc., 484, 2019, 4484 arXiv:1806.03943.
Akarsu, Ö., Barrow, J.D., Board, C.V.R., Uzun, N.M., Vazquez, J.A., Screening Λ in a new modified gravity model. Eur. Phys. J. C, 79(10), 2019, 846 arXiv:1903.11519.
Visinelli, L., Vagnozzi, S., Danielsson, U., Revisiting a negative cosmological constant from low-redshift data. Symmetry, 11(8), 2019, 1035 arXiv:1907.07953.
Perez, A., Sudarsky, D., Wilson-Ewing, E., Resolving the H0 tension with diffusion. Gen. Relativity Gravitation, 53(1), 2021, 7 arXiv:2001.07536.
Akarsu, Ö., Katırcı, N., Kumar, S., Nunes, R.C., Öztürk, B., Sharma, S., Rastall gravity extension of the standard ΛCDM model: theoretical features and observational constraints. Eur. Phys. J. C, 80(11), 2020, 1050 arXiv:2004.04074.
Calderón, R., Gannouji, R., L'Huillier, B., Polarski, D., Negative cosmological constant in the dark sector?. Phys. Rev. D, 103(2), 2021, 023526 arXiv:2008.10237.
Ye, G., Piao, Y.-S., T0 Censorship of early dark energy and AdS vacua. Phys. Rev. D, 102(8), 2020, 083523 arXiv:2008.10832.
Paliathanasis, A., Leon, G., Dynamics of a two scalar field cosmological model with phantom terms. Cl. Quant. Grav., 38(7), 2021, 075013 arXiv:2009.12874.
Akarsu, O., Colgain, E.O., Özulker, E., Thakur, S., Yin, L., Inevitable manifestation of wiggles in the expansion of the late universe. Phys. Rev. D, 107(12), 2023, 123526 arXiv:2207.10609.
Di Gennaro, S., Ong, Y.C., Sign switching dark energy from a running barrow entropy. Universe, 8(10), 2022, 541 arXiv:2205.09311.
Ong, Y.C., An effective sign switching dark energy: Lotka–Volterra model of two interacting fluids. Universe, 9(10), 2023, 437 arXiv:2212.04429.
Alexandre, B., Gielen, S., Magueijo, J., Overall signature of the metric and the cosmological constant. J. Cosmol. Astropart. Phys., 02, 2024, 036 arXiv:2306.11502.
Tiwari, Y., Ghosh, B., Jain, R.K., Towards a possible solution to the Hubble tension with Horndeski gravity. Eur. Phys. J. C, 84(3), 2024, 220 arXiv:2301.09382.
Anchordoqui, L.A., Antoniadis, I., Lust, D., Anti-de Sitter → de Sitter transition driven by Casimir forces and mitigating tensions in cosmological parameters. Phys. Lett. B, 855, 2024, 138775 arXiv:2312.12352.
Anchordoqui, L.A., Antoniadis, I., Bielli, D., Chatrabhuti, A., Isono, H., Thin-wall vacuum decay in the presence of a compact dimension meets the H0 and S8 tensions. 2024 arXiv:2410.18649.
Wang, H., Peng, Z.-Y., Piao, Y.-S., Can recent DESI BAO measurements accommodate a negative cosmological constant?. Phys. Rev. D, 111(6), 2025, L061306 arXiv:2406.03395.
Toda, Y., Giarè, W., Özülker, E., Di Valentino, E., Vagnozzi, S., Combining pre- and post-recombination new physics to address cosmological tensions: Case study with varying electron mass and sign-switching cosmological constant. Phys. Dark Univ., 46, 2024, 101676 arXiv:2407.01173.
Akarsu, O., Bulduk, B., De Felice, A., Katırcı, N., Uzun, N.M., Unexplored regions in teleparallel f(T) gravity: Sign-changing dark energy density. 2024 arXiv:2410.23068.
Souza, M.S., Barcelos, A.M., Nunes, R.C., Akarsu, Ö., Kumar, S., Mapping the Λ sCDM scenario to f(T) modified gravity: Effects on structure growth rate. Universe, 11(1), 2025, 2 arXiv:2501.18031.
Mukherjee, P., Kumar, D., Sen, A.A., Quintessential implications of the presence of AdS in the dark energy sector. 2025 arXiv:2501.18335.
Tyagi, U.K., Haridasu, S., Basak, S., Holographic and gravity-thermodynamic approaches in entropic cosmology: Bayesian assessment using late-time data. Phys. Rev. D, 110(6), 2024, 063503 arXiv:2406.07446.
Manoharan, M.T., Insights on Granda–Oliveros holographic dark energy: possibility of negative dark energy at z≳2. Eur. Phys. J. C, 84(5), 2024, 552.
Gómez-Valent, A., Solà Peracaula, J., Composite dark energy and the cosmological tensions. Phys. Lett. B, 864, 2025, 139391 arXiv:2412.15124.
Dwivedi, S., Högås, M., 2D BAO vs. 3D BAO: Solving the Hubble tension with bimetric cosmology. Universe, 10(11), 2024, 406 arXiv:2407.04322.
Keeley, R.E., Abazajian, K.N., Kaplinghat, M., Shafieloo, A., The preference for evolving dark energy from cosmological distance measurements and possible signatures in the growth rate of perturbations. 2025 arXiv:2502.12667.
Di Valentino, E., Mukherjee, A., Sen, A.A., Dark energy with phantom crossing and the H0 tension. Entropy, 23(4), 2021, 404 arXiv:2005.12587.
Kumar, S., Nunes, R.C., Echo of interactions in the dark sector. Phys. Rev. D, 96(10), 2017, 103511 arXiv:1702.02143.
Di Valentino, E., Melchiorri, A., Mena, O., Can interacting dark energy solve the H0 tension?. Phys. Rev. D, 96(4), 2017, 043503 arXiv:1704.08342.
Yang, W., Mukherjee, A., Di Valentino, E., Pan, S., Interacting dark energy with time varying equation of state and the H0 tension. Phys. Rev. D, 98(12), 2018, 123527 arXiv:1809.06883.
Pan, S., Yang, W., Di Valentino, E., Saridakis, E.N., Chakraborty, S., Interacting scenarios with dynamical dark energy: Observational constraints and alleviation of the H0 tension. Phys. Rev. D, 100(10), 2019, 103520 arXiv:1907.07540.
Kumar, S., Nunes, R.C., Yadav, S.K., Dark sector interaction: a remedy of the tensions between CMB and LSS data. Eur. Phys. J. C, 79(7), 2019, 576 arXiv:1903.04865.
Di Valentino, E., Melchiorri, A., Mena, O., Vagnozzi, S., Nonminimal dark sector physics and cosmological tensions. Phys. Rev. D, 101(6), 2020, 063502 arXiv:1910.09853.
Di Valentino, E., Melchiorri, A., Mena, O., Vagnozzi, S., Interacting dark energy in the early 2020s: A promising solution to the H0 and cosmic shear tensions. Phys. Dark Univ., 30, 2020, 100666 arXiv:1908.04281.
Lucca, M., Hooper, D.C., Shedding light on dark matter-dark energy interactions. Phys. Rev. D, 102(12), 2020, 123502 arXiv:2002.06127.
Kumar, S., Remedy of some cosmological tensions via effective phantom-like behavior of interacting vacuum energy. Phys. Dark Univ., 33, 2021, 100862 arXiv:2102.12902.
Nunes, R.C., Vagnozzi, S., Kumar, S., Di Valentino, E., Mena, O., New tests of dark sector interactions from the full-shape galaxy power spectrum. Phys. Rev. D, 105(12), 2022, 123506 arXiv:2203.08093.
Sabogal, M.A., Silva, E., Nunes, R.C., Kumar, S., Di Valentino, E., Sign switching in dark sector coupling interactions as a candidate for resolving cosmological tensions. Phys. Rev. D, 111(4), 2025, 043531 arXiv:2501.10323.
Montero, M., Vafa, C., Valenzuela, I., The dark dimension and the Swampland. JHEP, 02, 2023, 022 arXiv:2205.12293.
Anchordoqui, L.A., Antoniadis, I., Large extra dimensions from higher-dimensional inflation. Phys. Rev. D, 109(10), 2024, 103508 arXiv:2310.20282.
Arkani-Hamed, N., Dubovsky, S., Nicolis, A., Villadoro, G., Quantum horizons of the standard model landscape. JHEP, 06, 2007, 078 arXiv:hep-th/0703067.
Soriano, J.F., Wohlberg, S., Anchordoqui, L.A., New insights on a sign-switching Λ. Phys. Dark Univ., 48, 2025, 101911 arXiv:2502.19239.
Awad, A., El Hanafy, W., Nashed, G.G.L., Saridakis, E.N., Phase portraits of general f(T) cosmology. J. Cosmol. Astropart. Phys., 02, 2018, 052 arXiv:1710.10194.
Hashim, M., El Hanafy, W., Golovnev, A., El-Zant, A.A., Toward a concordance teleparallel cosmology. Part I. Background dynamics. J. Cosmol. Astropart. Phys., 07, 2021, 052 arXiv:2010.14964.
Hashim, M., El-Zant, A.A., El Hanafy, W., Golovnev, A., Toward a concordance teleparallel cosmology. Part II. Linear perturbation. J. Cosmol. Astropart. Phys., 07, 2021, 053 arXiv:2104.08311.
Cicoli, M., De Alwis, S., Maharana, A., Muia, F., Quevedo, F., De Sitter vs Quintessence in string theory. Fortsch. Phys., 67(1–2), 2019, 1800079 arXiv:1808.08967.
Ruchika, Adil, S.A., Dutta, K., Mukherjee, A., Sen, A.A., Observational constraints on axion(s) dark energy with a cosmological constant. Phys. Dark Univ., 40, 2023, 101199 arXiv:2005.08813.
Grande, J., Solà, J., Stefancic, H., LXCDM: A cosmon model solution to the cosmological coincidence problem?. J. Cosmol. Astropart. Phys., 08, 2006, 011 arXiv:gr-qc/0604057.
Sen, A.A., Deviation from LambdaCDM: Pressure parametrization. Phys. Rev. D, 77, 2008, 043508 arXiv:0708.1072.
Kumar, S., Nautiyal, A., Sen, A.A., Deviation from ΛCDM with cosmic strings networks. Eur. Phys. J. C, 73(9), 2013, 2562 arXiv:1207.4024.
Wen, R.Y., Hergt, L.T., Afshordi, N., Scott, D., A cosmic glitch in gravity. J. Cosmol. Astropart. Phys., 03, 2024, 045 arXiv:2311.03028.
Maldacena, J.M., The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2 (1998), 231–252 arXiv:hep-th/9711200.
Bousso, R., Polchinski, J., Quantization of four form fluxes and dynamical neutralization of the cosmological constant. JHEP, 06, 2000, 006 arXiv:hep-th/0004134.
Demirtas, M., Kim, M., McAllister, L., Moritz, J., Rios-Tascon, A., Exponentially small cosmological constant in string theory. Phys. Rev. Lett., 128(1), 2022, 011602 arXiv:2107.09065.
Sen, A.A., Adil, S.A., Sen, S., Do cosmological observations allow a negative Λ?. Mon. Not. R. Astron. Soc. 518:1 (2022), 1098–1105 arXiv:2112.10641.
Dash, C.B.V., Sarkar, T.G., Sen, A.A., Post-reionization H i 21-cm signal: a probe of negative cosmological constant. M Mon. Not. R. Astron. Soc. 527:4 (2023), 11694–11706 arXiv:2309.01623.
Andrei, C., Ijjas, A., Steinhardt, P.J., Rapidly descending dark energy and the end of cosmic expansion. Proc. Nat. Acad. Sci., 119(15), 2022, e2200539119 arXiv:2201.07704.
Vagnozzi, S., Seven hints that early-time new physics alone is not sufficient to solve the hubble tension. Universe, 9(9), 2023, 393 arXiv:2308.16628.
Bolotin, Y.L., Kostenko, A., Lemets, O.A., Yerokhin, D.A., Cosmological evolution with interaction between dark energy and dark matter. Internat. J. Modern Phys. D, 24(03), 2014, 1530007 arXiv:1310.0085.
Wang, B., Abdalla, E., Atrio-Barandela, F., Pavón, D., Further understanding the interaction between dark energy and dark matter: current status and future directions. Rep. Progr. Phys., 87(3), 2024, 036901 arXiv:2402.00819.
van der Westhuizen, M.A., Abebe, A., Interacting dark energy: clarifying the cosmological implications and viability conditions. J. Cosmol. Astropart. Phys., 01, 2024, 048 arXiv:2302.11949.
Pavon, D., Wang, B., Le Chatelier-Braun principle in cosmological physics. Gen. Relativity Gravitation 41 (2009), 1–5 arXiv:0712.0565.
da Fonseca, V., Barreiro, T., Nunes, N.J., A simple parametrisation for coupled dark energy. Phys. Dark Univ., 35, 2022, 100940 arXiv:2104.14889.
Carrillo González, M., Trodden, M., Field theories and fluids for an interacting dark sector. Phys. Rev. D, 97(4), 2018, 043508 arXiv:1705.04737.
Erratum: Phys. Rev. D, 101, 2020 089901.
Zumalacarregui, M., Koivisto, T.S., Mota, D.F., Ruiz-Lapuente, P., Disformal scalar fields and the dark sector of the universe. J. Cosmol. Astropart. Phys., 05, 2010, 038 arXiv:1004.2684.
van de Bruck, C., Morrice, J., Disformal couplings and the dark sector of the universe. J. Cosmol. Astropart. Phys., 04, 2015, 036 arXiv:1501.03073.
van de Bruck, C., Teixeira, E.M., Dark D-Brane Cosmology: from background evolution to cosmological perturbations. Phys. Rev. D, 102(10), 2020, 103503 arXiv:2007.15414.
Van De Bruck, C., Mifsud, J., Searching for dark matter - dark energy interactions: going beyond the conformal case. Phys. Rev. D, 97(2), 2018, 023506 arXiv:1709.04882.
Valiviita, J., Majerotto, E., Maartens, R., Instability in interacting dark energy and dark matter fluids. J. Cosmol. Astropart. Phys., 07, 2008, 020 arXiv:0804.0232.
Gavela, M.B., Hernandez, D., Lopez Honorez, L., Mena, O., Rigolin, S., Dark coupling. J. Cosmol. Astropart. Phys., 07, 2009, 034 arXiv:0901.1611.
Erratum: JCAP, 05, 2010 E01.
Zhai, Y., Giarè, W., van de Bruck, C., Di Valentino, E., Mena, O., Nunes, R.C., A consistent view of interacting dark energy from multiple CMB probes. J. Cosmol. Astropart. Phys., 07, 2023, 032 arXiv:2303.08201.
Giarè, W., Zhai, Y., Pan, S., Di Valentino, E., Nunes, R.C., van de Bruck, C., Tightening the reins on nonminimal dark sector physics: Interacting dark energy with dynamical and nondynamical equation of state. Phys. Rev. D, 110(6), 2024, 063527 arXiv:2404.02110.
Paliathanasis, A., Pan, S., Yang, W., Dynamics of nonlinear interacting dark energy models. Internat. J. Modern Phys. D, 28(12), 2019, 1950161 arXiv:1903.02370.
De-Santiago, J., Sánchez G., I.E., Tamayo, D., Non-linear coupling in the dark sector as a running vacuum model. Gen. Relativity Gravitation, 50(8), 2018, 101 arXiv:1612.02836.
Arevalo, F., Bacalhau, A.P.R., Zimdahl, W., Cosmological dynamics with non-linear interactions. Cl. Quant. Grav., 29, 2012, 235001 arXiv:1112.5095.
Ebrahimi, E., Golchin, H., Mehrabi, A., Movahed, S.M.S., Consistency of nonlinear interacting ghost dark energy with recent observations. Internat. J. Modern Phys. D, 26(11), 2017, 1750124 arXiv:1611.06551.
Khurshudyan, M., Khurshudyan, A., On cosmology of interacting varying polytropic dark fluids. Modern Phys. Lett. A, 34(17), 2019, 1950133 arXiv:1707.04116.
Cheng, G., Ma, Y.-Z., Wu, F., Zhang, J., Chen, X., Testing interacting dark matter and dark energy model with cosmological data. Phys. Rev. D, 102(4), 2020, 043517 arXiv:1911.04520.
Yang, W., Pan, S., Paliathanasis, A., Cosmological constraints on an exponential interaction in the dark sector. Mon. Not. R. Astron. Soc. 482:1 (2019), 1007–1016 arXiv:1804.08558.
Khurshudyan, M., Khurshudyan, A., Some interacting dark energy models. Symmetry, 10(11), 2018, 577 arXiv:1708.02293.
Pan, S., Yang, W., Paliathanasis, A., Non-linear interacting cosmological models after Planck 2018 legacy release and the H0 tension. Mon. Not. R. Astron. Soc. 493:3 (2020), 3114–3131 arXiv:2002.03408.
Haba, Z., Stachowski, A., Szydłowski, M., Dynamics of the diffusive DM-DE interaction – dynamical system approach. J. Cosmol. Astropart. Phys., 07, 2016, 024 arXiv:1603.07620.
Koutsoumbas, G., Ntrekis, K., Papantonopoulos, E., Saridakis, E.N., Unification of dark matter - dark energy in generalized Galileon theories. J. Cosmol. Astropart. Phys., 02, 2018, 003 arXiv:1704.08640.
Calogero, S., Velten, H., Cosmology with matter diffusion. J. Cosmol. Astropart. Phys., 11, 2013, 025 arXiv:1308.3393.
Piratova Moreno, E.F., García, L.Á., Late accelerated expansion of the universe in diffusive scenarios. Rev. Mex. Astron. Astrofis. 59:2 (2023), 389–399.
Josset, T., Perez, A., Sudarsky, D., Dark energy from violation of energy conservation. Phys. Rev. Lett., 118(2), 2017, 021102 arXiv:1604.04183.
Perez, A., Sudarsky, D., Dark energy from quantum gravity discreteness. Phys. Rev. Lett., 122(22), 2019, 221302 arXiv:1711.05183.
Perez, A., Sudarsky, D., Black holes, Planckian granularity, and the changing cosmological ‘constant’. Gen. Relativity Gravitation, 53(4), 2021, 40 arXiv:1911.06059.
Corral, C., Cruz, N., González, E., Diffusion in unimodular gravity: Analytical solutions, late-time acceleration, and cosmological constraints. Phys. Rev. D, 102(2), 2020, 023508 arXiv:2005.06052.
Linares Cedeño, F.X., Nucamendi, U., Revisiting cosmological diffusion models in unimodular gravity and the H0 tension. Phys. Dark Univ., 32, 2021, 100807 arXiv:2009.10268.
Landau, S.J., Benetti, M., Perez, A., Sudarsky, D., Cosmological constraints on unimodular gravity models with diffusion. Phys. Rev. D, 108(4), 2023, 043524 arXiv:2211.07424.
Sebastianutti, M., Hogg, N.B., Bruni, M., The interacting vacuum and tensions: A comparison of theoretical models. Phys. Dark Univ., 46, 2024, 101546 arXiv:2312.14123.
Weinberg, S., The cosmological constant problem. Hsu, J.-P., Fine, D., (eds.) Rev. Modern Phys., 61, 1989, 1–23.
Ellis, G.F.R., van Elst, H., Murugan, J., Uzan, J.-P., On the trace-free Einstein equations as a viable alternative to general relativity. Cl. Quant. Grav., 28, 2011, 225007 arXiv:1008.1196.
de Cesare, M., Wilson-Ewing, E., Interacting dark sector from the trace-free Einstein equations: Cosmological perturbations with no instability. Phys. Rev. D, 106(2), 2022, 023527 arXiv:2112.12701.
Shafieloo, A., Hazra, D.K., Sahni, V., Starobinsky, A.A., Metastable dark energy with radioactive-like decay. Mon. Not. R. Astron. Soc. 473:2 (2018), 2760–2770 arXiv:1610.05192.
de Souza, J.S.T., S. Vicente, G., Graef, L.L., Constraints on metastable dark energy decaying into dark matter. Universe, 10(9), 2024, 371 arXiv:2403.04970.
Li, X., Shafieloo, A., Sahni, V., Starobinsky, A.A., Revisiting metastable dark energy and tensions in the estimation of cosmological parameters. Astrophys. J., 887, 2019, 153 arXiv:1904.03790.
Yang, W., Di Valentino, E., Pan, S., Basilakos, S., Paliathanasis, A., Metastable dark energy models in light of Planck 2018 data: Alleviating the H0 tension. Phys. Rev. D, 102(6), 2020, 063503 arXiv:2001.04307.
Urbanowski, K., Cosmological “constant” in a universe born in the metastable false vacuum state. Eur. Phys. J. C, 82(3), 2022, 242 arXiv:2110.11957.
Urbanowski, K., A universe born in a metastable false vacuum state needs not die. Eur. Phys. J. C, 83(1), 2023, 55 arXiv:2207.10965.
Abdalla, E., Graef, L.L., Wang, B., A model for dark energy decay. Phys. Lett. B 726 (2013), 786–790 arXiv:1202.0499.
Landim, R.G., Abdalla, E., Metastable dark energy. Phys. Lett. B 764 (2017), 271–276 arXiv:1611.00428.
Landim, R.G., Marcondes, R.J.F., Bernardi, F.F., Abdalla, E., Interacting dark energy in the dark SU(2)R model. Braz. J. Phys. 48:4 (2018), 364–369 arXiv:1711.07282.
Stojkovic, D., Starkman, G.D., Matsuo, R., Dark energy, the colored anti-de Sitter vacuum, and LHC phenomenology. Phys. Rev. D, 77, 2008, 063006 arXiv:hep-ph/0703246.
Greenwood, E., Halstead, E., Poltis, R., Stojkovic, D., Dark energy, the electroweak vacua and collider phenomenology. Phys. Rev. D, 79, 2009, 103003 arXiv:0810.5343.
Simpson, F., Scattering of dark matter and dark energy. Phys. Rev. D, 82, 2010, 083505 arXiv:1007.1034.
Pourtsidou, A., Skordis, C., Copeland, E.J., Models of dark matter coupled to dark energy. Phys. Rev. D, 88(8), 2013, 083505 arXiv:1307.0458.
Asghari, M., Beltrán Jiménez, J., Khosravi, S., Mota, D.F., On structure formation from a small-scales-interacting dark sector. J. Cosmol. Astropart. Phys., 04, 2019, 042 arXiv:1902.05532.
Figueruelo, D., et al. J-PAS: Forecasts for dark matter - dark energy elastic couplings. J. Cosmol. Astropart. Phys., 07, 2021, 022 arXiv:2103.01571.
Beltrán Jiménez, J., Bettoni, D., Figueruelo, D., Teppa Pannia, F.A., Tsujikawa, S., Probing elastic interactions in the dark sector and the role of S8. Phys. Rev. D, 104(10), 2021, 103503 arXiv:2106.11222.
Poulin, V., Bernal, J.L., Kovetz, E.D., Kamionkowski, M., Sigma-8 tension is a drag. Phys. Rev. D, 107(12), 2023, 123538 arXiv:2209.06217.
Jiménez, J.B., Bettoni, D., Figueruelo, D., Teppa Pannia, F.A., On evidence for elastic interactions in the dark sector. Phys. Dark Univ., 47, 2025, 101761 arXiv:2410.18645.
Beltrán Jiménez, J., Di Dio, E., Figueruelo, D., A smoking gun from the power spectrum dipole for elastic interactions in the dark sector. J. Cosmol. Astropart. Phys., 11, 2023, 088 arXiv:2212.08617 [astro-ph.CO].
Beltrán Jiménez, J., Figueruelo, D., Teppa Pannia, F.A., Nondegeneracy of massive neutrinos and elastic interactions in the dark sector. Phys. Rev. D, 110(2), 2024, 023527 arXiv:2403.03216 [astro-ph.CO].
Baldi, M., Simpson, F., Structure formation simulations with momentum exchange: alleviating tensions between high-redshift and low-redshift cosmological probes. Mon. Not. R. Astron. Soc. 465:1 (2017), 653–666 arXiv:1605.05623 [astro-ph.CO].
Pourtsidou, A., Tram, T., Reconciling CMB and structure growth measurements with dark energy interactions. Phys. Rev. D, 94(4), 2016, 043518 arXiv:1604.04222 [astro-ph.CO].
Agrawal, P., Obied, G., Steinhardt, P.J., Vafa, C., On the cosmological implications of the String Swampland. Phys. Lett. B 784 (2018), 271–276 arXiv:1806.09718 [hep-th].
Kinney, W.H., Vagnozzi, S., Visinelli, L., The zoo plot meets the swampland: mutual (in)consistency of single-field inflation, string conjectures, and cosmological data. Cl. Quant. Grav., 36(11), 2019, 117001 arXiv:1808.06424 [astro-ph.CO].
Agrawal, P., Obied, G., Vafa, C., H0 tension, swampland conjectures, and the epoch of fading dark matter. Phys. Rev. D, 103(4), 2021, 043523 arXiv:1906.08261 [astro-ph.CO].
Salam, A., Sezgin, E., Chiral compactification on Minkowski x S**2 of N=2 Einstein–Maxwell supergravity in six-dimensions. Phys. Lett. B, 147, 1984, 47.
Cvetic, M., Gibbons, G.W., Pope, C.N., A string and M theory origin for the Salam–Sezgin model. Nuclear Phys. B 677 (2004), 164–180 arXiv:hep-th/0308026.
Anchordoqui, L.A., Antoniadis, I., Lüst, D., Soriano, J.F., Taylor, T.R., H0 tension and the String Swampland. Phys. Rev. D, 101, 2020, 083532 arXiv:1912.00242 [hep-th].
Anchordoqui, L.A., Antoniadis, I., Lüst, D., Soriano, J.F., Dark energy, Ricci-nonflat spaces, and the Swampland. Phys. Lett. B, 816, 2021, 136199 arXiv:2005.10075 [hep-th].
Benisty, D., Pan, S., Staicova, D., Di Valentino, E., Nunes, R.C., Late-time constraints on interacting dark energy: Analysis independent of H0, rd, and MB. Astron. Astrophys., 688, 2024, A156 arXiv:2403.00056 [astro-ph.CO].
Hoerning, G.A., Landim, R.G., Ponte, L.O., Rolim, R.P., Abdalla, F.B., Abdalla, E., Constraints on interacting dark energy revisited: implications for the hubble tension. 2023 arXiv:2308.05807 [astro-ph.CO].
Pan, S., Yang, W., On the interacting dark energy scenarios − the case for Hubble constant tension. 2023 arXiv:2310.07260 [astro-ph.CO].
Yang, W., Pan, S., Di Valentino, E., Nunes, R.C., Vagnozzi, S., Mota, D.F., Tale of stable interacting dark energy, observational signatures, and the H0 tension. J. Cosmol. Astropart. Phys., 09, 2018, 019 arXiv:1805.08252 [astro-ph.CO].
Bhattacharyya, A., Alam, U., Pandey, K.L., Das, S., Pal, S., Are H0 and σ8 tensions generic to present cosmological data?. Astrophys. J., 876(2), 2019, 143 arXiv:1805.04716 [astro-ph.CO].
Di Valentino, E., Ferreira, R.Z., Visinelli, L., Danielsson, U., Late time transitions in the quintessence field and the H0 tension. Phys. Dark Univ., 26, 2019, 100385 arXiv:1906.11255 [astro-ph.CO].
Yao, Y.-H., Meng, X.-H., Can interacting dark energy with dynamical coupling resolve the Hubble tension. 2022 arXiv:2207.05955 [astro-ph.CO].
Gariazzo, S., Di Valentino, E., Mena, O., Nunes, R.C., Late-time interacting cosmologies and the Hubble constant tension. Phys. Rev. D, 106(2), 2022, 023530 arXiv:2111.03152 [astro-ph.CO].
Guo, R.-Y., Feng, L., Yao, T.-Y., Chen, X.-Y., Exploration of interacting dynamical dark energy model with interaction term including the equation-of-state parameter: alleviation of the H0 tension. J. Cosmol. Astropart. Phys., 12(12), 2021, 036 arXiv:2110.02536 [gr-qc].
Nunes, R.C., Di Valentino, E., Dark sector interaction and the supernova absolute magnitude tension. Phys. Rev. D, 104(6), 2021, 063529 arXiv:2107.09151 [astro-ph.CO].
Zhao, Y., Liu, Y., Liao, S., Zhang, J., Liu, X., Du, W., Constraining interacting dark energy models with the halo concentration–mass relation. Mon. Not. R. Astron. Soc. 523:4 (2023), 5962–5971 arXiv:2212.02050 [astro-ph.CO].
Gao, L.-Y., Zhao, Z.-W., Xue, S.-S., Zhang, X., Relieving the H 0 tension with a new interacting dark energy model. J. Cosmol. Astropart. Phys., 07, 2021, 005 arXiv:2101.10714 [astro-ph.CO].
Amirhashchi, H., Yadav, A.K., Ahmad, N., Yadav, V., Interacting dark sectors in anisotropic universe: Observational constraints and H0 tension. Phys. Dark Univ., 36, 2022, 101043 arXiv:2001.03775 [astro-ph.CO].
Pan, S., Yang, W., Singha, C., Saridakis, E.N., Observational constraints on sign-changeable interaction models and alleviation of the H0 tension. Phys. Rev. D, 100(8), 2019, 083539 arXiv:1903.10969 [astro-ph.CO].
Gao, L.-Y., Xue, S.-S., Zhang, X., Dark energy and matter interacting scenario to relieve H 0 and S 8 tensions*. Chin. Phys. C, 48(5), 2024, 051001 arXiv:2212.13146 [astro-ph.CO].
Yang, W., Pan, S., Di Valentino, E., Mena, O., Melchiorri, A., 2021-H0 odyssey: closed, phantom and interacting dark energy cosmologies. J. Cosmol. Astropart. Phys., 10, 2021, 008 arXiv:2101.03129 [astro-ph.CO].
Yang, W., Pan, S., Nunes, R.C., Mota, D.F., Dark calling Dark: Interaction in the dark sector in presence of neutrino properties after Planck CMB final release. J. Cosmol. Astropart. Phys., 04, 2020, 008 arXiv:1910.08821 [astro-ph.CO].
Lucca, M., Dark energy–dark matter interactions as a solution to the S8 tension. Phys. Dark Univ., 34, 2021, 100899 arXiv:2105.09249 [astro-ph.CO].
An, R., Feng, C., Wang, B., Relieving the tension between weak lensing and cosmic microwave background with interacting dark matter and dark energy models. J. Cosmol. Astropart. Phys., 02, 2018, 038 arXiv:1711.06799 [astro-ph.CO].
Sinha, S., Banerjee, N., Density perturbation in an interacting holographic dark energy model. Eur. Phys. J. Plus, 135(10), 2020, 779 arXiv:1911.06520 [gr-qc].
Sinha, S., Differentiating dark interactions with perturbation. Phys. Rev. D, 103(12), 2021, 123547 arXiv:2101.08959 [astro-ph.CO].
Sinha, S., Banerjee, M., Das, S., Perturbation in an interacting dark universe. Phys. Dark Univ., 42, 2023, 101273 arXiv:2204.05174 [gr-qc].
Barros, B.J., Castelão, D., da Fonseca, V., Barreiro, T., Nunes, N.J., Tereno, I., Is there evidence for CIDER in the Universe?. J. Cosmol. Astropart. Phys., 01, 2023, 013 arXiv:2209.04468 [astro-ph.CO].
de Haro, J., Nojiri, S., Odintsov, S.D., Oikonomou, V.K., Pan, S., Finite-time cosmological singularities and the possible fate of the universe. Phys. Rep. 1034 (2023), 1–114 arXiv:2309.07465 [gr-qc].
Nojiri, S., Odintsov, S.D., Tsujikawa, S., Properties of singularities in (phantom) dark energy universe. Phys. Rev. D, 71, 2005, 063004 arXiv:hep-th/0501025.
Nojiri, S., Odintsov, S.D., Oikonomou, V.K., Modified gravity theories on a Nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 692 (2017), 1–104 arXiv:1705.11098 [gr-qc].
Nojiri, S., Odintsov, S.D., Inhomogeneous equation of state of the universe: Phantom era, future singularity and crossing the phantom barrier. Phys. Rev. D, 72, 2005, 023003 arXiv:hep-th/0505215.
Bamba, K., Nojiri, S., Odintsov, S.D., The Universe future in modified gravity theories: Approaching the finite-time future singularity. J. Cosmol. Astropart. Phys., 10, 2008, 045 arXiv:0807.2575 [hep-th].
Nojiri, S., Odintsov, S.D., Quantum escape of sudden future singularity. Phys. Lett. B 595 (2004), 1–8 arXiv:hep-th/0405078.
Castello, S., Grimm, N., Bonvin, C., Rescuing constraints on modified gravity using gravitational redshift in large-scale structure. Phys. Rev. D, 106(8), 2022, 083511 arXiv:2204.11507 [astro-ph.CO].
Castello, S., Mancarella, M., Grimm, N., Sobral-Blanco, D., Tutusaus, I., Bonvin, C., Gravitational redshift constraints on the effective theory of interacting dark energy. J. Cosmol. Astropart. Phys., 05, 2024, 003 arXiv:2311.14425 [astro-ph.CO].
Bonvin, C., Pogosian, L.E., Can cosmology distinguish a dark force from a modification of gravity?. Nat. Astron. 7:9 (2023), 1023–1024.
Castello, S., Wang, Z., Dam, L., Bonvin, C., Pogosian, L., Disentangling modified gravity from a dark force with gravitational redshift. Phys. Rev. D, 110(10), 2024, 103523 arXiv:2404.09379 [astro-ph.CO].
Sobral-Blanco, D., Bonvin, C., Measuring anisotropic stress with relativistic effects. Phys. Rev. D, 104(6), 2021, 063516 arXiv:2102.05086 [astro-ph.CO].
Sobral-Blanco, D., Bonvin, C., Measuring the distortion of time with relativistic effects in large-scale structure. Mon. Not. R. Astron. Soc. 519:1 (2022), L39–L44 arXiv:2205.02567 [astro-ph.CO].
Li, Y.-H., Zhang, J.-F., Zhang, X., Testing models of vacuum energy interacting with cold dark matter. Phys. Rev. D, 93(2), 2016, 023002 arXiv:1506.06349 [astro-ph.CO].
Feng, L., Li, H.-L., Zhang, J.-F., Zhang, X., Exploring neutrino mass and mass hierarchy in interacting dark energy models. Sci. China Phys. Mech. Astron., 63(2), 2020, 220401 arXiv:1903.08848 [astro-ph.CO].
Li, Y.-H., Zhang, X., Large-scale stable interacting dark energy model: cosmological perturbations and observational constraints. Phys. Rev. D, 89(8), 2014, 083009 arXiv:1312.6328 [astro-ph.CO].
Feng, L., Zhang, X., Revisit of the interacting holographic dark energy model after Planck 2015. J. Cosmol. Astropart. Phys., 08, 2016, 072 arXiv:1607.05567 [astro-ph.CO].
Zhao, M.-M., He, D.-Z., Zhang, J.-F., Zhang, X., Search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of the Hubble constant. Phys. Rev. D, 96(4), 2017, 043520 arXiv:1703.08456 [astro-ph.CO].
Li, Y.-H., Zhang, J.-F., Zhang, X., Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach. Phys. Rev. D, 90(12), 2014, 123007 arXiv:1409.7205 [astro-ph.CO].
Guo, R.-Y., Li, Y.-H., Zhang, J.-F., Zhang, X., Weighing neutrinos in the scenario of vacuum energy interacting with cold dark matter: application of the parameterized post-Friedmann approach. J. Cosmol. Astropart. Phys., 05, 2017, 040 arXiv:1702.04189 [astro-ph.CO].
Zhang, X., Probing the interaction between dark energy and dark matter with the parametrized post-Friedmann approach. Sci. China Phys. Mech. Astron., 60(5), 2017, 050431 arXiv:1702.04564 [astro-ph.CO].
Feng, L., Li, Y.-H., Yu, F., Zhang, J.-F., Zhang, X., Exploring interacting holographic dark energy in a perturbed universe with parameterized post-Friedmann approach. Eur. Phys. J. C, 78(10), 2018, 865 arXiv:1807.03022 [astro-ph.CO].
Li, Y.-H., Zhang, X., IDECAMB: an implementation of interacting dark energy cosmology in CAMB. J. Cosmol. Astropart. Phys., 09, 2023, 046 arXiv:2306.01593 [astro-ph.CO].
Guo, J.-J., Zhang, J.-F., Li, Y.-H., He, D.-Z., Zhang, X., Probing the sign-changeable interaction between dark energy and dark matter with current observations. Sci. China Phys. Mech. Astron., 61(3), 2018, 030011 arXiv:1710.03068 [astro-ph.CO].
Li, H.-L., Zhang, J.-F., Feng, L., Zhang, X., Reexploration of interacting holographic dark energy model: Cases of interaction term excluding the Hubble parameter. Eur. Phys. J. C, 77(12), 2017, 907 arXiv:1711.06159 [astro-ph.CO].
Feng, L., He, D.-Z., Li, H.-L., Zhang, J.-F., Zhang, X., Constraints on active and sterile neutrinos in an interacting dark energy cosmology. Sci. China Phys. Mech. Astron., 63(9), 2020, 290404 arXiv:1910.03872 [astro-ph.CO].
Zhang, M., Wang, B., Wu, P.-J., Qi, J.-Z., Xu, Y., Zhang, J.-F., Zhang, X., Prospects for constraining interacting dark energy models with 21 cm intensity mapping experiments. Astrophys. J., 918(2), 2021, 56 arXiv:2102.03979 [astro-ph.CO].
Li, T.-N., Wu, P.-J., Du, G.-H., Jin, S.-J., Li, H.-L., Zhang, J.-F., Zhang, X., Constraints on interacting dark energy models from the desi baryon acoustic oscillation and des supernovae data. Astrophys. J., 976(1), 2024, 1 arXiv:2407.14934 [astro-ph.CO].
Gleyzes, J., Langlois, D., Mancarella, M., Vernizzi, F., Effective theory of interacting dark energy. J. Cosmol. Astropart. Phys., 08, 2015, 054 arXiv:1504.05481 [astro-ph.CO].
Gleyzes, J., Langlois, D., Mancarella, M., Vernizzi, F., Effective theory of dark energy at redshift survey scales. J. Cosmol. Astropart. Phys., 02, 2016, 056 arXiv:1509.02191 [astro-ph.CO].
Will, C.M., The confrontation between general relativity and experiment. Living Rev. Rel., 17, 2014, 4 arXiv:1403.7377 [gr-qc].
Addazi, A., et al. Quantum gravity phenomenology at the dawn of the multi-messenger era—A review. Prog. Part. Nucl. Phys., 125, 2022, 103948 arXiv:2111.05659 [hep-ph].
Alves Batista, R., et al. White paper and roadmap for quantum gravity phenomenology in the multi-messenger era. Cl. Quant. Grav., 42(3), 2025, 032001 arXiv:2312.00409 [gr-qc].
Goroff, M.H., Sagnotti, A., The ultraviolet behavior of einstein gravity. Nuclear Phys. B 266 (1986), 709–736.
Barack, L., et al. Black holes, gravitational waves and fundamental physics: a roadmap. Cl. Quant. Grav., 36(14), 2019, 143001 arXiv:1806.05195 [gr-qc].
Carroll, S.M., The cosmological constant. Living Rev. Rel., 4, 2001, 1 arXiv:astro-ph/0004075.
Riess, A.G., et al., Supernova Search Team Collaboration. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116 (1998), 1009–1038 arXiv:astro-ph/9805201.
Perlmutter, S., et al., Supernova Cosmology Project Collaboration. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 517 (1999), 565–586 arXiv:astro-ph/9812133.
Davis, M., Efstathiou, G., Frenk, C.S., White, S.D.M., The evolution of large scale structure in a universe dominated by cold dark matter. Astrophys. J. 292 (1985), 371–394.
Bertone, G., Hooper, D., History of dark matter. Rev. Modern Phys., 90(4), 2018, 045002 arXiv:1605.04909 [astro-ph.CO].
Aprile, E., Doke, T., Liquid xenon detectors for particle physics and astrophysics. Rev. Modern Phys. 82 (2010), 2053–2097 arXiv:0910.4956 [physics.ins-det].
Misiaszek, M., Rossi, N., Direct detection of dark matter: A critical review. Symmetry, 16(2), 2024, 201 arXiv:2310.20472 [hep-ph].
Bajardi, F., Capozziello, S., Noether Symmetries in Theories of Gravity Cambridge Monographs on Mathematical Physics, 2022, Cambridge University Press.
CANTATA Collaboration. Saridakis, E.N., Lazkoz, R., Salzano, V., Vargas Moniz, P., Capozziello, S., Beltrán Jiménez, J., De Laurentis, M., Olmo, G.J., (eds.) Modified Gravity and Cosmology. An Update by the CANTATA Network, 2021, Springer arXiv:2105.12582 [gr-qc].
Stelle, K.S., Renormalization of higher derivative quantum gravity. Phys. Rev. D 16 (1977), 953–969.
Bajardi, F., Capozziello, S., Vernieri, D., Non-local curvature and Gauss–Bonnet cosmologies by Noether symmetries. Eur. Phys. J. Plus, 135(12), 2020, 942 arXiv:2011.01317 [gr-qc].
Bajardi, F., Vernieri, D., Capozziello, S., Exact solutions in higher-dimensional Lovelock and AdS5 Chern–Simons gravity. J. Cosmol. Astropart. Phys., 11(11), 2021, 057 arXiv:2106.07396 [gr-qc].
Halliwell, J.J., Scalar fields in cosmology with an exponential potential. Phys. Lett. B, 185, 1987, 341.
Urban, Z., Bajardi, F., Capozziello, S., The Noether–Bessel-Hagen symmetry approach for dynamical systems. Int. J. Geom. Meth. Mod. Phys., 17(14), 2020, 2050215 arXiv:2003.13756 [gr-qc].
Krssak, M., van den Hoogen, R.J., Pereira, J.G., Böhmer, C.G., Coley, A.A., Teleparallel theories of gravity: illuminating a fully invariant approach. Cl. Quant. Grav., 36(18), 2019, 183001 arXiv:1810.12932 [gr-qc].
Bahamonde, S., Dialektopoulos, K.F., Escamilla-Rivera, C., Farrugia, G., Gakis, V., Hendry, M., Hohmann, M., Levi Said, J., Mifsud, J., Di Valentino, E., Teleparallel gravity: from theory to cosmology. Rep. Progr. Phys., 86(2), 2023, 026901 arXiv:2106.13793 [gr-qc].
Jiménez Cano, A., Metric-Affine Gauge Theories of Gravity. Foundations and New Insights. (Ph.D. thesis), 2021, Granada U., Theor. Phys. Astrophys. arXiv:2201.12847 [gr-qc].
Ayuso, I., Lazkoz, R., Salzano, V., Observational constraints on cosmological solutions of f(Q) theories. Phys. Rev. D, 103(6), 2021, 063505 arXiv:2012.00046 [astro-ph.CO].
Hohmann, M., Pfeifer, C., Voicu, N., Mathematical foundations for field theories on Finsler spacetimes. J. Math. Phys., 63(3), 2022, 032503 arXiv:2106.14965 [math-ph].
Pfeifer, C., Finsler spacetime geometry in Physics. Int. J. Geom. Meth. Mod. Phys., 16(supp02), 2019, 1941004 arXiv:1903.10185 [gr-qc].
Barrow, J.D., Cotsakis, S., Inflation and the conformal structure of higher order gravity theories. Phys. Lett. B 214 (1988), 515–518.
Sotiriou, T.P., Faraoni, V., f(R) theories of gravity. Rev. Modern Phys. 82 (2010), 451–497 arXiv:0805.1726 [gr-qc].
De Felice, A., Tsujikawa, S., f(R) theories. Living Rev. Rel., 13, 2010, 3 arXiv:1002.4928 [gr-qc].
Capozziello, S., De Laurentis, M., Extended theories of gravity. Phys. Rep. 509 (2011), 167–321 arXiv:1108.6266 [gr-qc].
Starobinsky, A.A., Disappearing cosmological constant in f(R) gravity. JETP Lett. 86 (2007), 157–163 arXiv:0706.2041 [astro-ph].
Paliathanasis, A., Tsamparlis, M., Basilakos, S., Constraints and analytical solutions of f(R) theories of gravity using Noether symmetries. Phys. Rev. D, 84, 2011, 123514 arXiv:1111.4547 [astro-ph.CO].
Nojiri, S., Odintsov, S.D., Modified f(R) gravity consistent with realistic cosmology: From matter dominated epoch to dark energy universe. Phys. Rev. D, 74, 2006, 086005 arXiv:hep-th/0608008.
Papagiannopoulos, G., Basilakos, S., Barrow, J.D., Paliathanasis, A., New integrable models and analytical solutions in f(R) cosmology with an ideal gas. Phys. Rev. D, 97(2), 2018, 024026 arXiv:1801.01274 [gr-qc].
Bajardi, F., D'Agostino, R., Benetti, M., De Falco, V., Capozziello, S., Early and late time cosmology: the f(R) gravity perspective. Eur. Phys. J. Plus, 137(11), 2022, 1239 arXiv:2211.06268 [gr-qc].
Nojiri, S., Odintsov, S.D., Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rep. 505 (2011), 59–144 arXiv:1011.0544 [gr-qc].
Capozziello, S., et al. Constraining Theories of Gravity by GINGER experiment. Eur. Phys. J. Plus, 136(4), 2021, 394 arXiv:2103.15135 [gr-qc] Eur. Phys. J. Plus, 136, 2021, 563 Erratum.
Schiavone, T., Montani, G., Bombacigno, F., f(R) gravity in the Jordan frame as a paradigm for the Hubble tension. Mon. Not. R. Astron. Soc. 522:1 (2023), L72–L77 arXiv:2211.16737 [gr-qc].
Montani, G., De Angelis, M., Bombacigno, F., Carlevaro, N., Metric f(R) gravity with dynamical dark energy as a scenario for the Hubble tension. Mon. Not. R. Astron. Soc. 527:1 (2023), L156–L161 arXiv:2306.11101 [gr-qc].
Montani, G., Carlevaro, N., De Angelis, M., Modified gravity in the presence of matter creation: Scenario for the late universe. Entropy, 26(8), 2024, 662 arXiv:2407.12409 [gr-qc].
Montani, G., Carlevaro, N., Dainotti, M.G., Running Hubble constant: Evolutionary dark energy. Phys. Dark Univ., 48, 2025, 101847 arXiv:2411.07060 [gr-qc].
Montani, G., Carlevaro, N., Dainotti, M.G., Slow-rolling scalar dynamics as solution for the Hubble tension. Phys. Dark Univ., 44, 2024, 101486 arXiv:2311.04822 [gr-qc].
Montani, G., Carlevaro, N., Escamilla, L.A., Di Valentino, E., Kinetic model for dark energy—dark matter interaction: Scenario for the Hubble tension. Phys. Dark Univ., 48, 2025, 101848 arXiv:2404.15977 [gr-qc].
Barroso Varela, M., Bertolami, O., Is cosmological data suggesting a nonminimal coupling between matter and gravity?. Phys. Dark Univ., 48, 2025, 101861 arXiv:2412.09348 [astro-ph.CO].
Dainotti, M.G., De Simone, B., Schiavone, T., Montani, G., Rinaldi, E., Lambiase, G., On the Hubble constant tension in the SNe Ia Pantheon sample. Astrophys. J., 912(2), 2021, 150 arXiv:2103.02117 [astro-ph.CO].
Nojiri, S., Odintsov, S.D., Oikonomou, V.K., Integral F(R) gravity and saddle point condition as a remedy for the H0-tension. Nuclear Phys. B, 980, 2022, 115850 arXiv:2205.11681 [gr-qc].
Barrow, J.D., Slow roll inflation in scalar - tensor theories. Phys. Rev. D 51 (1995), 2729–2732.
Shtanov, Y., Traschen, J.H., Brandenberger, R.H., Universe reheating after inflation. Phys. Rev. D 51 (1995), 5438–5455 arXiv:hep-ph/9407247.
Allahverdi, R., Brandenberger, R., Cyr-Racine, F.-Y., Mazumdar, A., Reheating in inflationary cosmology: theory and applications. Ann. Rev. Nucl. Part. Sci. 60 (2010), 27–51 arXiv:1001.2600 [hep-th].
Greene, P.B., Inflationary reheating and fermions. AIP Conf. Proc. 478:1 (1999), 72–74 arXiv:hep-ph/9905256.
Kobayashi, T., Horndeski theory and beyond: a review. Rep. Progr. Phys., 82(8), 2019, 086901 arXiv:1901.07183 [gr-qc].
Kase, R., Tsujikawa, S., Dark energy in Horndeski theories after GW170817: A review. Internat. J. Modern Phys. D, 28(05), 2019, 1942005 arXiv:1809.08735 [gr-qc].
D'Agostino, R., Nunes, R.C., Probing observational bounds on scalar-tensor theories from standard sirens. Phys. Rev. D, 100(4), 2019, 044041 arXiv:1907.05516 [gr-qc].
Ezquiaga, J.M., Zumalacárregui, M., Dark energy after GW170817: Dead ends and the road ahead. Phys. Rev. Lett., 119(25), 2017, 251304 arXiv:1710.05901 [astro-ph.CO].
Bonilla, A., D'Agostino, R., Nunes, R.C., de Araujo, J.C.N., Forecasts on the speed of gravitational waves at high z. J. Cosmol. Astropart. Phys., 03, 2020, 015 arXiv:1910.05631 [gr-qc].
Saltas, I.D., Christensen-Dalsgaard, J., Searching for dark energy with the Sun. Astron. Astrophys., 667, 2022, A115 arXiv:2205.14134 [astro-ph.SR].
Babichev, E., Charmousis, C., Muntz, B., Padilla, A., Saltas, I.D., Horndeski speed tests with scalar-photon couplings. J. Cosmol. Astropart. Phys., 01, 2025, 041 arXiv:2407.20339 [gr-qc].
de Rham, C., Melville, S., Gravitational rainbows: LIGO and dark energy at its cutoff. Phys. Rev. Lett., 121(22), 2018, 221101 arXiv:1806.09417 [hep-th].
Ballardini, M., Braglia, M., Finelli, F., Paoletti, D., Starobinsky, A.A., Umiltà, C., Scalar-tensor theories of gravity, neutrino physics, and the H0 tension. J. Cosmol. Astropart. Phys., 10, 2020, 044 arXiv:2004.14349 [astro-ph.CO].
Petronikolou, M., Basilakos, S., Saridakis, E.N., Alleviating H0 tension in Horndeski gravity. Phys. Rev. D, 106(12), 2022, 124051 arXiv:2110.01338 [gr-qc].
Petronikolou, M., Saridakis, E.N., Alleviating the H0 tension in Scalar–Tensor and Bi-Scalar–Tensor theories. Universe, 9(9), 2023, 397 arXiv:2308.16044 [gr-qc].
Ballardini, M., Ferrari, A.G., Finelli, F., Phantom scalar-tensor models and cosmological tensions. J. Cosmol. Astropart. Phys., 04, 2023, 029 arXiv:2302.05291 [astro-ph.CO].
Ferrari, A.G., Ballardini, M., Finelli, F., Paoletti, D., Mauri, N., Cosmological effects of the Galileon term in scalar-tensor theories. Phys. Rev. D, 108(6), 2023, 063520 arXiv:2307.02987 [astro-ph.CO].
Ferrari, A.G., Ballardini, M., Finelli, F., Paoletti, D., Scalar-tensor gravity and DESI 2024 BAO data. Phys. Rev. D, 111(8), 2025, 083523 arXiv:2501.15298 [astro-ph.CO].
Frusciante, N., Peirone, S., Atayde, L., De Felice, A., Phenomenology of the generalized cubic covariant Galileon model and cosmological bounds. Phys. Rev. D, 101(6), 2020, 064001 arXiv:1912.07586 [astro-ph.CO].
Banerjee, S., Petronikolou, M., Saridakis, E.N., Alleviating the H0 tension with new gravitational scalar tensor theories. Phys. Rev. D, 108(2), 2023, 024012 arXiv:2209.02426 [gr-qc].
Brans, C., Dicke, R.H., Mach's principle and a relativistic theory of gravitation. Phys. Rev. 124 (1961), 925–935.
Dicke, R.H., Mach's principle and invariance under transformation of units. Phys. Rev. 125 (1962), 2163–2167.
Ayuso, I., Mimoso, J.P., Nunes, N.J., What if Newton's gravitational constant was negative?. Galaxies, 7(1), 2019, 38 arXiv:1903.07604 [gr-qc].
Akarsu, O., Katırcı, N., Özdemir, N., Vázquez, J.A., Anisotropic massive Brans–Dicke gravity extension of the standard ΛCDM model. Eur. Phys. J. C, 80(1), 2020, 32 arXiv:1903.06679 [gr-qc].
Gómez-Valent, A., Hassan Puttasiddappa, P., Difficulties in reconciling non-negligible differences between the local and cosmological values of the gravitational coupling in extended Brans–Dicke theories. J. Cosmol. Astropart. Phys., 09, 2021, 040 arXiv:2105.14819 [astro-ph.CO].
Barrow, J.D., Cotsakis, S., Chaotic behavior in higher order gravity theories. Phys. Lett. B 232 (1989), 172–176.
Cotsakis, S., Flessas, G., Stability of FRW cosmology in higher order gravity. Phys. Rev. D 48 (1993), 3577–3584.
Amendola, L., Battaglia Mayer, A., Capozziello, S., Occhionero, F., Gottlober, S., Muller, V., Schmidt, H.J., Generalized sixth order gravity and inflation. Cl. Quant. Grav. 10 (1993), L43–L47.
Cuzinatto, R.R., de Melo, C.A.M., Medeiros, L.G., Pompeia, P.J., f(R,∇μ1R,…,∇μ1…∇μnR) theories of gravity in Einstein frame: a higher order modified Starobinsky inflation model in the Palatini approach. Phys. Rev. D, 99(8), 2019, 084053 arXiv:1806.08850 [gr-qc].
Gottlober, S., Schmidt, H.J., Starobinsky, A.A., Sixth order gravity and conformal transformations. Cl. Quant. Grav., 7, 1990, 893.
Paliathanasis, A., fR,□R-gravity and equivalency with the modified GUP Scalar field models. Eur. Phys. J. C, 84(4), 2024, 422 arXiv:2404.04519 [gr-qc].
Wands, D., Extended gravity theories and the Einstein–Hilbert action. Cl. Quant. Grav. 11 (1994), 269–280 arXiv:gr-qc/9307034.
Berkin, A.L., Maeda, K.-i., Effects of R**3 and R box R terms on R**2 inflation. Phys. Lett. B 245 (1990), 348–354.
Bajardi, F., D'Agostino, R., Corrections to general relativity with higher-order invariants and cosmological applications. Int. J. Geom. Meth. Mod. Phys., 21(10), 2024, 2440006.
Carter, B.M.N., Neupane, I.P., Towards inflation and dark energy cosmologies from modified Gauss–Bonnet theory. J. Cosmol. Astropart. Phys., 06, 2006, 004 arXiv:hep-th/0512262.
Bajardi, F., Capozziello, S., Equivalence of nonminimally coupled cosmologies by Noether symmetries. Internat. J. Modern Phys. D, 29(14), 2020, 2030015 arXiv:2010.07914 [gr-qc].
Millano, A.D., Leon, G., Paliathanasis, A., Phase-space analysis of an Einstein–Gauss–Bonnet scalar field cosmology. Mathematics, 11(6), 2023, 1408 arXiv:2302.09371 [gr-qc].
Millano, A.D., Leon, G., Paliathanasis, A., Global dynamics in Einstein–Gauss–Bonnet scalar field cosmology with matter. Phys. Rev. D, 108(2), 2023, 023519 arXiv:2304.08659 [gr-qc].
Santos Da Costa, S., Roig, F.V., Alcaniz, J.S., Capozziello, S., De Laurentis, M., Benetti, M., Dynamical analysis on f(R,G) cosmology. Cl. Quant. Grav., 35(7), 2018, 075013 arXiv:1802.02572 [gr-qc].
Li, B., Barrow, J.D., Mota, D.F., The cosmology of modified Gauss–Bonnet gravity. Phys. Rev. D, 76, 2007, 044027 arXiv:0705.3795 [gr-qc].
Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Zerbini, S., Dark energy in modified Gauss–Bonnet gravity: Late-time acceleration and the hierarchy problem. Phys. Rev. D, 73, 2006, 084007 arXiv:hep-th/0601008.
Nojiri, S., Odintsov, S.D., Modified Gauss–Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 631 (2005), 1–6 arXiv:hep-th/0508049.
Nojiri, S., Odintsov, S.D., Sasaki, M., Gauss–Bonnet dark energy. Phys. Rev. D, 71, 2005, 123509 arXiv:hep-th/0504052.
Wang, D., Mota, D., 4D Gauss–Bonnet gravity: Cosmological constraints, H0 tension and large scale structure. Phys. Dark Univ., 32, 2021, 100813 arXiv:2103.12358 [astro-ph.CO].
Benetti, M., Santos da Costa, S., Capozziello, S., Alcaniz, J.S., De Laurentis, M., Observational constraints on Gauss–Bonnet cosmology. Internat. J. Modern Phys. D, 27(08), 2018, 1850084 arXiv:1803.00895 [gr-qc].
Högås, M., Mörtsell, E., Constraints on bimetric gravity. Part I. Analytical constraints. J. Cosmol. Astropart. Phys., 05, 2021, 001 arXiv:2101.08794 [gr-qc].
Högås, M., Mörtsell, E., Constraints on bimetric gravity. Part II. Observational constraints. J. Cosmol. Astropart. Phys., 05, 2021, 002 arXiv:2101.08795 [gr-qc].
Högås, M., Was Einstein Wrong?: Theoretical and Observational Constraints on Massive Gravity. (Ph.D. thesis), 2022, Stockholm University, Faculty of Science, Department of Physics.
Ntelis, P., Morris, A., Functors of actions. Found. Phys., 53(1), 2023, 29 arXiv:2010.06707 [physics.gen-ph].
Ntelis, P., New avenues and observational constraints on functors of actions theories. PoS, EPS-HEP2023, 2024, 104.
Beltrán Jiménez, J., Heisenberg, L., Koivisto, T.S., The geometrical trinity of gravity. Universe, 5(7), 2019, 173 arXiv:1903.06830 [hep-th].
Capozziello, S., De Falco, V., Ferrara, C., Comparing equivalent gravities: common features and differences. Eur. Phys. J. C, 82(10), 2022, 865 arXiv:2208.03011 [gr-qc].
Hohmann, M., Järv, L., Krššák, M., Pfeifer, C., Teleparallel theories of gravity as analogue of nonlinear electrodynamics. Phys. Rev. D, 97(10), 2018, 104042 arXiv:1711.09930 [gr-qc].
Maluf, J.W., The teleparallel equivalent of general relativity. Ann. Phys. 525 (2013), 339–357 arXiv:1303.3897 [gr-qc].
Xu, C., Saridakis, E.N., Leon, G., Phase-space analysis of teleparallel dark energy. J. Cosmol. Astropart. Phys., 07, 2012, 005 arXiv:1202.3781 [gr-qc].
Geng, C.-Q., Lee, C.-C., Saridakis, E.N., Observational constraints on teleparallel dark energy. J. Cosmol. Astropart. Phys., 01, 2012, 002 arXiv:1110.0913 [astro-ph.CO].
Bajardi, F., Capozziello, S., Noether symmetries and quantum cosmology in extended teleparallel gravity. Int. J. Geom. Meth. Mod. Phys., 18(supp01), 2021, 2140002 arXiv:2101.00432 [gr-qc].
Hayashi, K., Shirafuji, T., New general relativity. Phys. Rev. D 19 (1979), 3524–3553 Phys. Rev. D 24 (1982), 3312–3314 Addendum.
Bahamonde, S., Böhmer, C.G., Kr CČsšák, M., New classes of modified teleparallel gravity models. Phys. Lett. B 775 (2017), 37–43 arXiv:1706.04920 [gr-qc].
Järv, L., Rünkla, M., Saal, M., Vilson, O., Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev. D, 97(12), 2018, 124025 arXiv:1802.00492 [gr-qc].
Hohmann, M., Pfeifer, C., Teleparallel axions and cosmology. Eur. Phys. J. C, 81(4), 2021, 376 arXiv:2012.14423 [gr-qc].
Cai, Y.-F., Capozziello, S., De Laurentis, M., Saridakis, E.N., f(T) teleparallel gravity and cosmology. Rep. Progr. Phys., 79(10), 2016, 106901 arXiv:1511.07586 [gr-qc].
Li, B., Sotiriou, T.P., Barrow, J.D., f(T) gravity and local Lorentz invariance. Phys. Rev. D, 83, 2011, 064035 arXiv:1010.1041 [gr-qc].
Ferraro, R., Fiorini, F., Modified teleparallel gravity: Inflation without inflaton. Phys. Rev. D, 75, 2007, 084031 arXiv:gr-qc/0610067.
Linder, E.V., Einstein's other gravity and the acceleration of the universe. Phys. Rev. D, 81, 2010, 127301 arXiv:1005.3039 [astro-ph.CO] Phys. Rev. D, 82, 2010, 109902 Erratum.
Bamba, K., Geng, C.-Q., Lee, C.-C., Luo, L.-W., Equation of state for dark energy in f(T) gravity. J. Cosmol. Astropart. Phys., 01, 2011, 021 arXiv:1011.0508 [astro-ph.CO].
Kofinas, G., Saridakis, E.N., Teleparallel equivalent of Gauss–Bonnet gravity and its modifications. Phys. Rev. D, 90, 2014, 084044 arXiv:1404.2249 [gr-qc].
Paliathanasis, A., Barrow, J.D., Leach, P.G.L., Cosmological solutions of f(T) gravity. Phys. Rev. D, 94(2), 2016, 023525 arXiv:1606.00659 [gr-qc].
Finch, A., Said, J.L., Galactic rotation dynamics in f(T) gravity. Eur. Phys. J. C, 78(7), 2018, 560 arXiv:1806.09677 [astro-ph.GA].
Soudi, I., Farrugia, G., Gakis, V., Levi Said, J., Saridakis, E.N., Polarization of gravitational waves in symmetric teleparallel theories of gravity and their modifications. Phys. Rev. D, 100(4), 2019, 044008 arXiv:1810.08220 [gr-qc].
Farrugia, G., Levi Said, J., Finch, A., Gravitoelectromagnetism, solar system tests, and weak-field solutions in f(T,B) gravity with observational constraints. Universe, 6(2), 2020, 34 arXiv:2002.08183 [gr-qc].
Dimakis, N., Paliathanasis, A., Christodoulakis, T., Exploring quantum cosmology within the framework of teleparallel f(T) gravity. Phys. Rev. D, 109(2), 2024, 024031 arXiv:2308.08759 [gr-qc].
Albuquerque, I.S., Frusciante, N., A designer approach to f(Q) gravity and cosmological implications. Phys. Dark Univ., 35, 2022, 100980 arXiv:2202.04637 [astro-ph.CO].
Anagnostopoulos, F.K., Gakis, V., Saridakis, E.N., Basilakos, S., New models and big bang nucleosynthesis constraints in f(Q) gravity. Eur. Phys. J. C, 83(1), 2023, 58 arXiv:2205.11445 [gr-qc].
Capozziello, S., Shokri, M., Slow-roll inflation in f(Q) non-metric gravity. Phys. Dark Univ., 37, 2022, 101113 arXiv:2209.06670 [gr-qc].
Bajardi, F., Vernieri, D., Capozziello, S., Bouncing cosmology in f(Q) symmetric teleparallel gravity. Eur. Phys. J. Plus, 135(11), 2020, 912 arXiv:2011.01248 [gr-qc].
Banerjee, A., Pradhan, A., Tangphati, T., Rahaman, F., Wormhole geometries in f(Q) gravity and the energy conditions. Eur. Phys. J. C, 81(11), 2021, 1031 arXiv:2109.15105 [gr-qc].
D'Agostino, R., Nunes, R.C., Forecasting constraints on deviations from general relativity in f(Q) gravity with standard sirens. Phys. Rev. D, 106(12), 2022, 124053 arXiv:2210.11935 [gr-qc].
Hohmann, M., Pfeifer, C., Gravitational wave birefringence in spatially curved teleparallel cosmology. Phys. Lett. B, 834, 2022, 137437 arXiv:2203.01856 [gr-qc].
Khyllep, W., Paliathanasis, A., Dutta, J., Cosmological solutions and growth index of matter perturbations in f(Q) gravity. Phys. Rev. D, 103(10), 2021, 103521 arXiv:2103.08372 [gr-qc].
Capozziello, S., Caruana, M., Farrugia, G., Levi Said, J., Sultana, J., Cosmic growth in f(T) teleparallel gravity. Gen. Relativity Gravitation, 56(2), 2024, 27 arXiv:2308.15995 [gr-qc].
Paliathanasis, A., Dynamical analysis of fQ-cosmology. Phys. Dark Univ., 41, 2023, 101255 arXiv:2304.04219 [gr-qc].
Paliathanasis, A., f(T) cosmology with nonzero curvature. Modern Phys. Lett. A, 36(38), 2021, 2150261 arXiv:2107.00620 [gr-qc].
Yang, Y., Ren, X., Wang, Q., Lu, Z., Zhang, D., Cai, Y.-F., Saridakis, E.N., Quintom cosmology and modified gravity after DESI 2024. Sci. Bull. 69 (2024), 2698–2704 arXiv:2404.19437 [astro-ph.CO].
Paliathanasis, A., Attractors in fQ,B-gravity. Phys. Dark Univ., 45, 2024, 101519.
Wu, C., Ren, X., Yang, Y., Hu, Y.-M., Saridakis, E.N., Background-dependent and classical correspondences between f(Q) and f(T) gravity. 2024 arXiv:2412.01104 [gr-qc].
Cotton, F., A generalization of the Einstein–Maxwell equations. APS April Meeting Abstracts APS Meeting Abstracts, vol. 2016, 2016, L1.049.
Aljaf, M., Elizalde, E., Khurshudyan, M., Myrzakulov, K., Zhadyranova, A., Solving the H0 tension in f(T) gravity through Bayesian machine learning. Eur. Phys. J. C, 82(12), 2022, 1130 arXiv:2205.06252 [astro-ph.CO].
Yan, S.-F., Zhang, P., Chen, J.-W., Zhang, X.-Z., Cai, Y.-F., Saridakis, E.N., Interpreting cosmological tensions from the effective field theory of torsional gravity. Phys. Rev. D, 101(12), 2020, 121301 arXiv:1909.06388 [astro-ph.CO].
Ren, X., Wong, T.H.T., Cai, Y.-F., Saridakis, E.N., Data-driven reconstruction of the late-time cosmic acceleration with f(T) gravity. Phys. Dark Univ., 32, 2021, 100812 arXiv:2103.01260 [astro-ph.CO].
Nunes, R.C., Structure formation in f(T) gravity and a solution for H0 tension. J. Cosmol. Astropart. Phys., 05, 2018, 052 arXiv:1802.02281 [gr-qc].
D'Agostino, R., Nunes, R.C., Measurements of H0 in modified gravity theories: The role of lensed quasars in the late-time Universe. Phys. Rev. D, 101(10), 2020, 103505 arXiv:2002.06381 [astro-ph.CO].
de Rham, C., Garcia-Saenz, S., Heisenberg, L., Pozsgay, V., Cosmology of extended Proca–Nuevo. J. Cosmol. Astropart. Phys., 03, 2022, 053 arXiv:2110.14327 [hep-th].
Barros, B.J., Barreiro, T., Koivisto, T., Nunes, N.J., Testing F(Q) gravity with redshift space distortions. Phys. Dark Univ., 30, 2020, 100616 arXiv:2004.07867 [gr-qc].
Wang, Q., Ren, X., Cai, Y.-F., Luo, W., Saridakis, E.N., Observational test of f(Q) gravity with weak gravitational lensing. Astrophys. J., 974(1), 2024, 7 arXiv:2406.00242 [astro-ph.CO].
Sakr, Z., Schey, L., Investigating the Hubble tension and σ 8 discrepancy in f(Q) cosmology. J. Cosmol. Astropart. Phys., 10, 2024, 052 arXiv:2405.03627 [astro-ph.CO].
Pfeifer, C., Wohlfarth, M.N.R., Finsler geometric extension of Einstein gravity. Phys. Rev. D, 85, 2012, 064009 arXiv:1112.5641 [gr-qc].
Basilakos, S., Stavrinos, P., Cosmological equivalence between the Finsler–Randers space-time and the DGP gravity model. Phys. Rev. D, 87(4), 2013, 043506 arXiv:1301.4327 [gr-qc].
Basilakos, S., Kouretsis, A.P., Saridakis, E.N., Stavrinos, P., Resembling dark energy and modified gravity with Finsler–Randers cosmology. Phys. Rev. D, 88, 2013, 123510 arXiv:1311.5915 [gr-qc].
Papagiannopoulos, G., Basilakos, S., Paliathanasis, A., Savvidou, S., Stavrinos, P.C., Finsler–Randers cosmology: dynamical analysis and growth of matter perturbations. Cl. Quant. Grav., 34(22), 2017, 225008 arXiv:1709.03748 [gr-qc].
Papagiannopoulos, G., Basilakos, S., Paliathanasis, A., Pan, S., Stavrinos, P., Dynamics in varying vacuum Finsler–Randers cosmology. Eur. Phys. J. C, 80(9), 2020, 816 arXiv:2005.06231 [gr-qc].
Hohmann, M., Pfeifer, C., Voicu, N., The kinetic gas universe. Eur. Phys. J. C, 80(9), 2020, 809 arXiv:2005.13561 [gr-qc].
Hohmann, M., Pfeifer, C., Voicu, N., Relativistic kinetic gases as direct sources of gravity. Phys. Rev. D, 101(2), 2020, 024062 arXiv:1910.14044 [gr-qc].
Heefer, S., Pfeifer, C., Reggio, A., Fuster, A., A Cosmological unicorn solution to Finsler gravity. Phys. Rev. D, 108(6), 2023, 064051 arXiv:2306.00722 [gr-qc].
Zakharov, A.F., Jovanovic, P., Borka, D., Jovanovic, V.B., Constraining the range of Yukawa gravity interaction from S2 star orbits II: Bounds on graviton mass. J. Cosmol. Astropart. Phys., 05, 2016, 045 arXiv:1605.00913 [gr-qc].
Jovanović, P., Jovanović, V.B., Borka, D., Zakharov, A.F., Constraints on yukawa gravity parameters from observations of bright stars. J. Cosmol. Astropart. Phys., 03, 2023, 056 arXiv:2211.12951 [astro-ph.GA].
Jovanović, P., Jovanović, V.B., Borka, D.s., Zakharov, A.F., Improvement of graviton mass constraints using GRAVITY's detection of Schwarzschild precession in the orbit of S2 star around the Galactic Center. Phys. Rev. D, 109(6), 2024, 064046 arXiv:2305.13448 [astro-ph.GA].
Harko, T., Lobo, F.S.N., f(R,Lm) gravity. Eur. Phys. J. C 70 (2010), 373–379 arXiv:1008.4193 [gr-qc].
Katırcı, N., Kavuk, M., f(R,TμνTμν) gravity and Cardassian-like expansion as one of its consequences. Eur. Phys. J. Plus, 129, 2014, 163 arXiv:1302.4300 [gr-qc].
Akarsu, O., Bouhmadi-López, M., Katırcı, N., Nazari, E., Roshan, M., Uzun, N.M., Equivalence of matter-type modified gravity theories to general relativity with nonminimal matter interaction. Phys. Rev. D, 109(10), 2024, 104055 arXiv:2306.11717 [gr-qc].
Alvarenga, F.G., de la Cruz-Dombriz, A., Houndjo, M.J.S., Rodrigues, M.E., Sáez-Gómez, D., Dynamics of scalar perturbations in f(R,T) gravity. Phys. Rev. D, 87(10), 2013, 103526 arXiv:1302.1866 [gr-qc] Phys. Rev. D, 87, 2013, 129905 Erratum.
Asghari, M., Sheykhi, A., Growth of cosmic perturbations in the modified f(R,T) gravity. Phys. Dark Univ., 46, 2024, 101695 arXiv:2405.11840 [gr-qc].
Anand, S., Chaubal, P., Mazumdar, A., Mohanty, S., Parashari, P., Bounds on neutrino mass in viscous cosmology. J. Cosmol. Astropart. Phys., 05, 2018, 031 arXiv:1712.01254 [astro-ph.CO].
Anand, S., Chaubal, P., Mazumdar, A., Mohanty, S., Cosmic viscosity as a remedy for tension between PLANCK and LSS data. J. Cosmol. Astropart. Phys., 11, 2017, 005 arXiv:1708.07030 [astro-ph.CO].
Parashari, P., Anand, S., Chaubal, P., Lambiase, G., Mohanty, S., Mazumdar, A., Narang, A., Status of σ8 tension in different cosmological models. Springer Proc. Phys. 261 (2021), 907–912.
Mohanty, S., Anand, S., Chaubal, P., Mazumdar, A., Parashari, P., σ8 Discrepancy and its solutions. J. Astrophys. Astron., 39(4), 2018, 46.
Khoury, J., Weltman, A., Chameleon fields: Awaiting surprises for tests of gravity in space. Phys. Rev. Lett., 93, 2004, 171104 arXiv:astro-ph/0309300.
Li, B., Barrow, J.D., N-body simulations for coupled scalar field cosmology. Phys. Rev. D, 83, 2011, 024007 arXiv:1005.4231 [astro-ph.CO].
Paliathanasis, A., Dynamical analysis in chameleon dark energy. Fortsch. Phys., 71(8-9), 2023, 2300088 arXiv:2306.03880 [gr-qc].
Farajollahi, H., Salehi, A., Tayebi, F., Ravanpak, A., Stability analysis in tachyonic potential Chameleon cosmology. J. Cosmol. Astropart. Phys., 05, 2011, 017 arXiv:1105.4045 [gr-qc].
Paliathanasis, A., Dynamics in interacting scalar-torsion cosmology. Universe, 7(7), 2021, 244 arXiv:2107.05880 [gr-qc].
Paliathanasis, A., Chameleon mechanism in scalar nonmetricity cosmology. Ann. Phys., 468, 2024, 169724 arXiv:2407.05042 [gr-qc].
Paliathanasis, A., 4D Einstein–Gauss–Bonnet cosmology with Chameleon mechanism. Gen. Relativity Gravitation, 56(7), 2024, 84.
Paliathanasis, A., Leon, G., Barrow, J.D., Einstein-aether theory in Weyl integrable geometry. Eur. Phys. J. C, 80(12), 2020, 1099 arXiv:2007.06435 [gr-qc].
Gurzadyan, V.G., Stepanian, A., H_0 tension: clue to common nature of dark sector?. Eur. Phys. J. C, 79(7), 2019, 568 arXiv:1905.03442 [astro-ph.CO].
Gurzadyan, V.G., Stepanian, A., Hubble tension vs two flows. Eur. Phys. J. Plus, 136(2), 2021, 235 arXiv:2102.10100 [gr-qc].
Gurzadyan, V.G., Stepanian, A., Hubble tension and absolute constraints on the local Hubble parameter. Astron. Astrophys., 653, 2021, A145 arXiv:2108.07407 [astro-ph.CO].
Gurzadyan, V.G., Fimin, N.N., Chechetkin, V.M., Cosmic voids and the kinetic analysis - II. Link to Hubble tension. Astron. Astrophys., 672, 2023, A95 arXiv:2303.03194 [astro-ph.CO].
Gurzadyan, V.G., Fimin, N.N., Chechetkin, V.M., Cosmic voids and the kinetic analysis - III. Hubble tension and structure formation in the late Universe. Astron. Astrophys., 677, 2023, A161 arXiv:2309.11734 [astro-ph.CO].
Gurzadyan, V.G., Fimin, N.N., Chechetkin, V.M., Cosmic voids and the kinetic analysis - IV. Hubble tension and the cosmological constant. Astron. Astrophys., 694, 2025, A252 arXiv:2501.09598 [gr-qc].
Gurzadyan, V.G., Structure formation in the local Universe and the cosmological constant. 2025 arXiv:2502.02864 [gr-qc].
Erdem, R., Gravitational particle production and the Hubble tension. Universe, 10(9), 2024, 338 arXiv:2402.16791 [gr-qc].
Borowiec, A., Postolak, M., Is it possible to separate baryonic from dark matter within the Λ-CDM formalism?. Phys. Lett. B, 860, 2025, 139176 arXiv:2309.10364 [gr-qc].
Vagnozzi, S., Visinelli, L., Brax, P., Davis, A.-C., Sakstein, J., Direct detection of dark energy: The XENON1T excess and future prospects. Phys. Rev. D, 104(6), 2021, 063023 arXiv:2103.15834 [hep-ph].
Hinterbichler, K., Khoury, J., Symmetron fields: screening long-range forces through local symmetry restoration. Phys. Rev. Lett., 104, 2010, 231301 arXiv:1001.4525 [hep-th].
Högås, M., Mörtsell, E., Impact of symmetron screening on the Hubble tension: New constraints using cosmic distance ladder data. Phys. Rev. D, 108(2), 2023, 024007 arXiv:2303.12827 [astro-ph.CO].
Babichev, E., Deffayet, C., An introduction to the vainshtein mechanism. Cl. Quant. Grav., 30, 2013, 184001 arXiv:1304.7240 [gr-qc].
Akaike, H., A new look at the statistical model identification. IEEE Trans. Autom. Control 19:6 (1974), 716–723.
Schwarz, G., Estimating the dimension of a model. Ann. Stat. 6 (1978), 461–464.
Belgacem, E., Dirian, Y., Foffa, S., Maggiore, M., Nonlocal gravity. conceptual aspects and cosmological predictions. J. Cosmol. Astropart. Phys., 03, 2018, 002 arXiv:1712.07066 [hep-th].
Di Valentino, E., Saridakis, E., Riess, A., Cosmological tensions in the birthplace of the heliocentric model. Nat. Astron., 6, 2022, 1353 arXiv:2211.05248 [astro-ph.CO].
Braglia, M., Ballardini, M., Finelli, F., Koyama, K., Early modified gravity in light of the H0 tension and LSS data. Phys. Rev. D, 103(4), 2021, 043528 arXiv:2011.12934 [astro-ph.CO].
Benevento, G., Kable, J.A., Addison, G.E., Bennett, C.L., An exploration of an early gravity transition in light of cosmological tensions. Astrophys. J., 935(2), 2022, 156 arXiv:2202.09356 [astro-ph.CO].
Alexander, S.H.-S., Peskin, M.E., Sheikh-Jabbari, M.M., Leptogenesis from gravity waves in models of inflation. Phys. Rev. Lett., 96, 2006, 081301 arXiv:hep-th/0403069.
Lyth, D.H., Quimbay, C., Rodriguez, Y., Leptogenesis and tensor polarisation from a gravitational Chern–Simons term. JHEP, 03, 2005, 016 arXiv:hep-th/0501153.
Złośnik, T., Urban, F., Marzola, L., Koivisto, T., Spacetime and dark matter from spontaneous breaking of Lorentz symmetry. Cl. Quant. Grav., 35(23), 2018, 235003 arXiv:1807.01100 [gr-qc].
Nikjoo, M., Zlosnik, T., Hamiltonian formulation of gravity as a spontaneously-broken gauge theory of the Lorentz group. Cl. Quant. Grav., 41(4), 2024, 045005 arXiv:2308.01108 [gr-qc].
Gallagher, P., Koivisto, T., The Λ and the CDM as integration constants. Symmetry, 13(11), 2021, 2076 arXiv:2103.05435 [gr-qc].
Koivisto, T., Cosmology in the Lorentz gauge theory. Int. J. Geom. Meth. Mod. Phys., 20(Supp01), 2023, 2450040 arXiv:2306.00963 [gr-qc].
Popławski, N.J., Non-particle dark matter from Hubble parameter. Eur. Phys. J. C, 79(9), 2019, 734 arXiv:1906.03947 [physics.gen-ph].
Izaurieta, F., Lepe, S., Valdivia, O., The spin tensor of dark matter and the Hubble parameter tension. Phys. Dark Univ., 30, 2020, 100662 arXiv:2004.13163 [gr-qc].
Akhshabi, S., Zamani, S., Cosmological distances and hubble tension in Einstein–Cartan theory. Gen. Relativity Gravitation, 55(9), 2023, 102 arXiv:2305.00415 [gr-qc].
Koivisto, T.S., Zlosnik, T., Paths to gravitation via the gauging of parametrized field theories. Phys. Rev. D, 107(12), 2023, 124013 arXiv:2212.04562 [gr-qc].
Iosifidis, D., Jensko, E., Koivisto, T.S., Relativistic interacting fluids in cosmology. J. Cosmol. Astropart. Phys., 11, 2024, 043 arXiv:2406.01412 [gr-qc].
Benisty, D., Guendelman, E.I., Vasak, D., Struckmeier, J., Stoecker, H., Quadratic curvature theories formulated as Covariant Canonical Gauge theories of Gravity. Phys. Rev. D, 98(10), 2018, 106021 arXiv:1809.10447 [gr-qc].
Ferraro, R., Fiorini, F., On Born–Infeld gravity in Weitzenbock spacetime. Phys. Rev. D, 78, 2008, 124019 arXiv:0812.1981 [gr-qc].
Fiorini, F., Ferraro, R., A Type of Born-Infeld regular gravity and its cosmological consequences. Internat. J. Modern Phys. A 24 (2009), 1686–1689 arXiv:0904.1767 [gr-qc].
Jana, S., Cosmology in a reduced Born-Infeld f(T) theory of gravity. Phys. Rev. D, 90, 2014, 124007 arXiv:1410.7117 [gr-qc].
Nesseris, S., Perivolaropoulos, L., A comparison of cosmological models using recent supernova data. Phys. Rev. D, 70, 2004, 043531 arXiv:astro-ph/0401556.
Bamba, K., de Haro, J., Odintsov, S.D., Future singularities and teleparallelism in loop quantum cosmology. J. Cosmol. Astropart. Phys., 02, 2013, 008 arXiv:1211.2968 [gr-qc].
Haro, J., Amoros, J., Viability of the matter bounce scenario in F(T) gravity and Loop Quantum Cosmology for general potentials. J. Cosmol. Astropart. Phys., 12, 2014, 031 arXiv:1406.0369 [gr-qc].
de Haro, J., Amorós, J., Viability of the matter bounce scenario. J. Phys. Conf. Ser., 600(1), 2015, 012024 arXiv:1411.7611 [gr-qc].
de Haro, J., Cai, Y.-F., An Extended Matter Bounce Scenario: current status and challenges. Gen. Relativity Gravitation, 47(8), 2015, 95 arXiv:1502.03230 [gr-qc].
Raatikainen, S., Rasanen, S., Higgs inflation and teleparallel gravity. J. Cosmol. Astropart. Phys., 12, 2019, 021 arXiv:1910.03488 [gr-qc].
Ashtekar, A., Bojowald, M., Lewandowski, J., Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7:2 (2003), 233–268 arXiv:gr-qc/0304074.
Ashtekar, A., Pawlowski, T., Singh, P., Quantum nature of the big bang. Phys. Rev. Lett., 96, 2006, 141301 arXiv:gr-qc/0602086.
Ashtekar, A., Pawlowski, T., Singh, P., Quantum nature of the big bang: improved dynamics. Phys. Rev. D, 74, 2006, 084003 arXiv:gr-qc/0607039.
Ashtekar, A., Corichi, A., Singh, P., Robustness of key features of loop quantum cosmology. Phys. Rev. D, 77, 2008, 024046 arXiv:0710.3565 [gr-qc].
Taveras, V., Corrections to the Friedmann equations from LQG for a Universe with a free scalar field. Phys. Rev. D, 78, 2008, 064072 arXiv:0807.3325 [gr-qc].
Diener, P., Gupt, B., Megevand, M., Singh, P., Numerical evolution of squeezed and non-Gaussian states in loop quantum cosmology. Cl. Quant. Grav., 31, 2014, 165006 arXiv:1406.1486 [gr-qc].
Yang, J., Ding, Y., Ma, Y., Alternative quantization of the Hamiltonian in loop quantum cosmology II: Including the Lorentz term. Phys. Lett. B 682 (2009), 1–7 arXiv:0904.4379 [gr-qc].
Dapor, A., Liegener, K., Cosmological effective Hamiltonian from full loop quantum gravity dynamics. Phys. Lett. B 785 (2018), 506–510 arXiv:1706.09833 [gr-qc].
Li, B.-F., Singh, P., Wang, A., Towards cosmological dynamics from loop quantum gravity. Phys. Rev. D, 97(8), 2018, 084029 arXiv:1801.07313 [gr-qc].
Li, B.-F., Singh, P., Wang, A., Qualitative dynamics and inflationary attractors in loop cosmology. Phys. Rev. D, 98(6), 2018, 066016 arXiv:1807.05236 [gr-qc].
Assanioussi, M., Dapor, A., Liegener, K., Pawłowski, T., Emergent de Sitter epoch of the Loop Quantum Cosmos: a detailed analysis. Phys. Rev. D, 100(8), 2019, 084003 arXiv:1906.05315 [gr-qc].
Delhom, A., Olmo, G.J., Singh, P., A diffeomorphism invariant family of metric-affine actions for loop cosmologies. J. Cosmol. Astropart. Phys., 06, 2023, 059 arXiv:2302.04285 [gr-qc].
Olmo, G.J., Palatini approach to modified gravity: f(r) theories and beyond. Internat. J. Modern Phys. D 20 (2011), 413–462 arXiv:1101.3864 [gr-qc].
Olmo, G.J., Singh, P., Effective action for loop quantum cosmology a la Palatini. J. Cosmol. Astropart. Phys., 01, 2009, 030 arXiv:0806.2783 [gr-qc].
Bombacigno, F., Cianfrani, F., Montani, G., Big-Bounce cosmology in the presence of Immirzi field. Phys. Rev. D, 94(6), 2016, 064021 arXiv:1607.00910 [gr-qc].
Bombacigno, F., Montani, G., Big bounce cosmology for Palatini R2 gravity with a Nieh–Yan term. Eur. Phys. J. C, 79(5), 2019, 405 arXiv:1809.07563 [gr-qc].
Bombacigno, F., Boudet, S., Olmo, G.J., Montani, G., Big bounce and future time singularity resolution in Bianchi I cosmologies: The projective invariant Nieh-Yan case. Phys. Rev. D, 103(12), 2021, 124031 arXiv:2105.06870 [gr-qc].
Boudet, S., Bombacigno, F., Moretti, F., Olmo, G.J., Torsional birefringence in metric-affine Chern–Simons gravity: gravitational waves in late-time cosmology. J. Cosmol. Astropart. Phys., 01, 2023, 026 arXiv:2209.14394 [gr-qc].
Boudet, S., Bombacigno, F., Olmo, G.J., Porfirio, P.J., Quasinormal modes of Schwarzschild black holes in projective invariant Chern-Simons modified gravity. J. Cosmol. Astropart. Phys., 05(05), 2022, 032 arXiv:2203.04000 [gr-qc].
Bombacigno, F., Moretti, F., Boudet, S., Olmo, G.J., Landau damping for gravitational waves in parity-violating theories. J. Cosmol. Astropart. Phys., 02, 2023, 009 arXiv:2210.07673 [gr-qc].
Choi, K., String or M theory axion as a quintessence. Phys. Rev. D, 62, 2000, 043509 arXiv:hep-ph/9902292.
Kim, J.E., Nilles, H.P., A Quintessential axion. Phys. Lett. B 553 (2003), 1–6 arXiv:hep-ph/0210402.
Chakraborty, S., González, E., Leon, G., Wang, B., Time-averaging axion-like interacting scalar fields models. Eur. Phys. J. C, 81(11), 2021, 1039 arXiv:2107.04651 [gr-qc].
Kim, J.E., Nilles, H.P., Axionic dark energy and a composite QCD axion. J. Cosmol. Astropart. Phys., 05, 2009, 010 arXiv:0902.3610 [hep-th].
Chatzistavrakidis, A., Erfani, E., Nilles, H.P., Zavala, I., Axiology. J. Cosmol. Astropart. Phys., 09, 2012, 006 arXiv:1207.1128 [hep-ph].
Chatzistavrakidis, A., Karagiannis, G., Schupp, P., Torsion-induced gravitational θ term and gravitoelectromagnetism. Eur. Phys. J. C, 80(11), 2020, 1034 arXiv:2007.06632 [gr-qc].
Zhang, F., Feng, J.-X., Gao, X., Scalar induced gravitational waves in symmetric teleparallel gravity with a parity-violating term. Phys. Rev. D, 108(6), 2023, 063513 arXiv:2307.00330 [gr-qc].
Lattanzi, M., Mercuri, S., A solution of the strong CP problem via the Peccei–Quinn mechanism through the Nieh–Yan modified gravity and cosmological implications. Phys. Rev. D, 81, 2010, 125015 arXiv:0911.2698 [gr-qc].
Li, M., Rao, H., Zhao, D., A simple parity violating gravity model without ghost instability. J. Cosmol. Astropart. Phys., 11, 2020, 023 arXiv:2007.08038 [gr-qc].
Lagos, M., Jenks, L., Isi, M., Hotokezaka, K., Metzger, B.D., Burns, E., Farr, W.M., Perkins, S., Wong, K.W.K., Yunes, N., Birefringence tests of gravity with multimessenger binaries. Phys. Rev. D, 109(12), 2024, 124003 arXiv:2402.05316 [gr-qc].
Su, J., Harko, T., Liang, S.-D., Irreversible thermodynamic description of dark matter and radiation creation during inflationary reheating. Adv. High Energy Phys., 2017, 2017, 7650238 arXiv:1708.08004 [gr-qc].
Harko, T., Sheikhahmadi, H., Warm inflation with non-comoving scalar field and radiation fluid. Eur. Phys. J. C, 81(2), 2021, 165 arXiv:2102.04728 [gr-qc].
Matei, T., Harko, T., Mocanu, G., Dark matter and radiation production during warm inflation in a curved universe-an irreversible thermodynamic approach. 2023 arXiv:2303.02464 [gr-qc].
Prigogine, I., Geheniau, J., Gunzig, E., Nardone, P., Thermodynamics of cosmological matter creation. Proc. Nat. Acad. Sci., 85(20), 1988, 7428.
Prigogine, I., Geheniau, J., Gunzig, E., Nardone, P., Thermodynamics and cosmology. Gen. Relativity Gravitation 21 (1989), 767–776.
Harko, T., Thermodynamic interpretation of the generalized gravity models with geometry - matter coupling. Phys. Rev. D, 90(4), 2014, 044067 arXiv:1408.3465 [gr-qc].
Harko, T., Lobo, F.S.N., Mimoso, J.P., Pavón, D., Gravitational induced particle production through a nonminimal curvature–matter coupling. Eur. Phys. J. C, 75, 2015, 386 arXiv:1508.02511 [gr-qc].
Pinto, M.A.S., Harko, T., Lobo, F.S.N., Irreversible geometrothermodynamics of open systems in modified gravity. Entropy, 25(6), 2023, 944 arXiv:2306.13912 [gr-qc].
Basilakos, S., Das, S., Vagenas, E.C., Quantum gravity corrections and entropy at the Planck time. J. Cosmol. Astropart. Phys., 09, 2010, 027 arXiv:1009.0365 [hep-th].
Das, S., Fridman, M., Lambiase, G., Vagenas, E.C., Baryon asymmetry and minimum length. 16th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, 2021 arXiv:2111.01278 [gr-qc].
Das, S., Fridman, M., Lambiase, G., Vagenas, E.C., Baryon asymmetry from the generalized uncertainty principle. Phys. Lett. B, 824, 2022, 136841 arXiv:2107.02077 [gr-qc].
Escamilla, L.A., Fiorucci, D., Montani, G., Di Valentino, E., Exploring the Hubble tension with a late time Modified Gravity scenario. Phys. Dark Univ., 46, 2024, 101652 arXiv:2408.04354 [astro-ph.CO].
Battisti, M.V., Montani, G., The Big bang singularity in the framework of a generalized uncertainty principle. Phys. Lett. B 656 (2007), 96–101 arXiv:gr-qc/0703025.
Kouwn, S., Implications of minimum and maximum length scales in cosmology. Phys. Dark Univ. 21 (2018), 76–81 arXiv:1805.07278 [astro-ph.CO].
Fragomeno, F., Gingrich, D.M., Hergott, S., Rastgoo, S., Vienneau, E., A generalized uncertainty-inspired quantum black hole. Phys. Rev. D, 111(2), 2025, 024048 arXiv:2406.03909 [gr-qc].
Reuter, M., Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 57 (1998), 971–985 arXiv:hep-th/9605030.
Reuter, M., Saueressig, F., From big bang to asymptotic de Sitter: Complete cosmologies in a quantum gravity framework. J. Cosmol. Astropart. Phys., 09, 2005, 012 arXiv:hep-th/0507167.
Bonanno, A., Reuter, M., Entropy signature of the running cosmological constant. J. Cosmol. Astropart. Phys., 08, 2007, 024 arXiv:0706.0174 [hep-th].
Bonanno, A., Platania, A., Asymptotically safe inflation from quadratic gravity. Phys. Lett. B 750 (2015), 638–642 arXiv:1507.03375 [gr-qc].
Aartsen, M.G., et al., IceCube Collaboration. Evidence for astrophysical muon neutrinos from the Northern Sky with IceCube. Phys. Rev. Lett., 115(8), 2015, 081102 arXiv:1507.04005 [astro-ph.HE].
Aartsen, M.G., et al., IceCube Collaboration. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Phys. Rev. D, 91(7), 2015, 072004 arXiv:1410.7227 [hep-ex].
Chianese, M., Merle, A., A consistent theory of decaying dark matter connecting IceCube to the sesame street. J. Cosmol. Astropart. Phys., 04, 2017, 017 arXiv:1607.05283 [hep-ph].
Lambiase, G., Mohanty, S., Stabile, A., PeV IceCube signals and Dark Matter relic abundance in modified cosmologies. Eur. Phys. J. C, 78(4), 2018, 350 arXiv:1804.07369 [astro-ph.CO].
Jizba, P., Lambiase, G., Tsallis cosmology and its applications in dark matter physics with focus on IceCube high-energy neutrino data. Eur. Phys. J. C, 82(12), 2022, 1123 arXiv:2206.12910 [hep-th].
Jizba, P., Lambiase, G., Constraints on tsallis cosmology from big bang nucleosynthesis and the relic abundance of cold dark matter particles. Entropy, 25(11), 2023, 1495 arXiv:2310.19045 [gr-qc].
Lundmark, K., Über die Bestimmung der Entfernungen, Dimensionen, Massen und Dichtigkeit fur die nächstgelegenen anagalacktischen Sternsysteme. Medd. Fran Lunds Astron. Obs. Ser. I 125 (1930), 1–13.
Zwicky, F., Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6 (1933), 110–127.
Zwicky, F., On the masses of Nebulae and of clusters of Nebulae. Astrophys. J. 86 (1937), 217–246.
Rubin, V.C., Ford, W.K. Jr., Rotation of the Andromeda Nebula from a spectroscopic survey of emission regions. Astrophys. J. 159 (1970), 379–403.
Freeman, K.C., On the disks of spiral and SO Galaxies. Astrophys. J., 160, 1970, 811.
de Swart, J., Bertone, G., van Dongen, J., How dark matter came to matter. Nat. Astron., 1, 2017, 0059 arXiv:1703.00013 [astro-ph.CO].
Jungman, G., Kamionkowski, M., Griest, K., Supersymmetric dark matter. Phys. Rep. 267 (1996), 195–373 arXiv:hep-ph/9506380.
Bertone, G., Hooper, D., Silk, J., Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 405 (2005), 279–390 arXiv:hep-ph/0404175.
Iocco, F., Pato, M., Bertone, G., Evidence for dark matter in the inner Milky Way. Nat. Phys. 11 (2015), 245–248 arXiv:1502.03821 [astro-ph.GA].
de Martino, I., Chakrabarty, S.S., Cesare, V., Gallo, A., Ostorero, L., Diaferio, A., Dark matters on the scale of galaxies. Universe, 6(8), 2020, 107 arXiv:2007.15539 [astro-ph.CO].
Cirelli, M., Strumia, A., Zupan, J., Dark matter. 2024 arXiv:2406.01705 [hep-ph].
Vogelsberger, M., Marinacci, F., Torrey, P., Puchwein, E., Cosmological simulations of Galaxy formation. Nat. Rev. Phys. 2:1 (2020), 42–66 arXiv:1909.07976 [astro-ph.GA].
Davé, R., Anglés-Alcázar, D., Narayanan, D., Li, Q., Rafieferantsoa, M.H., Appleby, S., Simba: cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 486:2 (2019), 2827–2849 arXiv:1901.10203 [astro-ph.GA].
Roszkowski, L., Particle dark matter: A Theorist's perspective. Pramana 62 (2004), 389–401 arXiv:hep-ph/0404052.
Kim, J.E., Carosi, G., Axions and the strong CP problem. Rev. Modern Phys. 82 (2010), 557–602 arXiv:0807.3125 [hep-ph] Rev. Mod. Phys., 91, 2019, 049902 Erratum.
Baer, H., Choi, K.-Y., Kim, J.E., Roszkowski, L., Dark matter production in the early Universe: beyond the thermal WIMP paradigm. Phys. Rep. 555 (2015), 1–60 arXiv:1407.0017 [hep-ph].
Paczynski, B., Gravitational microlensing by the galactic halo. Astrophys. J. 304 (1986), 1–5.
Griest, K., Galactic microlensing as a method of detecting massive compact halo objects. Astrophys. J. 366 (1991), 412–421.
Alcock, C., et al., MACHO Collaboration. The MACHO project: Microlensing results from 5.7 years of LMC observations. Astrophys. J. 542 (2000), 281–307 arXiv:astro-ph/0001272.
Tisserand, P., et al., EROS-2 Collaboration. Limits on the Macho content of the galactic Halo from the EROS-2 survey of the magellanic clouds. Astron. Astrophys. 469 (2007), 387–404 arXiv:astro-ph/0607207.
Wyrzykowski, L., et al. The OGLE View of Microlensing towards the Magellanic Clouds. III. Ruling out sub-solar MACHOs with the OGLE-III LMC data. Mon. Not. R. Astron. Soc., 413, 2011, 493 arXiv:1012.1154 [astro-ph.GA].
Niikura, H., et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nat. Astron. 3:6 (2019), 524–534 arXiv:1701.02151 [astro-ph.CO].
Page, D.N., Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole. Phys. Rev. D 13 (1976), 198–206.
Ricotti, M., Ostriker, J.P., Mack, K.J., Effect of primordial black holes on the cosmic microwave background and cosmological parameter estimates. Astrophys. J., 680, 2008, 829 arXiv:0709.0524 [astro-ph].
Gaggero, D., Bertone, G., Calore, F., Connors, R.M.T., Lovell, M., Markoff, S., Storm, E., Searching for primordial black holes in the radio and X-ray sky. Phys. Rev. Lett., 118(24), 2017, 241101 arXiv:1612.00457 [astro-ph.HE].
Acharya, S.K., Khatri, R., CMB and BBN constraints on evaporating primordial black holes revisited. J. Cosmol. Astropart. Phys., 06, 2020, 018 arXiv:2002.00898 [astro-ph.CO].
Korwar, M., Profumo, S., Updated constraints on primordial black hole evaporation. J. Cosmol. Astropart. Phys., 05, 2023, 054 arXiv:2302.04408 [hep-ph].
Becker, N., Hooper, D.C., Kahlhoefer, F., Lesgourgues, J., Schöneberg, N., Cosmological constraints on multi-interacting dark matter. J. Cosmol. Astropart. Phys., 02, 2021, 019 arXiv:2010.04074 [astro-ph.CO].
Tremaine, S., Gunn, J.E., Dynamical role of light neutral Leptons in cosmology. Phys. Rev. Lett. 42 (1979), 407–410.
Alvey, J., Sabti, N., Tiki, V., Blas, D., Bondarenko, K., Boyarsky, A., Escudero, M., Fairbairn, M., Orkney, M., Read, J.I., New constraints on the mass of fermionic dark matter from dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 501:1 (2021), 1188–1201 arXiv:2010.03572 [hep-ph].
Chauhan, G., Dev, P.S.B., Dubovyk, I., Dziewit, B., Flieger, W., Grzanka, K., Gluza, J., Karmakar, B., Zięba, S., Phenomenology of lepton masses and mixing with discrete flavor symmetries. Prog. Part. Nucl. Phys., 138, 2024, 104126 arXiv:2310.20681 [hep-ph].
Centelles Chuliá, S., Ma, E., Srivastava, R., Valle, J.W.F., Dirac neutrinos and dark matter stability from Lepton quarticity. Phys. Lett. B 767 (2017), 209–213 arXiv:1606.04543 [hep-ph].
Weinberg, S., Baryon and Lepton nonconserving processes. Phys. Rev. Lett. 43 (1979), 1566–1570.
Wilczek, F., Zee, A., Operator analysis of nucleon decay. Phys. Rev. Lett. 43 (1979), 1571–1573.
Weinberg, S., Varieties of Baryon and Lepton nonconservation. Phys. Rev. D, 22, 1980, 1694.
Weldon, H.A., Zee, A., Operator analysis of new physics. Nuclear Phys. B 173 (1980), 269–290.
Ellis, J.R., Hagelin, J.S., Nanopoulos, D.V., Olive, K.A., Srednicki, M., Supersymmetric relics from the big bang. Nuclear Phys. B 238 (1984), 453–476.
Drees, M., Nojiri, M.M., The Neutralino relic density in minimal N=1 supergravity. Phys. Rev. D 47 (1993), 376–408 arXiv:hep-ph/9207234.
Baer, H., Brhlik, M., Cosmological relic density from minimal supergravity with implications for collider physics. Phys. Rev. D 53 (1996), 597–605 arXiv:hep-ph/9508321.
Barger, V.D., Kao, C., Relic density of neutralino dark matter in supergravity models. Phys. Rev. D 57 (1998), 3131–3139 arXiv:hep-ph/9704403.
Lahanas, A.B., Nanopoulos, D.V., Spanos, V.C., Neutralino relic density in a universe with nonvanishing cosmological constant. Phys. Rev. D, 62, 2000, 023515 arXiv:hep-ph/9909497.
Cyburt, R.H., Ellis, J., Fields, B.D., Luo, F., Olive, K.A., Spanos, V.C., Nucleosynthesis constraints on a massive gravitino in neutralino dark matter scenarios. J. Cosmol. Astropart. Phys., 10, 2009, 021 arXiv:0907.5003 [astro-ph.CO].
Han, T., Liu, Z., Su, S., Light neutralino dark matter: Direct/indirect detection and collider searches. JHEP, 08, 2014, 093 arXiv:1406.1181 [hep-ph].
Roszkowski, L., Sessolo, E.M., Trojanowski, S., WIMP dark matter candidates and searches—current status and future prospects. Rep. Progr. Phys., 81(6), 2018, 066201 arXiv:1707.06277 [hep-ph].
Falk, T., Olive, K.A., Srednicki, M., Heavy sneutrinos as dark matter. Phys. Lett. B 339 (1994), 248–251 arXiv:hep-ph/9409270.
Arina, C., Fornengo, N., Sneutrino cold dark matter, a new analysis: Relic abundance and detection rates. JHEP, 11, 2007, 029 arXiv:0709.4477 [hep-ph].
Weinberg, S., Cosmological constraints on the scale of supersymmetry breaking. Phys. Rev. Lett., 48, 1982, 1303.
Khlopov, M.Y., Linde, A.D., Is it easy to save the gravitino?. Phys. Lett. B 138 (1984), 265–268.
Ellis, J.R., Kim, J.E., Nanopoulos, D.V., Cosmological gravitino regeneration and decay. Phys. Lett. B 145 (1984), 181–186.
Bolz, M., Brandenburg, A., Buchmuller, W., Thermal production of gravitinos. Nuclear Phys. B 606 (2001), 518–544 arXiv:hep-ph/0012052 Nucl. Phys. B 790 (2008), 336–337 Erratum.
Kawasaki, M., Kohri, K., Moroi, T., Yotsuyanagi, A., Big-bang nucleosynthesis and gravitino. Phys. Rev. D, 78, 2008, 065011 arXiv:0804.3745 [hep-ph].
Pradler, J., Steffen, F.D., Thermal gravitino production and collider tests of leptogenesis. Phys. Rev. D, 75, 2007, 023509 arXiv:hep-ph/0608344.
Rychkov, V.S., Strumia, A., Thermal production of gravitinos. Phys. Rev. D, 75, 2007, 075011 arXiv:hep-ph/0701104.
Ellis, J., Garcia, M.A.G., Nanopoulos, D.V., Olive, K.A., Peloso, M., Post-inflationary gravitino production revisited. J. Cosmol. Astropart. Phys., 03, 2016, 008 arXiv:1512.05701 [astro-ph.CO].
Dudas, E., Mambrini, Y., Olive, K., Case for an EeV gravitino. Phys. Rev. Lett., 119(5), 2017, 051801 arXiv:1704.03008 [hep-ph].
Kaneta, K., Mambrini, Y., Olive, K.A., Radiative production of nonthermal dark matter. Phys. Rev. D, 99(6), 2019, 063508 arXiv:1901.04449 [hep-ph].
Covi, L., Kim, J.E., Roszkowski, L., Axinos as cold dark matter. Phys. Rev. Lett. 82 (1999), 4180–4183 arXiv:hep-ph/9905212.
Covi, L., Kim, H.-B., Kim, J.E., Roszkowski, L., Axinos as dark matter. JHEP, 05, 2001, 033 arXiv:hep-ph/0101009.
Aoki, K., Maeda, K.-i., Dark matter in ghost-free bigravity theory: from a galaxy scale to the universe. Phys. Rev. D, 90, 2014, 124089 arXiv:1409.0202 [gr-qc].
Aoki, K., Mukohyama, S., Massive gravitons as dark matter and gravitational waves. Phys. Rev. D, 94(2), 2016, 024001 arXiv:1604.06704 [hep-th].
Babichev, E., Marzola, L., Raidal, M., Schmidt-May, A., Urban, F., Veermäe, H., von Strauss, M., Bigravitational origin of dark matter. Phys. Rev. D, 94(8), 2016, 084055 arXiv:1604.08564 [hep-ph].
Babichev, E., Marzola, L., Raidal, M., Schmidt-May, A., Urban, F., Veermäe, H., von Strauss, M., Heavy spin-2 dark matter. J. Cosmol. Astropart. Phys., 09, 2016, 016 arXiv:1607.03497 [hep-th].
Servant, G., Tait, T.M.P., Is the lightest Kaluza–Klein particle a viable dark matter candidate?. Nuclear Phys. B 650 (2003), 391–419 arXiv:hep-ph/0206071.
Hooper, D., Profumo, S., Dark matter and collider phenomenology of universal extra dimensions. Phys. Rep. 453 (2007), 29–115 arXiv:hep-ph/0701197.
Cordero-Cid, A., Hernández-Sánchez, J., Keus, V., King, S.F., Moretti, S., Rojas, D., Sokołowska, D., CP violating scalar Dark Matter. JHEP, 12, 2016, 014 arXiv:1608.01673 [hep-ph].
Hernandez-Sanchez, J., Keus, V., Moretti, S., Rojas-Ciofalo, D., Sokolowska, D., Complementary probes of two-component dark matter. 2020 arXiv:2012.11621 [hep-ph].
Alanne, T., Heikinheimo, M., Keus, V., Koivunen, N., Tuominen, K., Direct and indirect probes of Goldstone dark matter. Phys. Rev. D, 99(7), 2019, 075028 arXiv:1812.05996 [hep-ph].
Keus, V., Dark CP-violation through the Z-portal. Phys. Rev. D, 101(7), 2020, 073007 arXiv:1909.09234 [hep-ph].
Griest, K., Seckel, D., Three exceptions in the calculation of relic abundances. Phys. Rev. D 43 (1991), 3191–3203.
Edsjo, J., Gondolo, P., Neutralino relic density including coannihilations. Phys. Rev. D 56 (1997), 1879–1894 arXiv:hep-ph/9704361.
Gondolo, P., Gelmini, G., Cosmic abundances of stable particles: Improved analysis. Nuclear Phys. B 360 (1991), 145–179.
Hisano, J., Matsumoto, S., Nojiri, M.M., Saito, O., Direct detection of the wino and higgsino-like neutralino dark matters at one-loop level. Phys. Rev. D, 71, 2005, 015007 arXiv:hep-ph/0407168.
Arkani-Hamed, N., Finkbeiner, D.P., Slatyer, T.R., Weiner, N., A theory of dark matter. Phys. Rev. D, 79, 2009, 015014 arXiv:0810.0713 [hep-ph].
Boehm, C., Fayet, P., Scalar dark matter candidates. Nuclear Phys. B 683 (2004), 219–263 arXiv:hep-ph/0305261.
Pospelov, M., Ritz, A., Voloshin, M.B., Secluded WIMP Dark Matter. Phys. Lett. B 662 (2008), 53–61 arXiv:0711.4866 [hep-ph].
Feng, J.L., Kumar, J., The WIMPless miracle: dark-matter particles without weak-scale masses or weak interactions. Phys. Rev. Lett., 101, 2008, 231301 arXiv:0803.4196 [hep-ph].
Zurek, K.M., Dark matter candidates of a very low mass. Ann. Rev. Nucl. Part. Sci. 74 (2024), 287–319 arXiv:2401.03025 [hep-ph].
Essig, R., et al. Snowmass2021 Cosmic Frontier: The landscape of low-threshold dark matter direct detection in the next decade. Snowmass 2021, 2022 arXiv:2203.08297 [hep-ph].
Krnjaic, G., et al. A snowmass whitepaper: dark matter production at intensity-frontier experiments. 2022 arXiv:2207.00597 [hep-ph].
Yanagida, T., Horizontal symmetry and mass of the top quark. Phys. Rev. D, 20, 1979, 2986.
Yanagida, T., Horizontal symmetry and masses of neutrinos. Progr. Theoret. Phys., 64, 1980, 1103.
Mohapatra, R.N., Senjanovic, G., Neutrino mass and spontaneous parity nonconservation. Phys. Rev. Lett., 44, 1980, 912.
Schechter, J., Valle, J.W.F., Neutrino masses in SU(2) x U(1) theories. Phys. Rev. D, 22, 1980, 2227.
Fukugita, M., Yanagida, T., Baryogenesis without grand unification. Phys. Lett. B 174 (1986), 45–47.
De Gouvêa, A., Sen, M., Tangarife, W., Zhang, Y., Dodelson–Widrow mechanism in the presence of self-interacting neutrinos. Phys. Rev. Lett., 124(8), 2020, 081802 arXiv:1910.04901 [hep-ph].
Bringmann, T., Depta, P.F., Hufnagel, M., Kersten, J., Ruderman, J.T., Schmidt-Hoberg, K., Minimal sterile neutrino dark matter. Phys. Rev. D, 107(7), 2023, L071702 arXiv:2206.10630 [hep-ph].
Wilczek, F., Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40 (1978), 279–282.
Weinberg, S., A new light boson?. Phys. Rev. Lett. 40 (1978), 223–226.
Peccei, R.D., Quinn, H.R., CP conservation in the presence of instantons. Phys. Rev. Lett. 38 (1977), 1440–1443.
Kim, J.E., Weak interaction singlet and strong CP invariance. Phys. Rev. Lett., 43, 1979, 103.
Shifman, M.A., Vainshtein, A.I., Zakharov, V.I., Can confinement ensure natural CP invariance of strong interactions?. Nuclear Phys. B 166 (1980), 493–506.
Zhitnitsky, A.R., On possible suppression of the axion hadron interactions. Sov. J. Nucl. Phys., 31, 1980, 260 (in Russian).
Dine, M., Fischler, W., Srednicki, M., A simple solution to the strong cp problem with a harmless axion. Phys. Lett. B 104 (1981), 199–202.
Preskill, J., Wise, M.B., Wilczek, F., Cosmology of the invisible axion. Phys. Lett. B 120 (1983), 127–132.
Abbott, L.F., Sikivie, P., A cosmological bound on the invisible axion. Phys. Lett. B 120 (1983), 133–136.
Dine, M., Fischler, W., The not so harmless axion. Phys. Lett. B 120 (1983), 137–141.
Linde, A.D., Axions in inflationary cosmology. Phys. Lett. B 259 (1991), 38–47.
Hertzberg, M.P., Tegmark, M., Wilczek, F., Axion cosmology and the energy scale of inflation. Phys. Rev. D, 78, 2008, 083507 arXiv:0807.1726 [astro-ph].
Lazarides, G., Schaefer, R.K., Seckel, D., Shafi, Q., Dilution of cosmological axions by entropy production. Nuclear Phys. B 346 (1990), 193–212.
Visinelli, L., Gondolo, P., Axion cold dark matter in non-standard cosmologies. Phys. Rev. D, 81, 2010, 063508 arXiv:0912.0015 [astro-ph.CO].
Di Luzio, L., Mescia, F., Nardi, E., Redefining the axion window. Phys. Rev. Lett., 118(3), 2017, 031801 arXiv:1610.07593 [hep-ph].
Di Luzio, L., Mescia, F., Nardi, E., Window for preferred axion models. Phys. Rev. D, 96(7), 2017, 075003 arXiv:1705.05370 [hep-ph].
Barr, S.M., Seckel, D., Planck scale corrections to axion models. Phys. Rev. D 46 (1992), 539–549.
Di Luzio, L., Giannotti, M., Nardi, E., Visinelli, L., The landscape of QCD axion models. Phys. Rep. 870 (2020), 1–117 arXiv:2003.01100 [hep-ph].
Irastorza, I.G., Redondo, J., New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 102 (2018), 89–159 arXiv:1801.08127 [hep-ph].
Amendola, L., Barbieri, R., Dark matter from an ultra-light pseudo-Goldsone-boson. Phys. Lett. B 642 (2006), 192–196 arXiv:hep-ph/0509257.
Marsh, D.J.E., Silk, J., A model for halo formation with axion mixed dark matter. Mon. Not. R. Astron. Soc. 437:3 (2014), 2652–2663 arXiv:1307.1705 [astro-ph.CO].
Marsh, D.J.E., Grin, D., Hlozek, R., Ferreira, P.G., Axiverse cosmology and the energy scale of inflation. Phys. Rev. D, 87, 2013, 121701 arXiv:1303.3008 [astro-ph.CO].
Hui, L., Ostriker, J.P., Tremaine, S., Witten, E., Ultralight scalars as cosmological dark matter. Phys. Rev. D, 95(4), 2017, 043541 arXiv:1610.08297 [astro-ph.CO].
Visinelli, L., Light axion-like dark matter must be present during inflation. Phys. Rev. D, 96(2), 2017, 023013 arXiv:1703.08798 [astro-ph.CO].
Visinelli, L., Vagnozzi, S., Cosmological window onto the string axiverse and the supersymmetry breaking scale. Phys. Rev. D, 99(6), 2019, 063517 arXiv:1809.06382 [hep-ph].
Schive, H.-Y., Liao, M.-H., Woo, T.-P., Wong, S.-K., Chiueh, T., Broadhurst, T., Hwang, W.Y.P., Understanding the core-halo relation of quantum wave dark matter from 3D simulations. Phys. Rev. Lett., 113(26), 2014, 261302 arXiv:1407.7762 [astro-ph.GA].
Nori, M., Baldi, M., AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models. Mon. Not. R. Astron. Soc. 478:3 (2018), 3935–3951 arXiv:1801.08144 [astro-ph.CO].
Mocz, P., et al. First star-forming structures in fuzzy cosmic filaments. Phys. Rev. Lett., 123(14), 2019, 141301 arXiv:1910.01653 [astro-ph.GA].
Veltmaat, J., Schwabe, B., Niemeyer, J.C., Baryon-driven growth of solitonic cores in fuzzy dark matter halos. Phys. Rev. D, 101(8), 2020, 083518 arXiv:1911.09614 [astro-ph.CO].
May, S., Springel, V., The halo mass function and filaments in full cosmological simulations with fuzzy dark matter. Mon. Not. R. Astron. Soc. 524:3 (2023), 4256–4274 arXiv:2209.14886 [astro-ph.CO].
Zimmermann, T., Alvey, J., Marsh, D.J.E., Fairbairn, M., Read, J.I., Dwarf galaxies imply dark matter is heavier than 2.2 × 10-21 eV. Phys. Rev. Lett., 134(15), 2025, 151001 arXiv:2405.20374 [astro-ph.CO].
Teodori, L., Caputo, A., Blum, K., Ultra-light dark matter simulations and stellar dynamics: tension in dwarf galaxies for m<5×10−21 eV. 2025 arXiv:2501.07631 [astro-ph.GA].
De Martino, I., Broadhurst, T., Henry Tye, S.H., Chiueh, T., Schive, H.-Y., Lazkoz, R., Recognizing axionic dark matter by compton and de broglie scale modulation of pulsar timing. Phys. Rev. Lett., 119(22), 2017, 221103 arXiv:1705.04367 [astro-ph.CO].
Hlozek, R., Marsh, D.J.E., Grin, D., Using the full power of the cosmic microwave background to probe axion dark matter. Mon. Not. R. Astron. Soc. 476:3 (2018), 3063–3085 arXiv:1708.05681 [astro-ph.CO].
Bar, N., Blas, D., Blum, K., Sibiryakov, S., Galactic rotation curves versus ultralight dark matter: implications of the soliton-host halo relation. Phys. Rev. D, 98(8), 2018, 083027 arXiv:1805.00122 [astro-ph.CO].
Bar, N., Blum, K., Eby, J., Sato, R., Ultralight dark matter in disk galaxies. Phys. Rev. D, 99(10), 2019, 103020 arXiv:1903.03402 [astro-ph.CO].
Pozo, A., Broadhurst, T., De Martino, I., Luu, H.N., Smoot, G.F., Lim, J., Neyrinck, M., Wave dark matter and ultra-diffuse galaxies. Mon. Not. R. Astron. Soc. 504:2 (2021), 2868–2876 arXiv:2003.08313 [astro-ph.GA].
Chan, J.H.H., Schive, H.-Y., Wong, S.-K., Chiueh, T., Broadhurst, T., Multiple images and flux ratio anomaly of fuzzy gravitational lenses. Phys. Rev. Lett., 125(11), 2020, 111102 arXiv:2002.10473 [astro-ph.GA].
Dalal, N., Kravtsov, A., Excluding fuzzy dark matter with sizes and stellar kinematics of ultrafaint dwarf galaxies. Phys. Rev. D, 106(6), 2022, 063517 arXiv:2203.05750 [astro-ph.CO].
De Martino, I., Constraining ultralight bosons in dwarf spheroidal galaxies with a radially varying anisotropy. Phys. Rev. D, 108(12), 2023, 123044 arXiv:2312.07217 [astro-ph.GA].
Della Monica, R., de Martino, I., Bounding the mass of ultralight bosonic dark matter particles with the motion of the S2 star around Sgr A*. Phys. Rev. D, 108(10), 2023, L101303 arXiv:2305.10242 [gr-qc].
Burkert, A., Fuzzy dark matter and dark matter halo cores. Astrophys. J., 904(2), 2020, 161 arXiv:2006.11111 [astro-ph.GA].
Aboubrahim, A., Nath, P., Interacting ultralight dark matter and dark energy and fits to cosmological data in a field theory approach. J. Cosmol. Astropart. Phys., 09, 2024, 076 arXiv:2406.19284 [astro-ph.CO].
Ullio, P., Kamionkowski, M., Vogel, P., Spin dependent WIMPs in DAMA?. JHEP, 07, 2001, 044 arXiv:hep-ph/0010036.
Aprile, E., et al., XENON Collaboration. First dark matter search with nuclear recoils from the XENONnT experiment. Phys. Rev. Lett., 131(4), 2023, 041003 arXiv:2303.14729 [hep-ex].
Aalbers, J., et al., LZ Collaboration. First dark matter search results from the LUX-ZEPLIN (LZ) experiment. Phys. Rev. Lett., 131(4), 2023, 041002 arXiv:2207.03764 [hep-ex].
Huang, Z., et al., PandaX Collaboration. Constraints on the axial-vector and pseudo-scalar mediated WIMP-nucleus interactions from PandaX-4T experiment. Phys. Lett. B, 834, 2022, 137487 arXiv:2208.03626 [hep-ex].
Agnes, P., et al., DarkSide-50 Collaboration. Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50. Phys. Rev. D, 107(6), 2023, 063001 arXiv:2207.11966 [hep-ex].
Aalseth, C.E., et al., DarkSide-20k Collaboration. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. Eur. Phys. J. Plus, 133, 2018, 131 arXiv:1707.08145 [physics.ins-det].
Calvo, J., et al., ArDM Collaboration. Commissioning of the ArDM experiment at the Canfranc underground laboratory: first steps towards a tonne-scale liquid argon time projection chamber for Dark Matter searches. J. Cosmol. Astropart. Phys., 03, 2017, 003 arXiv:1612.06375 [physics.ins-det].
Sikivie, P., Experimental tests of the invisible axion. Phys. Rev. Lett. 51 (1983), 1415–1417 Phys. Rev. Lett., 52, 1984, 695 Erratum.
Pugnat, P., et al., OSQAR Collaboration. First results from the OSQAR photon regeneration experiment: No light shining through a wall. Phys. Rev. D, 78, 2008, 092003 arXiv:0712.3362 [hep-ex].
Ehret, K., et al., ALPS Collaboration. Resonant laser power build-up in ALPS: A ’Light-shining-through-walls’ experiment. Nucl. Instrum. Meth. A 612 (2009), 83–96 arXiv:0905.4159 [physics.ins-det].
Bähre, R., et al. Any light particle search II —Technical Design Report. J. Instrum., 8, 2013, T09001 arXiv:1302.5647 [physics.ins-det].
Ballou, R., et al., OSQAR Collaboration. New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall. Phys. Rev. D, 92(9), 2015, 092002 arXiv:1506.08082 [hep-ex].
Horns, D., Jaeckel, J., Lindner, A., Lobanov, A., Redondo, J., Ringwald, A., Searching for WISPy cold dark matter with a dish antenna. J. Cosmol. Astropart. Phys., 04, 2013, 016 arXiv:1212.2970 [hep-ph].
Sikivie, P., Sullivan, N., Tanner, D.B., Proposal for axion dark matter detection using an LC circuit. Phys. Rev. Lett., 112(13), 2014, 131301 arXiv:1310.8545 [hep-ph].
Asztalos, S.J., et al., ADMX Collaboration. Large scale microwave cavity search for dark matter axions. Phys. Rev. D, 64, 2001, 092003.
Brubaker, B.M., et al. First results from a microwave cavity axion search at 24 μeV. Phys. Rev. Lett., 118(6), 2017, 061302 arXiv:1610.02580 [astro-ph.CO].
Barbieri, R., Braggio, C., Carugno, G., Gallo, C.S., Lombardi, A., Ortolan, A., Pengo, R., Ruoso, G., Speake, C.C., Searching for galactic axions through magnetized media: the QUAX proposal. Phys. Dark Univ. 15 (2017), 135–141 arXiv:1606.02201 [hep-ph].
Alesini, D., et al. Search for invisible axion dark matter of mass ma=43μeV with the QUAX–aγ experiment. Phys. Rev. D, 103(10), 2021, 102004 arXiv:2012.09498 [hep-ex].
Adair, C.M., et al. Search for dark matter axions with CAST-CAPP. Nat. Commun., 13(1), 2022, 6180 arXiv:2211.02902 [hep-ex].
Alesini, D., et al. The future search for low-frequency axions and new physics with the FLASH resonant cavity experiment at Frascati National Laboratories. Phys. Dark Univ., 42, 2023, 101370 arXiv:2309.00351 [physics.ins-det].
Arguedas Cuendis, S., et al. The 3 cavity prototypes of RADES: An axion detector using microwave filters at CAST. Springer Proc. Phys. 245 (2020), 45–51 arXiv:1903.04323 [physics.ins-det].
Ouellet, J.L., et al. First results from ABRACADABRA-10 cm: A search for Sub-μeV axion dark matter. Phys. Rev. Lett., 122(12), 2019, 121802 arXiv:1810.12257 [hep-ex].
Fedderke, M.A., Graham, P.W., Kimball, D.F.J., Kalia, S., Earth as a transducer for dark-photon dark-matter detection. Phys. Rev. D, 104(7), 2021, 075023 arXiv:2106.00022 [hep-ph].
Anastassopoulos, V., et al., CAST Collaboration. New CAST limit on the axion-photon interaction. Nat. Phys. 13 (2017), 584–590 arXiv:1705.02290 [hep-ex].
Armengaud, E., et al. Conceptual design of the International Axion Observatory (IAXO). J. Instrum., 9, 2014, T05002 arXiv:1401.3233 [physics.ins-det].
Gunn, J.E., Lee, B.W., Lerche, I., Schramm, D.N., Steigman, G., Some astrophysical consequences of the existence of a heavy stable neutral Lepton. Astrophys. J. 223 (1978), 1015–1031.
Stecker, F.W., The cosmic gamma-ray background from the annihilation of primordial stable neutral heavy Leptons. Astrophys. J. 223 (1978), 1032–1036.
Krauss, L.M., Freese, K., Press, W., Spergel, D., Cold dark matter candidates and the solar neutrino problem. Astrophys. J., 299, 1985, 1001.
Freese, K., Can scalar neutrinos or massive dirac neutrinos be the missing mass?. Phys. Lett. B 167 (1986), 295–300.
Gaisser, T.K., Steigman, G., Tilav, S., Limits on cold dark matter candidates from deep underground detectors. Phys. Rev. D, 34, 1986, 2206.
Silk, J., Srednicki, M., Cosmic ray anti-protons as a probe of a photino dominated universe. Phys. Rev. Lett., 53, 1984, 624.
Stecker, F.W., Rudaz, S., Walsh, T.F., Galactic anti-protons from photinos. Phys. Rev. Lett. 55 (1985), 2622–2625.
Ellis, J.R., Flores, R.A., Freese, K., Ritz, S., Seckel, D., Silk, J., Cosmic ray constraints on the annihilations of relic particles in the galactic halo. Phys. Lett. B 214 (1988), 403–412.
Cirelli, M., Corcella, G., Hektor, A., Hutsi, G., Kadastik, M., Panci, P., Raidal, M., Sala, F., Strumia, A., PPPC 4 DM ID: A poor particle physicist cookbook for dark matter indirect detection. J. Cosmol. Astropart. Phys., 03, 2011, 051 arXiv:1012.4515 [hep-ph] J. Cosmol. Astropart. Phys., 10, 2012, E01 Erratum.
Pieri, L., Lavalle, J., Bertone, G., Branchini, E., Implications of high-resolution simulations on indirect dark matter searches. Phys. Rev. D, 83, 2011, 023518 arXiv:0908.0195 [astro-ph.HE].
Ackermann, M., et al. Constraints on dark matter annihilation in clusters of galaxies with the fermi large area telescope. J. Cosmol. Astropart. Phys., 05, 2010, 025 arXiv:1002.2239 [astro-ph.CO].
Ackermann, M., et al., Fermi-LAT Collaboration. Searching for dark matter annihilation from milky way dwarf spheroidal galaxies with six years of fermi large area telescope data. Phys. Rev. Lett., 115(23), 2015, 231301 arXiv:1503.02641 [astro-ph.HE].
Ajello, M., et al. The origin of the extragalactic gamma-ray background and implications for dark-matter annihilation. Astrophys. J. Lett., 800(2), 2015, L27 arXiv:1501.05301 [astro-ph.HE].
Alfaro, R., et al., HAWC Collaboration. Searching for TeV dark matter in irregular dwarf galaxies with HAWC observatory. Astrophys. J., 945(1), 2023, 25 arXiv:2302.07929 [astro-ph.HE].
Abbasi, R., et al., IceCube Collaboration. Search for GeV-scale dark matter annihilation in the Sun with IceCube DeepCore. Phys. Rev. D, 105(6), 2022, 062004 arXiv:2111.09970 [astro-ph.HE].
Abbasi, R., et al., IceCube Collaboration. Search for neutrino lines from dark matter annihilation and decay with icecube. Phys. Rev. D, 108(10), 2023, 102004 arXiv:2303.13663 [astro-ph.HE].
Aguilar, M., et al., AMS Collaboration. First result from the alpha magnetic spectrometer on the international space station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett., 110, 2013, 141102.
Ackermann, M., et al., Fermi-LAT Collaboration. The fermi galactic center GeV excess and implications for dark matter. Astrophys. J., 840(1), 2017, 43 arXiv:1704.03910 [astro-ph.HE].
Doro, M., et al., CTA Consortium Collaboration. Dark matter and fundamental physics with the cherenkov telescope array. Astropart. Phys. 43 (2013), 189–214 arXiv:1208.5356 [astro-ph.IM].
Carr, J., et al., CTA Collaboration. Prospects for indirect dark matter searches with the Cherenkov Telescope Array (CTA). PoS, ICRC2015, 2016, 1203 arXiv:1508.06128 [astro-ph.HE].
Acharya, B.S., et al., CTA Consortium Collaboration. Science with the Cherenkov Telescope Array. 2018, WSP arXiv:1709.07997 [astro-ph.IM].
Morselli, A., CTA Consortium Collaboration. Search for dark matter with IACTs and the Cherenkov Telescope Array. J. Phys. Conf. Ser., 2429(1), 2023, 012019 arXiv:2302.11318 [astro-ph.HE].
Abe, S., et al., CTAO Collaboration. Dark matter line searches with the Cherenkov Telescope Array. J. Cosmol. Astropart. Phys., 07, 2024, 047 arXiv:2403.04857 [hep-ph].
Walsh, D., Carswell, R.F., Weymann, R.J., 0957 + 561 A, B - Twin quasistellar objects or gravitational lens. Nature 279 (1979), 381–384.
Gorenstein, M.V., Shapiro, I.I., Cohen, N.L., Corey, B.E., Falco, E.E., Marcaide, J.M., Rogers, A.E.E., Whitney, A.R., Porcas, R.W., Preston, R.A., Rius, A., Detection of a compact radio source near the center of a gravitational lens: Quasar image or galactic core?. Science 219:4580 (1983), 54–56.
Galan, A., Vernardos, G., Minor, Q., Sluse, D., Van de Vyvere, L., Gomer, M., Exploiting the diversity of modeling methods to probe systematic biases in strong lensing analyses. Astron. Astrophys., 692, 2024, A87 arXiv:2406.08484 [astro-ph.CO].
Meneghetti, M., et al. The Frontier Fields lens modelling comparison project. Mon. Not. R. Astron. Soc. 472:3 (2017), 3177–3216 arXiv:1606.04548 [astro-ph.CO].
Meneghetti, M., Argazzi, R., Pace, F., Moscardini, L., Dolag, K., Bartelmann, M., Li, G., Oguri, M., Arc sensitivity to cluster ellipticity, asymmetries and substructures. Astron. Astrophys. 461 (2007), 25–38 arXiv:astro-ph/0606006.
Wagner, J., A model-independent characterisation of strong gravitational lensing by observables. Universe, 5, 2019, 177 arXiv:1906.05285 [astro-ph.CO].
Griffiths, R.E., Rudisel, M., Wagner, J., Hamilton, T., Huang, P.-C., Villforth, C., Hamilton's Object – a clumpy galaxy straddling the gravitational caustic of a galaxy cluster: constraints on dark matter clumping. Mon. Not. R. Astron. Soc. 506:2 (2021), 1595–1608 arXiv:2105.04562 [astro-ph.CO].
Lin, J., Wagner, J., Griffiths, R.E., Generalized model-independent characterization of strong gravitational lenses VIII. Automated multiband feature detection to constrain local lens properties. Mon. Not. R. Astron. Soc. 517:2 (2022), 1821–1836 arXiv:2207.01630 [astro-ph.CO].
Meneghetti, M., et al. A persistent excess of galaxy-galaxy strong lensing observed in galaxy clusters. Astron. Astrophys., 678, 2023, L2 arXiv:2309.05799 [astro-ph.CO].
Vegetti, S., et al. Strong gravitational lensing as a probe of dark matter. Space Sci. Rev., 220(5), 2024, 58 arXiv:2306.11781 [astro-ph.CO].
Castellano, M., et al. Constraints on photoionization feedback from number counts of ultra-faint high-redshift galaxies in the Frontier Fields. Astrophys. J. Lett., 823(2), 2016, L40 arXiv:1605.01524 [astro-ph.GA].
Yue, B., et al. On the faint-end of the galaxy luminosity function in the Epoch of Reionization: updated constraints from the HST Frontier Fields. Astrophys. J., 868(2), 2018, 115 arXiv:1711.05130 [astro-ph.GA].
Dayal, P., Mesinger, A., Pacucci, F., Early galaxy formation in warm dark matter cosmologies. Astrophys. J., 806(1), 2015, 67 arXiv:1408.1102 [astro-ph.GA].
Menci, N., Grazian, A., Lamastra, A., Calura, F., Castellano, M., Santini, P., Galaxy formation in sterile neutrino dark matter models. Astrophys. J., 854(1), 2018, 1 arXiv:1801.03697 [astro-ph.CO].
Menci, N., Grazian, A., Castellano, M., Sanchez, N.G., A stringent limit on the warm dark matter particle masses from the abundance of z=6 galaxies in the hubble frontier fields. Astrophys. J. Lett., 825(1), 2016, L1 arXiv:1606.02530 [astro-ph.CO].
Bouwens, R.J., et al. UV luminosity functions at redshifts z∼4 to z∼10: 10000 galaxies from HST legacy fields. Astrophys. J., 803(1), 2015, 34 arXiv:1403.4295 [astro-ph.CO].
Bouwens, R.J., Illingworth, G.D., Oesch, P.A., Caruana, J., Holwerda, B., Smit, R., Wilkins, S., Reionization after planck: The derived growth of the cosmic ionizing emissivity now matches the growth of the Galaxy UV luminosity density. Astrophys. J., 811(2), 2015, 140 arXiv:1503.08228 [astro-ph.CO].
Robertson, B.E., Ellis, R.S., Furlanetto, S.R., Dunlop, J.S., Cosmic reionization and early star-forming galaxies: a joint analysis of new constraints from planck and the Hubble space telescope. Astrophys. J. Lett., 802(2), 2015, L19 arXiv:1502.02024 [astro-ph.CO].
Finkelstein, S.L., D'Aloisio, A., Paardekooper, J.-P., Ryan, R., Behroozi, P., Finlator, K., Livermore, R., Sanderbeck, P.R.U., Vecchia, C.D., Khochfar, S., Conditions for reionizing the Universe with A low galaxy ionizing photon escape fraction. Astrophys. J., 879(1), 2019, 36 arXiv:1902.02792 [astro-ph.CO].
Carucci, I.P., Corasaniti, P.-S., Cosmic reionization history and dark matter scenarios. Phys. Rev. D, 99(2), 2019, 023518 arXiv:1811.07904 [astro-ph.CO].
Romanello, M., Menci, N., Castellano, M., The epoch of reionization in warm dark matter scenarios. Universe, 7(10), 2021, 365 arXiv:2110.05262 [astro-ph.CO].
Corasaniti, P.S., Agarwal, S., Marsh, D.J.E., Das, S., Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts. Phys. Rev. D, 95(8), 2017, 083512 arXiv:1611.05892 [astro-ph.CO].
Rudakovskyi, A., Mesinger, A., Savchenko, D., Gillet, N., Constraints on warm dark matter from UV luminosity functions of high-z galaxies with Bayesian model comparison. Mon. Not. R. Astron. Soc. 507:2 (2021), 3046–3056 arXiv:2104.04481 [astro-ph.CO].
Lapi, A., Ronconi, T., Boco, L., Shankar, F., Krachmalnicoff, N., Baccigalupi, C., Danese, L., Astroparticle constraints from cosmic reionization and primordial galaxy formation. Universe, 8(9), 2022, 476 arXiv:2205.09474 [astro-ph.CO].
Lapi, A., Danese, L., Cold or warm? Constraining dark matter with primeval galaxies and cosmic reionization after planck. J. Cosmol. Astropart. Phys., 09, 2015, 003 arXiv:1508.02147 [astro-ph.CO].
Garzilli, A., Magalich, A., Ruchayskiy, O., Boyarsky, A., How to constrain warm dark matter with the Lyman-α forest. Mon. Not. R. Astron. Soc. 502:2 (2021), 2356–2363 arXiv:1912.09397 [astro-ph.CO].
Drewes, M., et al. A white paper on keV sterile neutrino dark matter. J. Cosmol. Astropart. Phys., 01, 2017, 025 arXiv:1602.04816 [hep-ph].
Kelly, K.J., Sen, M., Tangarife, W., Zhang, Y., Origin of sterile neutrino dark matter via secret neutrino interactions with vector bosons. Phys. Rev. D, 101(11), 2020, 115031 arXiv:2005.03681 [hep-ph].
Astros, M.D., Vogl, S., Boosting the production of sterile neutrino dark matter with self-interactions. JHEP, 03, 2024, 032 arXiv:2307.15565 [hep-ph].
Shaposhnikov, M., Tkachev, I., The nuMSM, inflation, and dark matter. Phys. Lett. B 639 (2006), 414–417 arXiv:hep-ph/0604236.
Kusenko, A., Sterile neutrinos, dark matter, and the pulsar velocities in models with a Higgs singlet. Phys. Rev. Lett., 97, 2006, 241301 arXiv:hep-ph/0609081.
Petraki, K., Kusenko, A., Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector. Phys. Rev. D, 77, 2008, 065014 arXiv:0711.4646 [hep-ph].
Bezrukov, F., Hettmansperger, H., Lindner, M., keV sterile neutrino Dark Matter in gauge extensions of the Standard Model. Phys. Rev. D, 81, 2010, 085032 arXiv:0912.4415 [hep-ph].
Kusenko, A., Takahashi, F., Yanagida, T.T., Dark matter from split seesaw. Phys. Lett. B 693 (2010), 144–148 arXiv:1006.1731 [hep-ph].
Dror, J.A., Dunsky, D., Hall, L.J., Harigaya, K., Sterile neutrino dark matter in left-right theories. JHEP, 07, 2020, 168 arXiv:2004.09511 [hep-ph].
Heikinheimo, M., Huitu, K., Keus, V., Koivunen, N., Cosmological constraints on light flavons. JHEP, 06, 2019, 065 arXiv:1812.10963 [hep-ph].
May, S., Springel, V., Structure formation in large-volume cosmological simulations of fuzzy dark matter: impact of the non-linear dynamics. Mon. Not. R. Astron. Soc. 506:2 (2021), 2603–2618 arXiv:2101.01828 [astro-ph.CO].
Gough, A., Uhlemann, C., When to interfere with dark matter? The impact of wave dynamics on statistics. Open J. Astrophys., 7, 2024, 2024 arXiv:2405.15852 [astro-ph.CO].
Rogers, K.K., Hložek, R., Laguë, A., Ivanov, M.M., Philcox, O.H.E., Cabass, G., Akitsu, K., Marsh, D.J.E., Ultra-light axions and the S 8 tension: joint constraints from the cosmic microwave background and galaxy clustering. J. Cosmol. Astropart. Phys., 06, 2023, 023 arXiv:2301.08361 [astro-ph.CO].
Pantig, R.C., Övgün, A., Black hole in quantum wave dark matter. Fortsch. Phys., 71(1), 2023, 2200164 arXiv:2210.00523 [gr-qc].
Cardoso, V., Ikeda, T., Vicente, R., Zilhão, M., Parasitic black holes: The swallowing of a fuzzy dark matter soliton. Phys. Rev. D, 106(12), 2022, L121302 arXiv:2207.09469 [gr-qc].
Mustafa, G., Maurya, S.K., Ray, S., Javed, F., Construction of thin-shell around new wormhole solutions via solitonic quantum wave dark matter. Ann. Phys., 460, 2024, 169551.
Boddy, K.K., Gluscevic, V., Poulin, V., Kovetz, E.D., Kamionkowski, M., Barkana, R., Critical assessment of CMB limits on dark matter-baryon scattering: New treatment of the relative bulk velocity. Phys. Rev. D, 98(12), 2018, 123506 arXiv:1808.00001 [astro-ph.CO].
Li, Z., et al. The Atacama Cosmology Telescope: limits on dark matter-baryon interactions from DR4 power spectra. J. Cosmol. Astropart. Phys., 02, 2023, 046 arXiv:2208.08985 [astro-ph.CO].
Barkana, R., Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 555:7694 (2018), 71–74 arXiv:1803.06698 [astro-ph.CO].
Gluscevic, V., Boddy, K.K., Constraints on scattering of keV–TeV dark matter with protons in the early universe. Phys. Rev. Lett., 121(8), 2018, 081301 arXiv:1712.07133 [astro-ph.CO].
Postolak, M., Did the Big Bang and cosmic inflation really happen? (A tale of alternative cosmological models). 2024 arXiv:2404.18503 [physics.pop-ph].
Sakstein, J., Desmond, H., Jain, B., Screened fifth forces mediated by dark matter–Baryon interactions: theory and astrophysical probes. Phys. Rev. D, 100(10), 2019, 104035 arXiv:1907.03775 [astro-ph.CO].
Buen-Abad, M.A., Essig, R., McKeen, D., Zhong, Y.-M., Cosmological constraints on dark matter interactions with ordinary matter. Phys. Rep. 961 (2022), 1–35 arXiv:2107.12377 [astro-ph.CO].
Dvorkin, C., Blum, K., Kamionkowski, M., Constraining dark matter-Baryon scattering with linear cosmology. Phys. Rev. D, 89(2), 2014, 023519 arXiv:1311.2937 [astro-ph.CO].
Moore, B., Evidence against dissipationless dark matter from observations of galaxy haloes. Nature, 370, 1994, 629.
Oh, S.-H., de Blok, W.J.G., Walter, F., Brinks, E., Kennicutt, R.C. Jr., High-resolution dark matter density profiles of things dwarf galaxies: correcting for non-circular motions. Astron. J., 136, 2008, 2761 arXiv:0810.2119 [astro-ph].
Kormendy, J., Freeman, K.C., Scaling laws for dark matter halos in late-type and dwarf spheroidal galaxies. IAU Symp., 220, 2004, 377 arXiv:astro-ph/0407321.
Donato, F., Salucci, P., Cores of dark matter halos correlate with disk scale lengths. Mon. Not. R. Astron. Soc. 353 (2004), L17–L22 arXiv:astro-ph/0403206.
Donato, F., Gentile, G., Salucci, P., Martins, C.F., Wilkinson, M.I., Gilmore, G., Grebel, E.K., Koch, A., Wyse, R., A constant dark matter halo surface density in galaxies. Mon. Not. R. Astron. Soc. 397 (2009), 1169–1176 arXiv:0904.4054 [astro-ph.CO].
Gentile, G., Famaey, B., Zhao, H., Salucci, P., Universality of galactic surface densities within one dark halo scale-length. Nature, 461, 2009, 627 arXiv:0909.5203 [astro-ph.CO].
Di Paolo, C., Salucci, P., Erkurt, A., The universal rotation curve of low surface brightness galaxies – IV. The interrelation between dark and luminous matter. Mon. Not. R. Astron. Soc. 490:4 (2019), 5451–5477 arXiv:1805.07165.
Sharma, G., Salucci, P., van de Ven, G., Observational evidence of evolving dark matter profiles at z ≤ 1. Astron. Astrophys., 659, 2022, A40 arXiv:2109.14224 [astro-ph.GA].
Salucci, P., Turini, N., Di Paolo, C., Paradigms and scenarios for the dark matter phenomenon. Universe, 6(8), 2020, 118 arXiv:2008.04052 [astro-ph.CO].
Shoji, Y., Kuflik, E., Birnboim, Y., Stone, N.C., Heating galaxy clusters with interacting dark matter. Mon. Not. R. Astron. Soc. 528:3 (2024), 4082–4091 arXiv:2306.08679 [astro-ph.CO].
Choi, G., Yanagida, T.T., Yokozaki, N., A model of interacting dark matter and dark radiation for H0 and σ8 tensions. JHEP, 01, 2021, 127 arXiv:2010.06892 [hep-ph].
Yengejeh, M.G., Fakhry, S., Firouzjaee, J.T., Fathi, H., The integrated Sachs–Wolfe effect in interacting dark matter–dark energy models. Phys. Dark Univ., 39, 2023, 101144 arXiv:2206.01030 [astro-ph.CO].
Wu, Y., Baum, S., Freese, K., Visinelli, L., Yu, H.-B., Dark stars powered by self-interacting dark matter. Phys. Rev. D, 106(4), 2022, 043028 arXiv:2205.10904 [hep-ph].
Bell, N.F., Busoni, G., Ramirez-Quezada, M.E., Robles, S., Virgato, M., Improved treatment of dark matter capture in white dwarfs. J. Cosmol. Astropart. Phys., 10, 2021, 083 arXiv:2104.14367 [hep-ph].
Akarsu, O., Katirci, N., Kumar, S., Nunes, R.C., Sami, M., Cosmological implications of scale-independent energy-momentum squared gravity: Pseudo nonminimal interactions in dark matter and relativistic relics. Phys. Rev. D, 98(6), 2018, 063522 arXiv:1807.01588 [gr-qc].
Zhou, Z., Liu, G., Mu, Y., Xu, L., Limit on the dark matter mass from its interaction with photons. Phys. Rev. D, 105(10), 2022, 103509 arXiv:2205.08070 [astro-ph.CO].
Stadler, J., Bœhm, C., Constraints on γ-CDM interactions matching the Planck data precision. J. Cosmol. Astropart. Phys., 10, 2018, 009 arXiv:1802.06589 [astro-ph.CO].
Ali-Haïmoud, Y., Testing dark matter interactions with CMB spectral distortions. Phys. Rev. D, 103(4), 2021, 043541 arXiv:2101.04070 [astro-ph.CO].
Xu, Z., Hou, X., Gong, X., Wang, J., Black hole space-time in dark matter halo. J. Cosmol. Astropart. Phys., 09, 2018, 038 arXiv:1803.00767 [gr-qc].
Konoplya, R.A., Zhidenko, A., Solutions of the Einstein equations for a black hole surrounded by a galactic halo. Astrophys. J., 933(2), 2022, 166 arXiv:2202.02205 [gr-qc].
Hou, X., Xu, Z., Wang, J., Rotating black hole shadow in perfect fluid dark matter. J. Cosmol. Astropart. Phys., 12, 2018, 040 arXiv:1810.06381 [gr-qc].
Hou, X., Xu, Z., Zhou, M., Wang, J., Black hole shadow of Sgr A∗ in dark matter halo. J. Cosmol. Astropart. Phys., 07, 2018, 015 arXiv:1804.08110 [gr-qc].
Haroon, S., Jamil, M., Jusufi, K., Lin, K., Mann, R.B., Shadow and deflection angle of rotating black holes in perfect fluid dark matter with a cosmological constant. Phys. Rev. D, 99(4), 2019, 044015 arXiv:1810.04103 [gr-qc].
Xu, Z., Gong, X., Zhang, S.-N., Black hole immersed dark matter halo. Phys. Rev. D, 101(2), 2020, 024029.
Jusufi, K., Jamil, M., Zhu, T., Shadows of Sgr A∗ black hole surrounded by superfluid dark matter halo. Eur. Phys. J. C, 80(5), 2020, 354 arXiv:2005.05299 [gr-qc].
Xu, Z., Wang, J., Tang, M., Deformed black hole immersed in dark matter spike. J. Cosmol. Astropart. Phys., 09, 2021, 007 arXiv:2104.13158 [gr-qc].
Nampalliwar, S., Kumar, S., Jusufi, K., Wu, Q., Jamil, M., Salucci, P., Modeling the Sgr A* black hole immersed in a dark matter spike. Astrophys. J., 916(2), 2021, 116 arXiv:2103.12439 [astro-ph.HE].
Jusufi, K., Saurabh, Black hole shadows in Verlinde's emergent gravity. Mon. Not. R. Astron. Soc. 503:1 (2021), 1310–1318 arXiv:2010.15870 [gr-qc].
Konoplya, R.A., Black holes in galactic centers: Quasinormal ringing, grey-body factors and Unruh temperature. Phys. Lett. B, 823, 2021, 136734 arXiv:2109.01640 [gr-qc].
Saurabh, K., Jusufi, K., Imprints of dark matter on black hole shadows using spherical accretions. Eur. Phys. J. C, 81(6), 2021, 490 arXiv:2009.10599 [gr-qc].
Pantig, R.C., Övgün, A., Dark matter effect on the weak deflection angle by black holes at the center of Milky Way and M87 galaxies. Eur. Phys. J. C, 82(5), 2022, 391 arXiv:2201.03365 [gr-qc].
Pantig, R.C., Övgün, A., Dehnen halo effect on a black hole in an ultra-faint dwarf galaxy. J. Cosmol. Astropart. Phys., 08(08), 2022, 056 arXiv:2202.07404 [astro-ph.GA].
Atamurotov, F., Papnoi, U., Jusufi, K., Shadow and deflection angle of charged rotating black hole surrounded by perfect fluid dark matter. Cl. Quant. Grav., 39(2), 2022, 025014 arXiv:2104.14898 [gr-qc].
Jusufi, K., Black holes surrounded by Einstein clusters as models of dark matter fluid. Eur. Phys. J. C, 83(2), 2023, 103 arXiv:2202.00010 [gr-qc].
Pantig, R.C., Yu, P.K., Rodulfo, E.T., Övgün, A., Shadow and weak deflection angle of extended uncertainty principle black hole surrounded with dark matter. Ann. Phys., 436, 2022, 168722 arXiv:2104.04304 [gr-qc].
Liu, D., Yang, Y., Övgün, A., Long, Z.-W., Xu, Z., Gravitational ringing and superradiant instabilities of the Kerr-like black holes in a dark matter halo. Eur. Phys. J. C, 83(7), 2023, 565 arXiv:2204.11563 [gr-qc].
Anjum, A., Afrin, M., Ghosh, S.G., Investigating effects of dark matter on photon orbits and black hole shadows. Phys. Dark Univ., 40, 2023, 101195 arXiv:2301.06373 [gr-qc].
Övgün, A., Sese, L.J.F., Pantig, R.C., Constraints via the event horizon telescope for black hole solutions with dark matter under the generalized uncertainty principle minimal length scale effect. Ann. Phys., 536(4), 2024, 2300390 arXiv:2309.07442 [gr-qc].
Errehymy, A., Maurya, S.K., Mustafa, G., Hansraj, S., Alrebdi, H.I., Abdel-Aty, A.-H., Black hole solutions with dark matter halos in the four-dimensional einstein-gauss-bonnet gravity. Fortsch. Phys., 71(10-11), 2023, 2300052.
Qiao, C.-K., Zhou, M., Gravitational lensing of Schwarzschild and charged black holes immersed in perfect fluid dark matter halo. J. Cosmol. Astropart. Phys., 12, 2023, 005 arXiv:2212.13311 [gr-qc].
Zhou, X., Xue, Y., Mu, B., Tao, J., Temporal and spatial chaos of RN-AdS black holes immersed in perfect fluid dark matter. Phys. Dark Univ., 39, 2023, 101168 arXiv:2209.03612 [gr-qc].
Capozziello, S., Zare, S., Mota, D.F., Hassanabadi, H., Dark matter spike around bumblebee black holes. J. Cosmol. Astropart. Phys., 2023(2305), 2023, 027 arXiv:2303.13554 [gr-qc].
Capozziello, S., Zare, S., Hassanabadi, H., Testing bumblebee gravity with global monopoles in a dark matter spike by eht observations from M87 and Sgr A. 2023 arXiv:2311.12896 [gr-qc].
Liu, Y.-G., Qiao, C.-K., Tao, J., Gravitational lensing of spherically symmetric black holes in dark matter halos. J. Cosmol. Astropart. Phys., 10, 2024, 075 arXiv:2312.15760 [gr-qc].
Yang, Y., Liu, D., Övgün, A., Lambiase, G., Long, Z.-W., Black hole surrounded by the pseudo-isothermal dark matter halo. Eur. Phys. J. C, 84(1), 2024, 63 arXiv:2308.05544 [gr-qc].
Gómez, G., Valageas, P., Constraining self-interacting scalar field dark matter from the black hole shadow of the Event Horizon Telescope. Phys. Rev. D, 109(10), 2024, 103038 arXiv:2403.08988 [astro-ph.CO].
Qiao, C.-K., Su, P., Time delay of light in the gravitational lensing of supermassive black holes in dark matter halos. Eur. Phys. J. C, 84(10), 2024, 1032 arXiv:2403.05682 [gr-qc].
Macedo, C.F.B., Rosa, J.L., Rubiera-Garcia, D., Optical appearance of black holes surrounded by a dark matter halo. J. Cosmol. Astropart. Phys., 07, 2024, 046 arXiv:2402.13047 [gr-qc].
Wu, S.R., Wang, B.Q., Long, Z.W., Chen, H., Rotating black holes surrounded by a dark matter halo in the galactic center of M87 and Sgr A∗. Phys. Dark Univ., 44, 2024, 101455.
Pantig, R.C., Apparent and emergent dark matter around a Schwarzschild black hole. Phys. Dark Univ., 45, 2024, 101550 arXiv:2405.07531 [gr-qc].
Konoplya, R.A., Shadow of a black hole surrounded by dark matter. Phys. Lett. B 795 (2019), 1–6 arXiv:1905.00064 [gr-qc].
Buen-Abad, M.A., Marques-Tavares, G., Schmaltz, M., Non-Abelian dark matter and dark radiation. Phys. Rev. D, 92(2), 2015, 023531 arXiv:1505.03542 [hep-ph].
Lesgourgues, J., Marques-Tavares, G., Schmaltz, M., Evidence for dark matter interactions in cosmological precision data?. J. Cosmol. Astropart. Phys., 02, 2016, 037 arXiv:1507.04351 [astro-ph.CO].
Chacko, Z., Cui, Y., Hong, S., Okui, T., Tsai, Y., Partially acoustic dark matter, interacting dark radiation, and large scale structure. JHEP, 12, 2016, 108 arXiv:1609.03569 [astro-ph.CO].
Buen-Abad, M.A., Schmaltz, M., Lesgourgues, J., Brinckmann, T., Interacting dark sector and precision cosmology. J. Cosmol. Astropart. Phys., 01, 2018, 008 arXiv:1708.09406 [astro-ph.CO].
Buen-Abad, M.A., Emami, R., Schmaltz, M., Cannibal dark matter and large scale structure. Phys. Rev. D, 98(8), 2018, 083517 arXiv:1803.08062 [hep-ph].
Buen-Abad, M.A., Chacko, Z., Kilic, C., Marques-Tavares, G., Youn, T., Stepped partially acoustic dark matter, large scale structure, and the hubble tension. JHEP, 06, 2023, 012 arXiv:2208.05984 [hep-ph].
Schöneberg, N., Franco Abellán, G., Simon, T., Bartlett, A., Patel, Y., Smith, T.L., Comparative analysis of interacting stepped dark radiation. Phys. Rev. D, 108(12), 2023, 123513 arXiv:2306.12469 [astro-ph.CO].
Buen-Abad, M.A., Chacko, Z., Kilic, C., Marques-Tavares, G., Youn, T., Stepped partially acoustic dark matter: likelihood analysis and cosmological tensions. J. Cosmol. Astropart. Phys., 11, 2023, 005 arXiv:2306.01844 [astro-ph.CO].
van den Aarssen, L.G., Bringmann, T., Pfrommer, C., Is dark matter with long-range interactions a solution to all small-scale problems of ΛCDM cosmology?. Phys. Rev. Lett., 109, 2012, 231301 arXiv:1205.5809 [astro-ph.CO].
Bringmann, T., Hasenkamp, J., Kersten, J., Tight bonds between sterile neutrinos and dark matter. J. Cosmol. Astropart. Phys., 07, 2014, 042 arXiv:1312.4947 [hep-ph].
Bringmann, T., Ihle, H.T., Kersten, J., Walia, P., Suppressing structure formation at dwarf galaxy scales and below: late kinetic decoupling as a compelling alternative to warm dark matter. Phys. Rev. D, 94(10), 2016, 103529 arXiv:1603.04884 [hep-ph].
Poulot, G., Teixeira, E.M., van de Bruck, C., Nunes, N.J., Scalar field dark matter with time-varying equation of state. 2024 arXiv:2404.10524 [astro-ph.CO].
van de Bruck, C., Poulot, G., Teixeira, E.M., Scalar field dark matter and dark energy: a hybrid model for the dark sector. J. Cosmol. Astropart. Phys., 07, 2023, 019 arXiv:2211.13653 [hep-th].
Teixeira, E.M., Poulot, G., van de Bruck, C., Di Valentino, E., Poulin, V., Alleviating cosmological tensions with a hybrid dark sector. 2024 arXiv:2412.14139 [astro-ph.CO].
Ahn, C.P., et al., BOSS Collaboration. The ninth data release of the Sloan digital sky survey: first spectroscopic data from the SDSS-III Baryon oscillation spectroscopic survey. Astrophys. J. Suppl., 203, 2012, 21 arXiv:1207.7137 [astro-ph.IM].
Howlett, C., Ross, A., Samushia, L., Percival, W., Manera, M., The clustering of the SDSS main galaxy sample – II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z=0.15. Mon. Not. R. Astron. Soc. 449:1 (2015), 848–866 arXiv:1409.3238 [astro-ph.CO].
Menestrina, J.L., Scherrer, R.J., Dark radiation from particle decays during big bang nucleosynthesis. Phys. Rev. D, 85, 2012, 047301 arXiv:1111.0605 [astro-ph.CO].
Gonzalez-Garcia, M.C., Niro, V., Salvado, J., Dark radiation and decaying matter. JHEP, 04, 2013, 052 arXiv:1212.1472 [hep-ph].
Vattis, K., Koushiappas, S.M., Loeb, A., Dark matter decaying in the late Universe can relieve the H0 tension. Phys. Rev. D, 99(12), 2019, 121302 arXiv:1903.06220 [astro-ph.CO].
Enqvist, K., Nadathur, S., Sekiguchi, T., Takahashi, T., Decaying dark matter and the tension in σ8. J. Cosmol. Astropart. Phys., 09, 2015, 067 arXiv:1505.05511 [astro-ph.CO].
Franco Abellán, G., Murgia, R., Poulin, V., Lavalle, J., Implications of the S8 tension for decaying dark matter with warm decay products. Phys. Rev. D, 105(6), 2022, 063525 arXiv:2008.09615 [astro-ph.CO].
Franco Abellán, G., Murgia, R., Poulin, V., Linear cosmological constraints on two-body decaying dark matter scenarios and the S8 tension. Phys. Rev. D, 104(12), 2021, 123533 arXiv:2102.12498 [astro-ph.CO].
Liu, W., Anchordoqui, L.A., Di Valentino, E., Pan, S., Wu, Y., Yang, W., Constraints from high-precision measurements of the cosmic microwave background: the case of disintegrating dark matter with Λ or dynamical dark energy. J. Cosmol. Astropart. Phys., 02(02), 2022, 012 arXiv:2108.04188 [astro-ph.CO].
Anchordoqui, L.A., Barger, V., Goldberg, H., Huang, X., Marfatia, D., da Silva, L.H.M., Weiler, T.J., IceCube neutrinos, decaying dark matter, and the Hubble constant. Phys. Rev. D, 92(6), 2015, 061301 arXiv:1506.08788 [hep-ph] Phys. Rev. D, 94, 2016, 069901 Erratum.
Anchordoqui, L.A., Barger, V., Marfatia, D., Reno, M.H., Weiler, T.J., Oscillations of sterile neutrinos from dark matter decay eliminates the IceCube-Fermi tension. Phys. Rev. D, 103(7), 2021, 075022 arXiv:2101.09559 [astro-ph.HE].
Chudaykin, A., Gorbunov, D., Tkachev, I., Dark matter component decaying after recombination: Lensing constraints with Planck data. Phys. Rev. D, 94, 2016, 023528 arXiv:1602.08121 [astro-ph.CO].
Poulin, V., Serpico, P.D., Lesgourgues, J., A fresh look at linear cosmological constraints on a decaying dark matter component. J. Cosmol. Astropart. Phys., 08, 2016, 036 arXiv:1606.02073 [astro-ph.CO].
Clark, S.J., Vattis, K., Koushiappas, S.M., Cosmological constraints on late-universe decaying dark matter as a solution to the H0 tension. Phys. Rev. D, 103(4), 2021, 043014 arXiv:2006.03678 [astro-ph.CO].
Chudaykin, A., Gorbunov, D., Tkachev, I., Dark matter component decaying after recombination: Sensitivity to baryon acoustic oscillation and redshift space distortion probes. Phys. Rev. D, 97(8), 2018, 083508 arXiv:1711.06738 [astro-ph.CO].
Nygaard, A., Tram, T., Hannestad, S., Updated constraints on decaying cold dark matter. J. Cosmol. Astropart. Phys., 05, 2021, 017 arXiv:2011.01632 [astro-ph.CO].
Anchordoqui, L.A., Decaying dark matter, the H0 tension, and the lithium problem. Phys. Rev. D, 103(3), 2021, 035025 arXiv:2010.09715 [hep-ph].
Davari, Z., Khosravi, N., Can decaying dark matter scenarios alleviate both H0 and σ8 tensions?. Mon. Not. R. Astron. Soc. 516:3 (2022), 4373–4382 arXiv:2203.09439 [astro-ph.CO].
Simon, T., Franco Abellán, G., Du, P., Poulin, V., Tsai, Y., Constraining decaying dark matter with BOSS data and the effective field theory of large-scale structures. Phys. Rev. D, 106(2), 2022, 023516 arXiv:2203.07440 [astro-ph.CO].
Bucko, J., Giri, S.K., Peters, F.H., Schneider, A., Probing the two-body decaying dark matter scenario with weak lensing and the cosmic microwave background. Astron. Astrophys., 683, 2024, A152 arXiv:2307.03222 [astro-ph.CO].
Sigurdson, K., Kamionkowski, M., Charged - particle decay and suppression of small - scale power. Phys. Rev. Lett., 92, 2004, 171302 arXiv:astro-ph/0311486.
Cembranos, J.A.R., Feng, J.L., Rajaraman, A., Takayama, F., SuperWIMP solutions to small scale structure problems. Phys. Rev. Lett., 95, 2005, 181301 arXiv:hep-ph/0507150.
Kaplinghat, M., Dark matter from early decays. Phys. Rev. D, 72, 2005, 063510 arXiv:astro-ph/0507300.
Strigari, L.E., Kaplinghat, M., Bullock, J.S., Dark matter halos with cores from hierarchical structure formation. Phys. Rev. D, 75, 2007, 061303 arXiv:astro-ph/0606281.
Cembranos, J.A.R., Feng, J.L., Strigari, L.E., Resolving cosmic gamma ray anomalies with dark matter decaying now. Phys. Rev. Lett., 99, 2007, 191301 arXiv:0704.1658 [astro-ph].
Dienes, K.R., Thomas, B., Dynamical dark matter: I. Theoretical overview. Phys. Rev. D, 85, 2012, 083523 arXiv:1106.4546 [hep-ph].
Dienes, K.R., Thomas, B., Dynamical dark matter: II. An explicit model. Phys. Rev. D, 85, 2012, 083524 arXiv:1107.0721 [hep-ph].
Dienes, K.R., Huang, F., Kost, J., Su, S., Thomas, B., Deciphering the archaeological record: cosmological imprints of nonminimal dark sectors. Phys. Rev. D, 101(12), 2020, 123511 arXiv:2001.02193 [astro-ph.CO].
Anchordoqui, L.A., Antoniadis, I., Lust, D., Aspects of the dark dimension in cosmology. Phys. Rev. D, 107(8), 2023, 083530 arXiv:2212.08527 [hep-ph].
Obied, G., Dvorkin, C., Gonzalo, E., Vafa, C., Dark dimension and decaying dark matter gravitons. Phys. Rev. D, 109(6), 2024, 063540 arXiv:2311.05318 [astro-ph.CO].
Vafa, C., The string landscape and the swampland. 2005 arXiv:hep-th/0509212.
Gonzalo, E., Montero, M., Obied, G., Vafa, C., Dark dimension gravitons as dark matter. JHEP, 11, 2023, 109 arXiv:2209.09249 [hep-ph].
Desai, A., Dienes, K.R., Thomas, B., Constraining dark-matter ensembles with supernova data. Phys. Rev. D, 101(3), 2020, 035031 arXiv:1909.07981 [astro-ph.CO].
Saridakis, E.N., Do we need soft cosmology?. Phys. Lett. B, 822, 2021, 136649 arXiv:2105.08646 [astro-ph.CO].
Saridakis, E.N., Yang, W., Pan, S., Anagnostopoulos, F.K., Basilakos, S., Observational constraints on soft dark energy and soft dark matter: Challenging ΛCDM cosmology. Nuclear Phys. B, 986, 2023, 116042 arXiv:2112.08330 [astro-ph.CO].
Sagis, L.M.C., Dynamic properties of interfaces in soft matter: experiments and theory. Rev. Modern Phys. 83:4 (2011), 1367–1403.
Davari, Z., Ashoorioon, A., Rezazadeh, K., Spherical collapse approach for non-standard dark matter models and enhanced early galaxy formation in JWST. Mon. Not. R. Astron. Soc. 534:3 (2024), 2848–2857 arXiv:2311.15083 [astro-ph.CO].
Poulin, V., Lesgourgues, J., Serpico, P.D., Cosmological constraints on exotic injection of electromagnetic energy. J. Cosmol. Astropart. Phys., 03, 2017, 043 arXiv:1610.10051 [astro-ph.CO].
Slatyer, T.R., Wu, C.-L., General constraints on dark matter decay from the cosmic microwave background. Phys. Rev. D, 95(2), 2017, 023010 arXiv:1610.06933 [astro-ph.CO].
Colafrancesco, S., Regis, M., Marchegiani, P., Beck, G., Beck, R., Zechlin, H., Lobanov, A., Horns, D., Probing the nature of Dark Matter with the SKA. PoS, AASKA14, 2015, 100 arXiv:1502.03738 [astro-ph.HE].
Dutta, K., Ghosh, A., Kar, A., Mukhopadhyaya, B., A general study of decaying scalar dark matter: existing limits and projected radio signals at the SKA. J. Cosmol. Astropart. Phys., 09, 2022, 005 arXiv:2204.06024 [hep-ph].
King, S.F., Roshan, R., Wang, X., White, G., Yamazaki, M., Quantum gravity effects on dark matter and gravitational waves. Phys. Rev. D, 109(2), 2024, 024057 arXiv:2308.03724 [hep-ph].
King, S.F., Roshan, R., Wang, X., White, G., Yamazaki, M., Quantum gravity effects on fermionic dark matter and gravitational waves. J. Cosmol. Astropart. Phys., 05, 2024, 071 arXiv:2311.12487 [hep-ph].
Asaka, T., Shaposhnikov, M., The νMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 620 (2005), 17–26 arXiv:hep-ph/0505013.
Datta, A., Roshan, R., Sil, A., Imprint of the Seesaw mechanism on feebly interacting dark matter and the baryon asymmetry. Phys. Rev. Lett., 127(23), 2021, 231801 arXiv:2104.02030 [hep-ph].
Redmount, I.H., Dynamics of a void-dominated universe: cell-lattice models. Mon. Not. R. Astro. Soc. 235 (1988), 1301–1312.
Yusofi, E., Khanpour, M., Khanpour, B., Ramzanpour, M.A., Mohsenzadeh, M., Surface tension of cosmic voids as a possible source for dark energy. Mon. Not. R. Astron. Soc. 511:1 (2022), L82–L86 arXiv:1907.12418 [astro-ph.CO].
Mohammadi, S., Yusofi, E., Mohsenzadeh, M., Salem, M.K., A possible role for the merger of clusters/voids in the cosmological expansion. Mon. Not. R. Astron. Soc. 525:3 (2023), 3274–3280 arXiv:2309.07826 [astro-ph.CO].
Moshafi, H., Talebian, A., Yusofi, E., Di Valentino, E., Observational constraints on the dark energy with a quadratic equation of state. Phys. Dark Univ., 45, 2024, 101524 arXiv:2403.02000 [astro-ph.CO].
Ahmadi, S., Yusofi, E., Ramzanpour, M.A., Incorporating the cosmological constant in a modified uncertainty principle. Modern Phys. Lett. A, 39(27n28), 2024, 2450125 arXiv:2401.16126 [gr-qc].
Shahriar, A., Abbasiyan-Motlaq, M., Mohsenzadeh, M., Yusofi, E., Hubble expansion and entropy rates in a cosmological model with merging clusters and voids. 2024 arXiv:2412.05917 [astro-ph.CO].
van de Weygaert, R., Platen, E., Cosmic Voids: structure, dynamics and galaxies. Int. J. Mod. Phys. Conf. Ser. 01 (2011), 41–66 arXiv:0912.2997 [astro-ph.CO].
Wu, H.-Y., Huterer, D., Sample variance in the local measurements of the Hubble constant. Mon. Not. R. Astron. Soc. 471:4 (2017), 4946–4955 arXiv:1706.09723 [astro-ph.CO].
Camarena, D., Marra, V., Impact of the cosmic variance on H0 on cosmological analyses. Phys. Rev. D, 98(2), 2018, 023537 arXiv:1805.09900 [astro-ph.CO].
Keenan, R.C., Barger, A.J., Cowie, L.L., Evidence for a ∼300 megaparsec scale under-density in the local galaxy distribution. Astrophys. J., 775, 2013, 62 arXiv:1304.2884 [astro-ph.CO].
Böhringer, H., Chon, G., Bristow, M., Collins, C.A., The extended ROSAT-ESO Flux-Limited X-ray Galaxy Cluster Survey (REFLEX II): v. exploring a local underdensity in the southern sky. Astron. Astrophys., 574, 2015, A26 arXiv:1410.2172 [astro-ph.CO].
Böhringer, H., Chon, G., Collins, C.A., Observational evidence for a local underdensity in the Universe and its effect on the measurement of the Hubble Constant. Astron. Astrophys., 633, 2020, A19 arXiv:1907.12402 [astro-ph.CO].
Maddox, S.J., Efstathiou, G., Sutherland, W.J., Loveday, J., Galaxy correlations on large scales. Mon. Not. R. Astro. Soc., 242, 1990, 43.
Shanks, T., Galaxy count models and the extragalactic background light. Bowyer, S., Leinert, C., (eds.) The Galactic and Extragalactic Background Radiation IAU Symposium, vol. 139, 1990, 269.
Huang, J.S., Cowie, L.L., Gardner, J.P., Hu, E.M., Songaila, A., Wainscoat, R.J., The hawaii k-band galaxy survey. 2. Bright k-band imaging. Astrophys. J., 476, 1997, 12 arXiv:astro-ph/9610084.
Busswell, G.S., Shanks, T., Outram, P.J., Frith, W.J., Metcalfe, N., Fong, R., The local hole in the galaxy distribution: New optical evidence. Mon. Not. R. Astron. Soc., 354, 2004, 991 arXiv:astro-ph/0302330.
Frith, W.J., Busswell, G.S., Fong, R., Metcalfe, N., Shanks, T., The local hole in the galaxy distribution: Evidence from 2MASS. Mon. Not. R. Astron. Soc., 345, 2003, 1049 arXiv:astro-ph/0302331.
Frith, W.J., Shanks, T., Outram, P.J., 2MASS constraints on the local large-scale structure: A Challenge to lambda-CDM?. Mon. Not. R. Astron. Soc. 361 (2005), 701–709 arXiv:astro-ph/0411204.
Frith, W.J., Metcalfe, N., Shanks, T., New h-band galaxy number counts: a large local hole in the galaxy distribution?. Mon. Not. R. Astron. Soc. 371 (2006), 1601–1609 arXiv:astro-ph/0509875.
Whitbourn, J.R., Shanks, T., The Local Hole revealed by galaxy counts and redshifts. Mon. Not. R. Astron. Soc. 437 (2014), 2146–2162 arXiv:1307.4405 [astro-ph.CO].
Whitbourn, J.R., Shanks, T., Extragalactic Astronomy Group, Durham University Collaboration. The galaxy luminosity function and the Local Hole. Mon. Not. R. Astron. Soc. 459:1 (2016), 496–507 arXiv:1603.02322 [astro-ph.CO].
Wong, J.H.W., Shanks, T., Metcalfe, N., Whitbourn, J.R., The local hole: a galaxy underdensity covering 90 per cent of sky to ≈200 Mpc. Mon. Not. R. Astron. Soc. 511:4 (2022), 5742–5755 arXiv:2107.08505 [astro-ph.CO].
Rubart, M., Bacon, D., Schwarz, D.J., Impact of local structure on the cosmic radio dipole. Astron. Astrophys., 565, 2014, A111 arXiv:1402.0376 [astro-ph.CO].
Angulo, R.E., Springel, V., White, S.D.M., Jenkins, A., Baugh, C.M., Frenk, C.S., Scaling relations for galaxy clusters in the Millennium-XXL simulation. Mon. Not. R. Astron. Soc., 426, 2012, 2046 arXiv:1203.3216 [astro-ph.CO].
Haslbauer, M., Banik, I., Kroupa, P., The KBC void and Hubble tension contradict ΛCDM on a Gpc scale − Milgromian dynamics as a possible solution. Mon. Not. R. Astron. Soc. 499:2 (2020), 2845–2883 arXiv:2009.11292 [astro-ph.CO].
Keenan, R.C., Barger, A.J., Cowie, L.L., Local large-scale structure and the assumption of homogeneity. IAU Symp. 308 (2014), 295–298 arXiv:1409.8458 [astro-ph.CO].
Shanks, T., Hogarth, L.M., Metcalfe, N., Whitbourn, J., Local Hole revisited: evidence for bulk motions and self-consistent outflow. Mon. Not. R. Astron. Soc. 490:4 (2019), 4715–4720 arXiv:1909.01878 [astro-ph.CO].
Ding, Q., Nakama, T., Wang, Y., A gigaparsec-scale local void and the Hubble tension. Sci. China Phys. Mech. Astron., 63(9), 2020, 290403 arXiv:1912.12600 [astro-ph.CO].
Martín, M.S., Rubio, C., Hubble tension and matter inhomogeneities: A theoretical perspective. Ann. Phys., 458, 2023, 169444 arXiv:2107.14377 [astro-ph.CO].
Kaiser, N., Clustering in real space and in redshift space. Mon. Not. R. Astron. Soc. 227 (1987), 1–27.
Mazurenko, S., Banik, I., Kroupa, P., Haslbauer, M., A simultaneous solution to the Hubble tension and observed bulk flow within 250 h−1 Mpc. Mon. Not. R. Astron. Soc. 527:3 (2024), 4388–4396 arXiv:2311.17988 [astro-ph.CO].
Alnes, H., Amarzguioui, M., CMB anisotropies seen by an off-center observer in a spherically symmetric inhomogeneous Universe. Phys. Rev. D, 74, 2006, 103520 arXiv:astro-ph/0607334.
Nistane, V., Cusin, G., Kunz, M., CMB sky for an off-center observer in a local void. Part I. Framework for forecasts. J. Cosmol. Astropart. Phys., 12, 2019, 038 arXiv:1908.05484 [astro-ph.CO].
Cimatti, A., Moresco, M., Revisiting the oldest stars as cosmological probes: new constraints on the Hubble constant. Astrophys. J., 953(2), 2023, 149 arXiv:2302.07899 [astro-ph.CO].
Xiang, M., Rix, H.-W., Yang, H., Liu, J., Huang, Y., Frankel, N., The formation and survival of the Milky Way's oldest stellar disk. Nat. Astron. 9:1 (2025), 101–110 arXiv:2410.09705 [astro-ph.GA].
Krishnan, C., Colgáin, E.O., Ruchika, Sen, A.A., Sheikh-Jabbari, M.M., Yang, T., Is there an early Universe solution to Hubble tension?. Phys. Rev. D, 102(10), 2020, 103525 arXiv:2002.06044 [astro-ph.CO].
Jia, X.D., Hu, J.P., Wang, F.Y., Evidence of a decreasing trend for the Hubble constant. Astron. Astrophys., 674, 2023, A45 arXiv:2212.00238 [astro-ph.CO].
Jia, X.D., Hu, J.P., Yi, S.X., Wang, F.Y., Uncorrelated estimations of H0 redshift evolution from DESI baryon acoustic oscillation observations. Astrophys. J. Lett., 979(2), 2025, L34 arXiv:2406.02019 [astro-ph.CO].
Mazurenko, S., Banik, I., Kroupa, P., The redshift dependence of the inferred H0 in a local void solution to the Hubble tension. Mon. Not. R. Astro. Soc. 536:4 (2025), 3232–3241 arXiv:2412.12245 [astro-ph.CO].
Banik, I., Kalaitzidis, V., Testing the local void solution to the Hubble tension using baryon acoustic oscillation measurements over the last twenty years. 2025 arXiv:2501.17934 [astro-ph.CO].
Rezazadeh, K., Ashoorioon, A., Grin, D., Cascading dark energy. Astrophys. J., 975(1), 2024, 137 arXiv:2208.07631 [astro-ph.CO].
Khanpour, M., Yusofi, E., Khanpour, B., Gravitational merging as a possible source for the cosmological accelerating. 2017 arXiv:1709.08612 [astro-ph.CO].
Kenworthy, W.D., Scolnic, D., Riess, A., The local perspective on the hubble tension: local structure does not impact measurement of the Hubble constant. Astrophys. J., 875(2), 2019, 145 arXiv:1901.08681 [astro-ph.CO].
Phillips, M.M., The absolute magnitudes of Type IA supernovae. Astrophys. J. Lett. 413 (1993), L105–L108.
Friedman, A., On the Curvature of space. Z. Phys. 10 (1922), 377–386.
Friedmann, A., Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Zeitschrift Phys. 21:1 (1924), 326–332.
March, M.C., Trotta, R., Berkes, P., Starkman, G.D., Vaudrevange, P.M., Improved constraints on cosmological parameters from SNIa data. Mon. Not. R. Astron. Soc. 418 (2011), 2308–2329 arXiv:1102.3237 [astro-ph.CO].
Marriner, J., Bernstein, J.P., Kessler, R., Lampeitl, H., Miquel, R., Mosher, J., Nichol, R.C., Sako, M., Smith, M., SDSS Collaboration. A more general model for the intrinsic scatter in Type Ia Supernova distance moduli. Astrophys. J., 740, 2011, 72 arXiv:1107.4631 [astro-ph.CO].
Kessler, R., Scolnic, D., Correcting Type Ia Supernova distances for selection biases and contamination in photometrically identified samples. Astrophys. J., 836(1), 2017, 56 arXiv:1610.04677 [astro-ph.CO].
Castello, S., Högås, M., Mörtsell, E., A cosmological underdensity does not solve the Hubble tension. J. Cosmol. Astropart. Phys., 07, 2022, 003 arXiv:2110.04226 [astro-ph.CO] J. Cosmol. Astropart. Phys., 09, 2022, E01 Erratum.
Camarena, D., Marra, V., Sakr, Z., Clarkson, C., The Copernican principle in light of the latest cosmological data. Mon. Not. R. Astron. Soc. 509:1 (2021), 1291–1302 arXiv:2107.02296 [astro-ph.CO].
Camarena, D., Marra, V., Sakr, Z., Clarkson, C., A void in the Hubble tension? The end of the line for the Hubble bubble. Cl. Quant. Grav., 39(18), 2022, 184001 arXiv:2205.05422 [astro-ph.CO].
Lane, Z.G., Seifert, A., Ridden-Harper, R., Wiltshire, D.L., Cosmological foundations revisited with Pantheon+. Mon. Not. R. Astron. Soc. 536:2 (2025), 1752–1777 arXiv:2311.01438 [astro-ph.CO].
Seifert, A., Lane, Z.G., Galoppo, M., Ridden-Harper, R., Wiltshire, D.L., Supernovae evidence for foundational change to cosmological models. Mon. Not. R. Astron. Soc. 537:1 (2025), L55–L60 arXiv:2412.15143 [astro-ph.CO].
Wiseman, P., et al., DES Collaboration. Rates and delay times of Type Ia supernovae in the Dark Energy Survey. Mon. Not. R. Astron. Soc. 506:3 (2021), 3330–3348 arXiv:2105.11954 [astro-ph.GA].
Nicolas, N., Rigault, M., Copin, Y., Graziani, R., Aldering, G., Briday, M., Kim, Y.L., Nordin, J., Perlmutter, S., Smith, M., Redshift evolution of the underlying Type Ia supernova stretch distribution. Astron. Astrophys., 649, 2021, A74 arXiv:2005.09441 [astro-ph.CO].
Wiseman, P., Sullivan, M., Smith, M., Popovic, B., Further evidence that galaxy age drives observed Type Ia supernova luminosity differences. Mon. Not. R. Astron. Soc. 520:4 (2023), 6214–6222 arXiv:2302.05341 [astro-ph.GA].
Keeley, R.E., Shafieloo, A., L'Huillier, B., An analysis of variance of the pantheon+ dataset: Systematics in the covariance matrix?. Universe, 10(12), 2024, 439 arXiv:2212.07917 [astro-ph.CO].
Mandel, K.S., Scolnic, D., Shariff, H., Foley, R.J., Kirshner, R.P., The Type Ia supernova color–magnitude relation and host galaxy dust: A simple hierarchical bayesian model. Astrophys. J., 842(2), 2017, 93 arXiv:1609.04470 [astro-ph.CO].
Luković, V.V., Haridasu, B.S., Vittorio, N., Exploring the evidence for a large local void with supernovae Ia data. Mon. Not. R. Astron. Soc. 491:2 (2020), 2075–2087 arXiv:1907.11219 [astro-ph.CO].
Asencio, E., Banik, I., Kroupa, P., A massive blow for ΛCDM − the high redshift, mass, and collision velocity of the interacting galaxy cluster El Gordo contradicts concordance cosmology. Mon. Not. R. Astron. Soc. 500:4 (2020), 5249–5267 arXiv:2012.03950 [astro-ph.CO].
Asencio, E., Banik, I., Kroupa, P., The El Gordo galaxy cluster challenges ΛCDM for any plausible collision velocity. Astrophys. J., 954(2), 2023, 162 arXiv:2308.00744 [astro-ph.CO].
Hu, J.P., Jia, X.D., Hu, J., Wang, F.Y., Hints of new physics for the Hubble tension: Violation of cosmological principle. Astrophys. J. Lett., 975(2), 2024, L36 arXiv:2410.06450 [astro-ph.CO].
Sah, A., Rameez, M., Sarkar, S., Tsagas, C., Anisotropy in Pantheon+ supernovae. 2024 arXiv:2411.10838 [astro-ph.CO].
Durrer, R., Neronov, A., Cosmological magnetic fields: Their generation, evolution and observation. Astron. Astrophys. Rev., 21, 2013, 62 arXiv:1303.7121 [astro-ph.CO].
Subramanian, K., The origin, evolution and signatures of primordial magnetic fields. Rep. Progr. Phys., 79(7), 2016, 076901 arXiv:1504.02311 [astro-ph.CO].
Vachaspati, T., Progress on cosmological magnetic fields. Rep. Progr. Phys., 84(7), 2021, 074901 arXiv:2010.10525 [astro-ph.CO].
Elyiv, A., Neronov, A., Semikoz, D.V., Gamma-ray induced cascades and magnetic fields in intergalactic medium. Phys. Rev. D, 80, 2009, 023010 arXiv:0903.3649 [astro-ph.CO].
Neronov, A., Vovk, I., Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328 (2010), 73–75 arXiv:1006.3504 [astro-ph.HE].
Tavecchio, F., Ghisellini, G., Foschini, L., Bonnoli, G., Ghirlanda, G., Coppi, P., The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200. Mon. Not. R. Astron. Soc. 406 (2010), L70–L74 arXiv:1004.1329 [astro-ph.CO].
Tavecchio, F., Ghisellini, G., Bonnoli, G., Foschini, L., Extreme TeV blazars and the intergalactic magnetic field. Mon. Not. R. Astron. Soc., 414, 2011, 3566 arXiv:1009.1048 [astro-ph.HE].
Taylor, A.M., Vovk, I., Neronov, A., Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars. Astron. Astrophys., 529, 2011, A144 arXiv:1101.0932 [astro-ph.HE].
Vovk, I., Taylor, A.M., Semikoz, D., Neronov, A., Fermi/LAT observations of 1ES 0229+200: implications for extragalactic magnetic fields and background light. Astrophys. J. Lett., 747, 2012, L14 arXiv:1112.2534 [astro-ph.CO].
Dolag, K., Kachelriess, M., Ostapchenko, S., Tomas, R., Lower limit on the strength and filling factor of extragalactic magnetic fields. Astrophys. J. Lett., 727, 2011, L4 arXiv:1009.1782 [astro-ph.HE].
Subramanian, K., Barrow, J.D., Microwave background signals from tangled magnetic fields. Phys. Rev. Lett. 81 (1998), 3575–3578 arXiv:astro-ph/9803261.
Jedamzik, K., Katalinic, V., Olinto, A.V., A Limit on primordial small scale magnetic fields from CMB distortions. Phys. Rev. Lett. 85 (2000), 700–703 arXiv:astro-ph/9911100.
Durrer, R., Ferreira, P.G., Kahniashvili, T., Tensor microwave anisotropies from a stochastic magnetic field. Phys. Rev. D, 61, 2000, 043001 arXiv:astro-ph/9911040.
Seshadri, T.R., Subramanian, K., CMBR polarization signals from tangled magnetic fields. Phys. Rev. Lett., 87, 2001, 101301 arXiv:astro-ph/0012056.
Mack, A., Kahniashvili, T., Kosowsky, A., Microwave background signatures of a primordial stochastic magnetic field. Phys. Rev. D, 65, 2002, 123004 arXiv:astro-ph/0105504.
Subramanian, K., Barrow, J.D., Small-scale microwave background anisotropies due to tangled primordial magnetic fields. Mon. Not. R. Astron. Soc., 335, 2002, L57 arXiv:astro-ph/0205312.
Subramanian, K., Seshadri, T.R., Barrow, J.D., Small - scale CMB polarization anisotropies due to tangled primordial magnetic fields. Mon. Not. R. Astron. Soc., 344, 2003, L31 arXiv:astro-ph/0303014.
Mollerach, S., Harari, D., Matarrese, S., CMB polarization from secondary vector and tensor modes. Phys. Rev. D, 69, 2004, 063002 arXiv:astro-ph/0310711.
Scoccola, C., Harari, D., Mollerach, S., B polarization of the CMB from Faraday rotation. Phys. Rev. D, 70, 2004, 063003 arXiv:astro-ph/0405396.
Sethi, K., Primordial magnetic fields in the post-recombination era and early reionization. Mon. Not. R. Astron. Soc. 356 (2005), 778–788 arXiv:astro-ph/0405413.
Kosowsky, A., Kahniashvili, T., Lavrelashvili, G., Ratra, B., Faraday rotation of the Cosmic Microwave Background polarization by a stochastic magnetic field. Phys. Rev. D, 71, 2005, 043006 arXiv:astro-ph/0409767.
Kahniashvili, T., Ratra, B., Effects of cosmological magnetic helicity on the cosmic microwave background. Phys. Rev. D, 71, 2005, 103006 arXiv:astro-ph/0503709.
Brown, I., Crittenden, R., Non-Gaussianity from cosmic magnetic fields. Phys. Rev. D, 72, 2005, 063002 arXiv:astro-ph/0506570.
Zizzo, A., Burigana, C., On the effect of cyclotron emission on the spectral distortions of the cosmic microwave background. New Astron. 11 (2005), 1–16 arXiv:astro-ph/0505259.
Chen, G., Mukherjee, P., Kahniashvili, T., Ratra, B., Wang, Y., Looking for cosmological Alfven waves in WMAP data. Astrophys. J. 611 (2004), 655–659 arXiv:astro-ph/0403695.
Lewis, A., CMB anisotropies from primordial inhomogeneous magnetic fields. Phys. Rev. D, 70, 2004, 043011 arXiv:astro-ph/0406096.
Tashiro, H., Sugiyama, N., Banerjee, R., Nonlinear evolution of cosmic magnetic fields and cosmic microwave background anisotropies. Phys. Rev. D, 73, 2006, 023002 arXiv:astro-ph/0509220.
Yamazaki, D., Ichiki, K., Kajino, T., Mathews, G.J., Constraints on the evolution of the primordial magnetic field from the small scale cmb angular anisotropy. Astrophys. J. 646 (2006), 719–729 arXiv:astro-ph/0602224.
Kahniashvili, T., Ratra, B., CMB anisotropies due to cosmological magnetosonic waves. Phys. Rev. D, 75, 2007, 023002 arXiv:astro-ph/0611247.
Giovannini, M., Kunze, K.E., Magnetized CMB observables: A Dedicated numerical approach. Phys. Rev. D, 77, 2008, 063003 arXiv:0712.3483 [astro-ph].
Seshadri, T.R., Subramanian, K., CMB bispectrum from primordial magnetic fields on large angular scales. Phys. Rev. Lett., 103, 2009, 081303 arXiv:0902.4066 [astro-ph.CO].
Caprini, C., Finelli, F., Paoletti, D., Riotto, A., The cosmic microwave background temperature bispectrum from scalar perturbations induced by primordial magnetic fields. J. Cosmol. Astropart. Phys., 06, 2009, 021 arXiv:0903.1420 [astro-ph.CO].
Cai, R.-G., Hu, B., Zhang, H.-B., Acoustic signatures in the Cosmic Microwave Background bispectrum from primordial magnetic fields. J. Cosmol. Astropart. Phys., 08, 2010, 025 arXiv:1006.2985 [astro-ph.CO].
Trivedi, P., Subramanian, K., Seshadri, T.R., Primordial magnetic field limits from cosmic microwave background bispectrum of magnetic passive scalar modes. Phys. Rev. D, 82, 2010, 123006 arXiv:1009.2724 [astro-ph.CO].
Brown, I.A., Intrinsic bispectra of cosmic magnetic fields. Astrophys. J., 733, 2011, 83 arXiv:1012.2892 [astro-ph.CO].
Shiraishi, M., Nitta, D., Yokoyama, S., Ichiki, K., Takahashi, K., Cosmic microwave background bispectrum of vector modes induced from primordial magnetic fields. Phys. Rev. D, 82, 2010, 121302 arXiv:1009.3632 [astro-ph.CO] Phys. Rev. D, 83, 2011, 029901 Erratum.
Shiraishi, M., Nitta, D., Yokoyama, S., Ichiki, K., Takahashi, K., Cosmic microwave background bispectrum of tensor passive modes induced from primordial magnetic fields. Phys. Rev. D, 83, 2011, 123003 arXiv:1103.4103 [astro-ph.CO].
Trivedi, P., Seshadri, T.R., Subramanian, K., Cosmic microwave background trispectrum and primordial magnetic field limits. Phys. Rev. Lett., 108, 2012, 231301 arXiv:1111.0744 [astro-ph.CO].
Yamazaki, D.G., Ichiki, K., Kajino, T., Mathews, G.J., New constraints on the primordial magnetic field. Phys. Rev. D, 81, 2010, 023008 arXiv:1001.2012 [astro-ph.CO].
Paoletti, D., Finelli, F., CMB constraints on a stochastic background of primordial magnetic fields. Phys. Rev. D, 83, 2011, 123533 arXiv:1005.0148 [astro-ph.CO].
Kunze, K.E., CMB anisotropies in the presence of a stochastic magnetic field. Phys. Rev. D, 83, 2011, 023006 arXiv:1007.3163 [astro-ph.CO].
Pogosian, L., Vachaspati, T., Yadav, A., Primordial magnetism in CMB B-modes. Can. J. Phys. 91 (2013), 451–454 arXiv:1210.0308 [astro-ph.CO].
Paoletti, D., Finelli, F., Constraints on a stochastic background of primordial magnetic fields with WMAP and south pole telescope data. Phys. Lett. B 726 (2013), 45–49 arXiv:1208.2625 [astro-ph.CO].
Kunze, K.E., Komatsu, E., Constraining primordial magnetic fields with distortions of the black-body spectrum of the cosmic microwave background: pre- and post-decoupling contributions. J. Cosmol. Astropart. Phys., 01, 2014, 009 arXiv:1309.7994 [astro-ph.CO].
Shiraishi, M., Sekiguchi, T., First observational constraints on tensor non-Gaussianity sourced by primordial magnetic fields from cosmic microwave background. Phys. Rev. D, 90(10), 2014, 103002 arXiv:1304.7277 [astro-ph.CO].
Trivedi, P., Subramanian, K., Seshadri, T.R., Primordial magnetic field limits from the CMB trispectrum: Scalar modes and Planck constraints. Phys. Rev. D, 89(4), 2014, 043523 arXiv:1312.5308 [astro-ph.CO].
Ballardini, M., Finelli, F., Paoletti, D., CMB anisotropies generated by a stochastic background of primordial magnetic fields with non-zero helicity. J. Cosmol. Astropart. Phys., 10, 2015, 031 arXiv:1412.1836 [astro-ph.CO].
Kahniashvili, T., Maravin, Y., Lavrelashvili, G., Kosowsky, A., Primordial magnetic helicity constraints from WMAP nine-year data. Phys. Rev. D, 90(8), 2014, 083004 arXiv:1408.0351 [astro-ph.CO].
Kunze, K.E., Komatsu, E., Constraints on primordial magnetic fields from the optical depth of the cosmic microwave background. J. Cosmol. Astropart. Phys., 06, 2015, 027 arXiv:1501.00142 [astro-ph.CO].
Ade, P.A.R., et al., Planck Collaboration. Planck 2015 results. XIX. Constraints on primordial magnetic fields. Astron. Astrophys., 594, 2016, A19 arXiv:1502.01594 [astro-ph.CO].
Ganc, J., Sloth, M.S., Probing correlations of early magnetic fields using mu-distortion. J. Cosmol. Astropart. Phys., 08, 2014, 018 arXiv:1404.5957 [astro-ph.CO].
Chluba, J., Paoletti, D., Finelli, F., Rubiño Martín, J.-A., Effect of primordial magnetic fields on the ionization history. Mon. Not. R. Astron. Soc. 451:2 (2015), 2244–2250 arXiv:1503.04827 [astro-ph.CO].
Zucca, A., Li, Y., Pogosian, L., Constraints on Primordial Magnetic Fields from Planck combined with the South Pole Telescope CMB B-mode polarization measurements. Phys. Rev. D, 95(6), 2017, 063506 arXiv:1611.00757 [astro-ph.CO].
Sutton, D.R., Feng, C., Reichardt, C.L., Current and future constraints on primordial magnetic fields. Astrophys. J., 846(2), 2017, 164 arXiv:1702.01871 [astro-ph.CO].
Minoda, T., Ichiki, K., Tashiro, H., Small-scale CMB anisotropies induced by the primordial magnetic fields. J. Cosmol. Astropart. Phys., 03, 2021, 093 arXiv:2012.12542 [astro-ph.CO].
Banerjee, R., Jedamzik, K., Are cluster magnetic fields primordial?. Phys. Rev. Lett., 91, 2003, 251301 arXiv:astro-ph/0306211 Phys. Rev. Lett., 93, 2004, 179901 Erratum.
Jedamzik, K., Abel, T., Weak primordial magnetic fields and anisotropies in the cosmic microwave background radiation. 2011 arXiv:1108.2517 [astro-ph.CO].
Jedamzik, K., Abel, T., Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation. J. Cosmol. Astropart. Phys., 10, 2013, 050.
Jedamzik, K., Saveliev, A., Stringent limit on primordial magnetic fields from the cosmic microwave background radiation. Phys. Rev. Lett., 123(2), 2019, 021301 arXiv:1804.06115 [astro-ph.CO].
Jedamzik, K., Pogosian, L., Relieving the Hubble tension with primordial magnetic fields. Phys. Rev. Lett., 125(18), 2020, 181302 arXiv:2004.09487 [astro-ph.CO].
Thiele, L., Guan, Y., Hill, J.C., Kosowsky, A., Spergel, D.N., Can small-scale baryon inhomogeneities resolve the Hubble tension? An investigation with ACT DR4. Phys. Rev. D, 104(6), 2021, 063535 arXiv:2105.03003 [astro-ph.CO].
Rashkovetskyi, M., Muñoz, J.B., Eisenstein, D.J., Dvorkin, C., Small-scale clumping at recombination and the Hubble tension. Phys. Rev. D, 104(10), 2021, 103517 arXiv:2108.02747 [astro-ph.CO].
Galli, S., Pogosian, L., Jedamzik, K., Balkenhol, L., Consistency of Planck, ACT, and SPT constraints on magnetically assisted recombination and forecasts for future experiments. Phys. Rev. D, 105(2), 2022, 023513 arXiv:2109.03816 [astro-ph.CO].
Jedamzik, K., Abel, T., Ali-Haimoud, Y., Cosmic recombination in the presence of primordial magnetic fields. J. Cosmol. Astropart. Phys., 03, 2025, 012 arXiv:2312.11448 [astro-ph.CO].
Korochkin, A., Kalashev, O., Neronov, A., Semikoz, D., Sensitivity reach of gamma-ray measurements for strong cosmological magnetic fields. Astrophys. J., 906(2), 2021, 116 arXiv:2007.14331 [astro-ph.CO].
Guth, A.H., The inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23 (1981), 347–356.
Liddle, A.R., Lyth, D.H., The end for extended inflation?. Ann. N. Y. Acad. Sci., 688, 1993, 653 arXiv:astro-ph/9302010.
Linde, A.D., Fast roll inflation. JHEP, 11, 2001, 052 arXiv:hep-th/0110195.
Motohashi, H., Starobinsky, A.A., Yokoyama, J., Inflation with a constant rate of roll. J. Cosmol. Astropart. Phys., 09, 2015, 018 arXiv:1411.5021 [astro-ph.CO].
Guerrero, M., Rubiera-Garcia, D., Saez-Chillon Gomez, D., Constant roll inflation in multifield models. Phys. Rev. D, 102, 2020, 123528 arXiv:2008.07260 [gr-qc].
Bjorkmo, T., Ferreira, R.Z., Marsh, M.C.D., Mild non-gaussianities under perturbative control from rapid-turn inflation models. J. Cosmol. Astropart. Phys., 12, 2019, 036 arXiv:1908.11316 [hep-th].
Anguelova, L., Lazaroiu, C.I., Dynamical consistency conditions for rapid turn inflation. J. Cosmol. Astropart. Phys., 05, 2023, 020 arXiv:2210.00031 [hep-th].
Çimdiker, İ.İ., Starobinsky inflation in emergent gravity. Phys. Dark Univ., 30, 2020, 100736.
Bostan, N., Karahan, C., Sargın, O., Inflation in symmergent metric-palatini gravity. J. Cosmol. Astropart. Phys., 02, 2024, 028 arXiv:2308.04507 [astro-ph.CO].
Maleknejad, A., Sheikh-Jabbari, M.M., Non-Abelian gauge field inflation. Phys. Rev. D, 84, 2011, 043515 arXiv:1102.1932 [hep-ph].
Adshead, P., Wyman, M., Chromo-Natural Inflation: Natural inflation on a steep potential with classical non-Abelian gauge fields. Phys. Rev. Lett., 108, 2012, 261302 arXiv:1202.2366 [hep-th].
Garretson, W.D., Field, G.B., Carroll, S.M., Primordial magnetic fields from pseudoGoldstone bosons. Phys. Rev. D 46 (1992), 5346–5351 arXiv:hep-ph/9209238.
Anber, M.M., Sorbo, L., N-flationary magnetic fields. J. Cosmol. Astropart. Phys., 10, 2006, 018 arXiv:astro-ph/0606534.
Barnaby, N., Peloso, M., Large nongaussianity in axion inflation. Phys. Rev. Lett., 106, 2011, 181301 arXiv:1011.1500 [hep-ph].
Cook, J.L., Sorbo, L., Particle production during inflation and gravitational waves detectable by ground-based interferometers. Phys. Rev. D, 85, 2012, 023534 arXiv:1109.0022 [astro-ph.CO] Phys. Rev. D, 86, 2012, 069901 Erratum.
Sorbo, L., Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton. J. Cosmol. Astropart. Phys., 06, 2011, 003 arXiv:1101.1525 [astro-ph.CO].
Dimastrogiovanni, E., Peloso, M., Stability analysis of chromo-natural inflation and possible evasion of Lyth's bound. Phys. Rev. D, 87(10), 2013, 103501 arXiv:1212.5184 [astro-ph.CO].
Adshead, P., Martinec, E., Sfakianakis, E.I., Wyman, M., Higgsed chromo-natural inflation. JHEP, 12, 2016, 137 arXiv:1609.04025 [hep-th].
Dimastrogiovanni, E., Fasiello, M., Fujita, T., Primordial gravitational waves from axion-gauge fields dynamics. J. Cosmol. Astropart. Phys., 01, 2017, 019 arXiv:1608.04216 [astro-ph.CO].
Agrawal, A., Fujita, T., Komatsu, E., Large tensor non-gaussianity from axion-gauge field dynamics. Phys. Rev. D, 97(10), 2018, 103526 arXiv:1707.03023 [astro-ph.CO].
Caldwell, R.R., Devulder, C., Axion gauge field inflation and gravitational leptogenesis: A lower bound on B modes from the matter-antimatter asymmetry of the universe. Phys. Rev. D, 97(2), 2018, 023532 arXiv:1706.03765 [astro-ph.CO].
Thorne, B., Fujita, T., Hazumi, M., Katayama, N., Komatsu, E., Shiraishi, M., Finding the chiral gravitational wave background of an axion-SU(2) inflationary model using CMB observations and laser interferometers. Phys. Rev. D, 97(4), 2018, 043506 arXiv:1707.03240 [astro-ph.CO].
Dimastrogiovanni, E., Fasiello, M., Hardwick, R.J., Assadullahi, H., Koyama, K., Wands, D., Non-gaussianity from axion-gauge fields interactions during inflation. J. Cosmol. Astropart. Phys., 11, 2018, 029 arXiv:1806.05474 [astro-ph.CO].
Fujita, T., Namba, R., Obata, I., Mixed non-gaussianity from axion-gauge field dynamics. J. Cosmol. Astropart. Phys., 04, 2019, 044 arXiv:1811.12371 [astro-ph.CO].
Domcke, V., Mares, B., Muia, F., Pieroni, M., Emerging chromo-natural inflation. J. Cosmol. Astropart. Phys., 04, 2019, 034 arXiv:1807.03358 [hep-ph].
Lozanov, K.D., Maleknejad, A., Komatsu, E., Schwinger effect by an SU(2) gauge field during inflation. JHEP, 02, 2019, 041 arXiv:1805.09318 [hep-th].
Watanabe, Y., Komatsu, E., Gravitational wave from Axion-SU(2) gauge fields: Effective field theory for kinetically driven inflation. 2020 arXiv:2004.04350 [hep-th].
Holland, J., Zavala, I., Tasinato, G., On chromonatural inflation in string theory. J. Cosmol. Astropart. Phys., 12, 2020, 026 arXiv:2009.00653 [hep-th].
Domcke, V., Guidetti, V., Welling, Y., Westphal, A., Resonant backreaction in axion inflation. J. Cosmol. Astropart. Phys., 09, 2020, 009 arXiv:2002.02952 [astro-ph.CO].
Iarygina, O., Sfakianakis, E.I., Sharma, R., Brandenburg, A., Backreaction of axion-SU(2) dynamics during inflation. J. Cosmol. Astropart. Phys., 04, 2024, 018 arXiv:2311.07557 [astro-ph.CO].
Ishiwata, K., Komatsu, E., Obata, I., Axion-gauge field dynamics with backreaction. J. Cosmol. Astropart. Phys., 03(03), 2022, 010 arXiv:2111.14429 [hep-ph].
Durrer, R., von Eckardstein, R., Garg, D., Schmitz, K., Sobol, O., Vilchinskii, S., Scalar perturbations from inflation in the presence of gauge fields. Phys. Rev. D, 110(4), 2024, 043533 arXiv:2404.19694 [astro-ph.CO].
Dimastrogiovanni, E., Fasiello, M., Papageorgiou, A., Novel primordial black hole production mechanism from non-Abelian gauge fields during inflation. Phys. Rev. D, 110(10), 2024, 103542 arXiv:2403.13581 [astro-ph.CO].
Gaztañaga, E., Kumar, K.S., Finding origins of CMB anomalies in the inflationary quantum fluctuations. J. Cosmol. Astropart. Phys., 06, 2024, 001 arXiv:2401.08288 [astro-ph.CO].
Anchordoqui, L.A., Barger, V., Goldberg, H., Huang, X., Marfatia, D., S-dual Inflation: BICEP2 data without unlikeliness. Phys. Lett. B 734 (2014), 134–136 arXiv:1403.4578 [hep-ph].
Anchordoqui, L.A., Antoniadis, I., Lüst, D., Soriano, J.F., S-dual inflation and the string swampland. Phys. Rev. D, 103(12), 2021, 123537 arXiv:2103.07982 [hep-th].
Övgün, A., Inflation and acceleration of the universe by nonlinear magnetic monopole fields. Eur. Phys. J. C, 77(2), 2017, 105 arXiv:1604.01837 [gr-qc].
Benaoum, H.B., Leon, G., Ovgun, A., Quevedo, H., Inflation driven by non-linear electrodynamics. Eur. Phys. J. C, 83(5), 2023, 367 arXiv:2206.13157 [gr-qc].
Otalora, G., Övgün, A., Saavedra, J., Videla, N., Inflation from a nonlinear magnetic monopole field nonminimally coupled to curvature. J. Cosmol. Astropart. Phys., 06, 2018, 003 arXiv:1803.11358 [gr-qc].
Övgün, A., Leon, G., Magaña, J., Jusufi, K., Falsifying cosmological models based on a non-linear electrodynamics. Eur. Phys. J. C, 78(6), 2018, 462 arXiv:1709.09794 [gr-qc].
De Lorenci, V.A., Klippert, R., Novello, M., Salim, J.M., Nonlinear electrodynamics and FRW cosmology. Phys. Rev. D, 65, 2002, 063501.
Novello, M., Perez Bergliaffa, S.E., Salim, J., Non-linear electrodynamics and the acceleration of the universe. Phys. Rev. D, 69, 2004, 127301 arXiv:astro-ph/0312093.
Novello, M., Goulart, E., Salim, J.M., Perez Bergliaffa, S.E., Cosmological effects of nonlinear electrodynamics. Cl. Quant. Grav. 24 (2007), 3021–3036 arXiv:gr-qc/0610043.
Vollick, D.N., Homogeneous and isotropic cosmologies with nonlinear electromagnetic radiation. Phys. Rev. D, 78, 2008, 063524 arXiv:0807.0448 [gr-qc].
LoVerde, M., Miller, A., Shandera, S., Verde, L., Effects of scale-dependent non-Gaussianity on cosmological structures. J. Cosmol. Astropart. Phys., 04, 2008, 014 arXiv:0711.4126 [astro-ph].
Stahl, C., Famaey, B., Ibata, R., Hahn, O., Martinet, N., Montandon, T., Scale-dependent local primordial non-Gaussianity as a solution to the S8 tension. Phys. Rev. D, 110(6), 2024, 063501 arXiv:2404.03244 [astro-ph.CO].
Bezrukov, F.L., Shaposhnikov, M., The Standard Model Higgs boson as the inflaton. Phys. Lett. B 659 (2008), 703–706 arXiv:0710.3755 [hep-th].
Bezrukov, F., Gorbunov, D., Shaposhnikov, M., On initial conditions for the Hot Big Bang. J. Cosmol. Astropart. Phys., 06, 2009, 029 arXiv:0812.3622 [hep-ph].
Garcia-Bellido, J., Figueroa, D.G., Rubio, J., Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity. Phys. Rev. D, 79, 2009, 063531 arXiv:0812.4624 [hep-ph].
Repond, J., Rubio, J., Combined Preheating on the lattice with applications to Higgs inflation. J. Cosmol. Astropart. Phys., 07, 2016, 043 arXiv:1604.08238 [astro-ph.CO].
Bezrukov, F., Rubio, J., Shaposhnikov, M., Living beyond the edge: Higgs inflation and vacuum metastability. Phys. Rev. D, 92(8), 2015, 083512 arXiv:1412.3811 [hep-ph].
Bezrukov, F., Pauly, M., Rubio, J., On the robustness of the primordial power spectrum in renormalized Higgs inflation. J. Cosmol. Astropart. Phys., 02, 2018, 040 arXiv:1706.05007 [hep-ph].
Rodrigues, J.G., Benetti, M., Alcaniz, J.S., Possible discrepancies between cosmological and electroweak observables in Higgs Inflation. JHEP, 11, 2021, 091 arXiv:2105.07009 [hep-ph].
Rodrigues, J.G., Benetti, M., de Souza, R., Alcaniz, J., Higgs inflation: Constraining the top quark mass and breaking the H0-σ8 correlation. Phys. Lett. B, 852, 2024, 138607 arXiv:2301.11788 [astro-ph.CO].
Shaposhnikov, M., Zenhausern, D., Scale invariance, unimodular gravity and dark energy. Phys. Lett. B 671 (2009), 187–192 arXiv:0809.3395 [hep-th].
Garcia-Bellido, J., Rubio, J., Shaposhnikov, M., Zenhausern, D., Higgs-dilaton cosmology: From the early to the late universe. Phys. Rev. D, 84, 2011, 123504 arXiv:1107.2163 [hep-ph].
Germani, C., Kehagias, A., New model of inflation with non-minimal derivative coupling of standard model Higgs Boson to gravity. Phys. Rev. Lett., 105, 2010, 011302 arXiv:1003.2635 [hep-ph].
Bauer, F., Demir, D.A., Higgs–Palatini inflation and unitarity. Phys. Lett. B 698 (2011), 425–429 arXiv:1012.2900 [hep-ph].
Rasanen, S., Higgs inflation in the Palatini formulation with kinetic terms for the metric. Open J. Astrophys., 2(1), 2019, 1 arXiv:1811.09514 [gr-qc].
Rubio, J., Tomberg, E.S., Preheating in Palatini Higgs inflation. J. Cosmol. Astropart. Phys., 04, 2019, 021 arXiv:1902.10148 [hep-ph].
Shaposhnikov, M., Shkerin, A., Timiryasov, I., Zell, S., Higgs inflation in Einstein–Cartan gravity. J. Cosmol. Astropart. Phys., 02, 2021, 008 arXiv:2007.14978 [hep-ph] J. Cosmol. Astropart. Phys., 10, 2021, E01 Erratum.
Piani, M., Rubio, J., Higgs–Dilaton inflation in Einstein–Cartan gravity. J. Cosmol. Astropart. Phys., 05(05), 2022, 009 arXiv:2202.04665 [gr-qc].
Casas, S., Pauly, M., Rubio, J., Higgs-dilaton cosmology: An inflation–dark-energy connection and forecasts for future galaxy surveys. Phys. Rev. D, 97(4), 2018, 043520 arXiv:1712.04956 [astro-ph.CO].
Trashorras, M., Nesseris, S., Garcia-Bellido, J., Cosmological Constraints on Higgs–Dilaton Inflation. Phys. Rev. D, 94(6), 2016, 063511 arXiv:1604.06760 [astro-ph.CO].
Casas, S., Karananas, G.K., Pauly, M., Rubio, J., Scale-invariant alternatives to general relativity. III. The inflation-dark energy connection. Phys. Rev. D, 99(6), 2019, 063512 arXiv:1811.05984 [astro-ph.CO].
Akrami, Y., et al., Planck Collaboration. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys., 641, 2020, A10 arXiv:1807.06211 [astro-ph.CO].
Ade, P.A.R., et al., BICEP, Keck Collaboration. Improved constraints on primordial gravitational waves using Planck, WMAP, and BICEP/Keck observations through the 2018 observing season. Phys. Rev. Lett., 127(15), 2021, 151301 arXiv:2110.00483 [astro-ph.CO].
Giarè, W., Inflation, the Hubble tension, and early dark energy: An alternative overview. Phys. Rev. D, 109(12), 2024, 123545 arXiv:2404.12779 [astro-ph.CO].
Silverstein, E., Tong, D., Scalar speed limits and cosmology: Acceleration from D-cceleration. Phys. Rev. D, 70, 2004, 103505 arXiv:hep-th/0310221.
Alishahiha, M., Silverstein, E., Tong, D., DBI in the sky. Phys. Rev. D, 70, 2004, 123505 arXiv:hep-th/0404084.
Peiris, H.V., Baumann, D., Friedman, B., Cooray, A., Phenomenology of D-Brane inflation with general speed of sound. Phys. Rev. D, 76, 2007, 103517 arXiv:0706.1240 [astro-ph].
Ashoorioon, A., Firouzjahi, H., Sheikh-Jabbari, M.M., M-flation: inflation from matrix valued scalar fields. J. Cosmol. Astropart. Phys., 06, 2009, 018 arXiv:0903.1481 [hep-th].
Dimitrijevic, D.D., Bilić, N., Djordjevic, G.S., Milosevic, M., Stojanovic, M., Tachyon scalar field in a braneworld cosmology. Internat. J. Modern Phys. A, 33(34), 2018, 1845017.
Bilic, N., Domazet, S., Djordjevic, G.S., Particle creation and reheating in a braneworld inflationary scenario. Phys. Rev. D, 96(8), 2017, 083518 arXiv:1707.06023 [hep-th].
Bilic, N., Dimitrijevic, D., Djordjevic, G., Milosevic, M., Tachyon inflation in an ads braneworld with backreaction. Internat. J. Modern Phys. A, 32(05), 2017, 1750039 arXiv:1607.04524 [gr-qc].
Lin, C.-M., D-term inflation in braneworld models: Consistency with cosmic-string bounds and early-time Hubble tension resolving models. Phys. Rev. D, 106(10), 2022, 103511 arXiv:2204.10475 [hep-th].
Lombriser, L., On the cosmological constant problem. Phys. Lett. B, 797, 2019, 134804 arXiv:1901.08588 [gr-qc].
Frieman, J., Turner, M., Huterer, D., Dark energy and the accelerating universe. Ann. Rev. Astron. Astrophys. 46 (2008), 385–432 arXiv:0803.0982 [astro-ph].
Park, M., Raveri, M., Jain, B., Reconstructing quintessence. Phys. Rev. D, 103(10), 2021, 103530 arXiv:2101.04666 [astro-ph.CO].
Goldstein, S., Park, M., Raveri, M., Jain, B., Samushia, L., Beyond dark energy Fisher forecasts: How the Dark Energy Spectroscopic Instrument will constrain LCDM and quintessence models. Phys. Rev. D, 107(6), 2023, 063530 arXiv:2207.01612 [astro-ph.CO].
Anchordoqui, L.A., Antoniadis, I., Lust, D., S-dual Quintessence, the Swampland, and the DESI DR2 Results. 2025 arXiv:2503.19428 [hep-th].
Wali Hossain, M., Myrzakulov, R., Sami, M., Saridakis, E.N., Unification of inflation and dark energy à la quintessential inflation. Internat. J. Modern Phys. D, 24(05), 2015, 1530014 arXiv:1410.6100 [gr-qc].
de Haro, J., Amorós, J., Pan, S., Simple inflationary quintessential model II: Power law potentials. Phys. Rev. D, 94(6), 2016, 064060 arXiv:1607.06726 [gr-qc].
Haro, J., Yang, W., Pan, S., Reheating in quintessential inflation via gravitational production of heavy massive particles: A detailed analysis. J. Cosmol. Astropart. Phys., 01, 2019, 023 arXiv:1811.07371 [gr-qc].
Haro, J., Amorós, J., Pan, S., The Peebles – Vilenkin quintessential inflation model revisited. Eur. Phys. J. C, 79(6), 2019, 505 arXiv:1901.00167 [gr-qc].
Haro, J., Amorós, J., Pan, S., Scaling solutions in quintessential inflation. Eur. Phys. J. C, 80(5), 2020, 404 arXiv:1908.01516 [gr-qc].
Geng, C.-Q., Hossain, M.W., Myrzakulov, R., Sami, M., Saridakis, E.N., Quintessential inflation with canonical and noncanonical scalar fields and Planck 2015 results. Phys. Rev. D, 92(2), 2015, 023522 arXiv:1502.03597 [gr-qc].
Dimopoulos, K., Owen, C., Quintessential inflation with α-attractors. J. Cosmol. Astropart. Phys., 06, 2017, 027 arXiv:1703.00305 [gr-qc].
Geng, C.-Q., Lee, C.-C., Sami, M., Saridakis, E.N., Starobinsky, A.A., Observational constraints on successful model of quintessential inflation. J. Cosmol. Astropart. Phys., 06, 2017, 011 arXiv:1705.01329 [gr-qc].
Hossain, M.W., Myrzakulov, R., Sami, M., Saridakis, E.N., Variable gravity: A suitable framework for quintessential inflation. Phys. Rev. D, 90(2), 2014, 023512 arXiv:1402.6661 [gr-qc].
Hossain, M.W., Myrzakulov, R., Sami, M., Saridakis, E.N., Class of quintessential inflation models with parameter space consistent with BICEP2. Phys. Rev. D, 89(12), 2014, 123513 arXiv:1404.1445 [gr-qc].
Rubio, J., Wetterich, C., Emergent scale symmetry: connecting inflation and dark energy. Phys. Rev. D, 96(6), 2017, 063509 arXiv:1705.00552 [gr-qc].
Bettoni, D., Rubio, J., Quintessential inflation: A tale of emergent and broken symmetries. Galaxies, 10(1), 2022, 22 arXiv:2112.11948 [astro-ph.CO].
Akrami, Y., Casas, S., Deng, S., Vardanyan, V., Quintessential α-attractor inflation: forecasts for Stage IV galaxy surveys. J. Cosmol. Astropart. Phys., 04, 2021, 006 arXiv:2010.15822 [astro-ph.CO].
Giarè, W., Di Valentino, E., Linder, E.V., Specogna, E., Testing α-attractor quintessential inflation against CMB and low-redshift data. Phys. Dark Univ., 46, 2024, 101713 arXiv:2402.01560 [astro-ph.CO].
Benisty, D., Guendelman, E.I., Lorentzian quintessential inflation. Internat. J. Modern Phys. D, 29(14), 2020, 2042002 arXiv:2004.00339 [astro-ph.CO].
Benisty, D., Guendelman, E.I., Quintessential inflation from lorentzian slow roll. Eur. Phys. J. C, 80(6), 2020, 577 arXiv:2006.04129 [astro-ph.CO].
Aresté Saló, L., Benisty, D., Guendelman, E.I., Haro, J.d., Quintessential inflation and cosmological seesaw mechanism: reheating and observational constraints. J. Cosmol. Astropart. Phys., 07, 2021, 007 arXiv:2102.09514 [astro-ph.CO].
Aresté Saló, L., Benisty, D., Guendelman, E.I., de Haro, J., α-Attractors in quintessential inflation motivated by supergravity. Phys. Rev. D, 103(12), 2021, 123535 arXiv:2103.07892 [astro-ph.CO].
Langlois, D., Renaux-Petel, S., Perturbations in generalized multi-field inflation. J. Cosmol. Astropart. Phys., 04, 2008, 017 arXiv:0801.1085 [hep-th].
Romano, A.E., Vallejo-Peña, S.A., Turzyński, K., Model-independent approach to effective sound speed in multi-field inflation. Eur. Phys. J. C, 82(8), 2022, 767 arXiv:2006.00969 [gr-qc].
Hosseini Mansoori, S.A., Moshafi, H., Alleviating H 0 and s 8 tensions simultaneously in K-essence cosmology. Astrophys. J., 975(2), 2024, 275 arXiv:2405.05843 [astro-ph.CO].
Tian, S.X., Zhu, Z.-H., Early dark energy in k-essence. Phys. Rev. D, 103(4), 2021, 043518 arXiv:2102.06399 [gr-qc].
Jawad, A., Rani, S., Sultan, A.M., Embreen, K., k-Essence inflation evading swampland conjectures and inflationary parameters. Universe, 8(10), 2022, 532.
Hussain, S., Nelleri, S., Bhattacharya, K., Comprehensive study of k-essence model: dynamical system analysis and observational constraints from latest Type Ia supernova and BAO observations. J. Cosmol. Astropart. Phys., 03, 2025, 025 arXiv:2406.07179 [astro-ph.CO].
Giarè, W., De Angelis, M., van de Bruck, C., Di Valentino, E., Tracking the multifield dynamics with cosmological data: a Monte Carlo approach. J. Cosmol. Astropart. Phys., 12, 2023, 014 arXiv:2306.12414 [astro-ph.CO].
Staicova, D., Special cases of the multi-measure model – Understanding the prolonged inflation. JHEAp 36 (2022), 120–127 arXiv:2011.02967 [gr-qc].
Staicova, D., Stoilov, M., Electromagnetic waves in cosmological Space-Time II. Luminosity distance. Universe, 11, 2025, 50 arXiv:2502.11634 [gr-qc].
Antoniadis, I., Cunat, J., Guillen, A., Cosmological perturbations from five-dimensional inflation. JHEP, 05, 2024, 290 arXiv:2311.17680 [hep-ph].
Petretti, C., Braglia, M., Chen, X., Hazra, D.K., Paban, S., Investigating the origin of CMB large-scale features using LiteBIRD and CMB-S4. 2024 arXiv:2411.03459 [astro-ph.CO].
Anchordoqui, L.A., Antoniadis, I., Primordial power spectrum of five dimensional uniform inflation. 2024 arXiv:2412.19213 [astro-ph.CO].
Hirose, T., Analysis of inflationary models in higher-dimensional uniform inflation. JHEP, 04, 2025, 077 arXiv:2501.13581 [hep-ph].
Moreno-Pulido, C., Sola Peracaula, J., Equation of state of the running vacuum. Eur. Phys. J. C, 82(12), 2022, 1137 arXiv:2207.07111 [gr-qc].
Comeau, V., Brandenberger, R., Back-reaction of long-wavelength cosmological fluctuations as measured by a clock field. Eur. Phys. J. C, 84(3), 2024, 272 arXiv:2302.05873 [gr-qc].
Hogg, D.W., Eisenstein, D.J., Blanton, M.R., Bahcall, N.A., Brinkmann, J., Gunn, J.E., Schneider, D.P., Cosmic homogeneity demonstrated with luminous red galaxies. Astrophys. J. 624 (2005), 54–58 arXiv:astro-ph/0411197.
Yadav, J., Bharadwaj, S., Pandey, B., Seshadri, T.R., Testing homogeneity on large scales in the Sloan Digital Sky Survey Data Release One. Mon. Not. R. Astron. Soc. 364 (2005), 601–606 arXiv:astro-ph/0504315.
Scrimgeour, M., et al. The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity. Mon. Not. R. Astron. Soc. 425 (2012), 116–134 arXiv:1205.6812 [astro-ph.CO].
Yadav, J.K., Bagla, J.S., Khandai, N., Fractal Dimension as a measure of the scale of Homogeneity. Mon. Not. R. Astron. Soc., 405, 2010, 2009 arXiv:1001.0617 [astro-ph.CO].
Horvath, I., Hakkila, J., Bagoly, Z., Possible structure in the GRB sky distribution at redshift two. Astron. Astrophys., 561, 2014, L12 arXiv:1401.0533 [astro-ph.CO].
Balazs, L.G., Bagoly, Z., Hakkila, J.E., Horvath, I., Kobori, J., Racz, I., Toth, L.V., A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs. Mon. Not. R. Astron. Soc. 452:3 (2015), 2236–2246 arXiv:1507.00675 [astro-ph.CO].
Lopez, A.M., Clowes, R.G., Williger, G.M., A giant arc on the sky. Mon. Not. R. Astron. Soc. 516:2 (2022), 1557–1572 arXiv:2201.06875 [astro-ph.CO].
Lopez, A.M., Clowes, R.G., Williger, G.M., A Big Ring on the sky. J. Cosmol. Astropart. Phys., 07, 2024, 055 arXiv:2402.07591 [astro-ph.CO].
Nadathur, S., Seeing patterns in noise: gigaparsec-scale ‘structures’ that do not violate homogeneity. Mon. Not. R. Astron. Soc. 434 (2013), 398–406 arXiv:1306.1700 [astro-ph.CO].
Ukwatta, T.N., Wozniak, P.R., Investigation of redshift- and duration-dependent clustering of gamma-ray bursts. Mon. Not. R. Astron. Soc. 455:1 (2016), 703–711 arXiv:1507.07117 [astro-ph.HE].
Sawala, T., Teeriaho, M., Frenk, C.S., Helly, J., Jenkins, A., Racz, G., Schaller, M., Schaye, J., The emperor's new arc: gigaparsec patterns abound in a ΛCDM universe. 2025 arXiv e-prints, arXiv:2502.03515 [astro-ph.CO].
McClure, M.L., Dyer, C.C., Anisotropy in the Hubble constant as observed in the HST extragalactic distance scale key project results. New Astron. 12 (2007), 533–543 arXiv:astro-ph/0703556.
Migkas, K., Pacaud, F., Schellenberger, G., Erler, J., Nguyen-Dang, N.T., Reiprich, T.H., Ramos-Ceja, M.E., Lovisari, L., Cosmological implications of the anisotropy of ten galaxy cluster scaling relations. Astron. Astrophys., 649, 2021, A151 arXiv:2103.13904 [astro-ph.CO].
Bondi, H., Gold, T., The steady-state theory of the expanding universe. Mon. Not. R. Astron. Soc., 108, 1948, 252.
Hoyle, F., A new model for the expanding universe. Mon. Not. R. Astron. Soc. 108 (1948), 372–382.
Benisty, D., Guendelman, E.I., Cosmological principle in Newtonian dynamics. Modern Phys. Lett. A, 35(16), 2020, 2050131 arXiv:1902.06511 [gr-qc].
Guendelman, E.I., Zamlung, E., Benisty, D., Noether symmetry in Newtonian dynamics and cosmology. Gen. Relativity Gravitation, 53(11), 2021, 99 arXiv:2010.06448 [gr-qc].
Migkas, K., Schellenberger, G., Reiprich, T.H., Pacaud, F., Ramos-Ceja, M.E., Lovisari, L., Probing cosmic isotropy with a new X-ray galaxy cluster sample through the LX−T scaling relation. Astron. Astrophys., 636, 2020, A15 arXiv:2004.03305 [astro-ph.CO].
Pandya, A., Migkas, K., Reiprich, T.H., Stanford, A., Pacaud, F., Schellenberger, G., Lovisari, L., Ramos-Ceja, M.E., Nguyen-Dang, N.T., Park, S., Examining the local universe isotropy with galaxy cluster velocity dispersion scaling relations. Astron. Astrophys., 691, 2024, A355 arXiv:2408.00726 [astro-ph.CO].
Zhai, Z., Percival, W.J., Sample variance for supernovae distance measurements and the Hubble tension. Phys. Rev. D, 106(10), 2022, 103527 arXiv:2207.02373 [astro-ph.CO].
Cooke, R., Lynden-Bell, D., Does the universe accelerate equally in all directions?. Mon. Not. R. Astron. Soc. 401 (2010), 1409–1414 arXiv:0909.3861 [astro-ph.CO].
Sorrenti, F., Durrer, R., Kunz, M., The low multipoles in the Pantheon+SH0ES data. J. Cosmol. Astropart. Phys., 04, 2025, 013 arXiv:2403.17741 [astro-ph.CO].
Sorrenti, F., Durrer, R., Kunz, M., A local infall from a cosmographic analysis of Pantheon+. J. Cosmol. Astropart. Phys., 12, 2024, 003 arXiv:2407.07002 [astro-ph.CO].
Boubel, P., Colless, M., Said, K., Staveley-Smith, L., Testing anisotropic Hubble expansion. 2024 arXiv e-prints, arXiv:2412.14607 [astro-ph.CO].
Yadav, V., Measuring Hubble constant in an anisotropic extension of ΛCDM model. Phys. Dark Univ., 42, 2023, 101365 arXiv:2306.16135 [astro-ph.CO].
Ade, P.A.R., et al., Planck Collaboration. Planck intermediate results. XIII. Constraints on peculiar velocities. Astron. Astrophys., 561, 2014, A97 arXiv:1303.5090 [astro-ph.CO].
Kashlinsky, A., Atrio-Barandela, F., Kocevski, D., Ebeling, H., A measurement of large-scale peculiar velocities of clusters of galaxies: technical details. Astrophys. J. 691 (2009), 1479–1493 arXiv:0809.3733 [astro-ph].
Westmeier, T., Deg, N., Spekkens, K., Reynolds, T.N., Shen, A.X., Gaudet, S., Goliath, S., Huynh, M.T., Venkataraman, P., Lin, X., O'Beirne, T., Catinella, B., Cortese, L., Dénes, H., Elagali, A., For, B.Q., Józsa, G.I.G., Howlett, C., van der Hulst, J.M., Jurek, R.J., Kamphuis, P., Kilborn, V.A., Kleiner, D., Koribalski, B.S., Lee-Waddell, K., Murugeshan, C., Rhee, J., Serra, P., Shao, L., Staveley-Smith, L., Wang, J., Wong, O.I., Zwaan, M.A., Allison, J.R., Anderson, C.S., Ball, L., Bock, D.C.J., Brodrick, D., Bunton, J.D., Cooray, F.R., Gupta, N., Hayman, D.B., Mahony, E.K., Moss, V.A., Ng, A., Pearce, S.E., Raja, W., Roxby, D.N., Voronkov, M.A., Warhurst, K.A., Courtois, H.M., Said, K., WALLABY pilot survey: Public release of H I data for almost 600 galaxies from phase 1 of ASKAP pilot observations. Publ. Astron. Soc. Aust., 39, 2022, e058 arXiv:2211.07094 [astro-ph.GA].
Murugeshan, C., Deg, N., Westmeier, T., Shen, A.X., For, B.Q., Spekkens, K., Wong, O.I., Staveley-Smith, L., Catinella, B., Lee-Waddell, K., Dénes, H., Rhee, J., Cortese, L., Goliath, S., Halloran, R., van der Hulst, J.M., Kamphuis, P., Koribalski, B.S., Kraan-Korteweg, R.C., Lelli, F., Venkataraman, P., Verdes-Montenegro, L., Yu, N., WALLABY Pilot Survey: Public data release of ∼ 1800 H I sources and high-resolution cut-outs from Pilot Survey Phase 2. Publ. Astron. Soc. Aust., 41, 2024, e088 arXiv:2409.13130 [astro-ph.GA].
Courtois, H.M., Mould, J., Hollinger, A.M., Dupuy, A., Zhang, C.-P., In search for the Local Universe dynamical homogeneity scale with CF4++ peculiar velocities. 2025 arXiv:2502.01308 [astro-ph.CO].
Rameez, M., Concerns about the reliability of publicly available SNe Ia data. 2019 arXiv:1905.00221 [astro-ph.CO].
Rameez, M., Sarkar, S., Is there really a Hubble tension?. Cl. Quant. Grav., 38(15), 2021, 154005 arXiv:1911.06456 [astro-ph.CO].
Bengaly, C.A.P., Maartens, R., Santos, M.G., Probing the Cosmological Principle in the counts of radio galaxies at different frequencies. J. Cosmol. Astropart. Phys., 04, 2018, 031 arXiv:1710.08804 [astro-ph.CO].
Singal, A.K., Discordance of dipole asymmetries seen in recent large radio surveys with the cosmological principle. Mon. Not. R. Astron. Soc. 524:3 (2023), 3636–3646 arXiv:2303.05141 [astro-ph.CO].
Darling, J., The universe is brighter in the direction of our motion: galaxy counts and fluxes are consistent with the CMB dipole. Astrophys. J. Lett., 931(2), 2022, L14 arXiv:2205.06880 [astro-ph.CO].
Wagenveld, J.D., et al. The MeerKAT Absorption Line Survey Data Release 2: Wideband continuum catalogues and a measurement of the cosmic radio dipole. Astron. Astrophys., 690, 2024, A163 arXiv:2408.16619 [astro-ph.CO].
Tiwari, P., Nusser, A., Revisiting the NVSS number count dipole. J. Cosmol. Astropart. Phys., 03, 2016, 062 arXiv:1509.02532 [astro-ph.CO].
Dalang, C., Bonvin, C., On the kinematic cosmic dipole tension. Mon. Not. R. Astron. Soc. 512:3 (2022), 3895–3905 arXiv:2111.03616 [astro-ph.CO].
von Hausegger, S., The expected kinematic matter dipole is robust against source evolution. Mon. Not. R. Astron. Soc. 535:1 (2024), L49–L53 arXiv:2404.07929 [astro-ph.CO].
Giani, L., Howlett, C., Said, K., Davis, T., Vagnozzi, S., An effective description of Laniakea: impact on cosmology and the local determination of the Hubble constant. J. Cosmol. Astropart. Phys., 01, 2024, 071 arXiv:2311.00215 [astro-ph.CO].
Boehringer, H., Chon, G., Truemper, J., Kraan-Korteweg, R.C., Schartel, N., Unveiling the largest structures in the nearby Universe: Discovery of the Quipu superstructure. 2025 arXiv e-prints, arXiv:2501.19236 [astro-ph.CO].
Javanmardi, B., Porciani, C., Kroupa, P., Pflamm-Altenburg, J., Probing the isotropy of cosmic acceleration traced by Type Ia supernovae. Astrophys. J., 810(1), 2015, 47 arXiv:1507.07560 [astro-ph.CO].
Aghanim, N., et al., Planck Collaboration. Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astron. Astrophys., 571, 2014, A27 arXiv:1303.5087 [astro-ph.CO].
Ferreira, P.d.S., Quartin, M., Disentangling Doppler modulation, aberration and the temperature dipole in the CMB. Phys. Rev. D, 104(6), 2021, 063503 arXiv:2107.10846 [astro-ph.CO].
Saha, S., Shaikh, S., Mukherjee, S., Souradeep, T., Wandelt, B.D., Bayesian estimation of our local motion from the Planck-2018 CMB temperature map. J. Cosmol. Astropart. Phys., 10, 2021, 072 arXiv:2106.07666 [astro-ph.CO].
Jaffe, T.R., Banday, A.J., Eriksen, H.K., Gorski, K.M., Hansen, F.K., Evidence of vorticity and shear at large angular scales in the WMAP data: A Violation of cosmological isotropy?. Astrophys. J. Lett. 629 (2005), L1–L4 arXiv:astro-ph/0503213.
Jaffe, T.R., Hervik, S., Banday, A.J., Gorski, K.M., On the viability of Bianchi type viih models with dark energy. Astrophys. J. 644 (2006), 701–708 arXiv:astro-ph/0512433.
Bridges, M., McEwen, J.D., Lasenby, A.N., Hobson, M.P., Markov chain Monte Carlo analysis of Bianchi VII(h) models. Mon. Not. R. Astron. Soc. 377 (2007), 1473–1480 arXiv:astro-ph/0605325.
Ade, P.A.R., et al., Planck Collaboration. Planck 2013 results. XXVI. Background geometry and topology of the Universe. Astron. Astrophys., 571, 2014, A26 arXiv:1303.5086 [astro-ph.CO].
Bianchi, L., Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti. Soc. Ital. Sci. Mem. Mat. 11 (1898), 267–352.
Bianchi, L., On the three-dimensional spaces which admit a continuous group of motions. Gen. Relativity Gravitation 33 (2001), 2171–2253.
Akarsu, O., Kumar, S., Sharma, S., Tedesco, L., Constraints on a Bianchi type I spacetime extension of the standard ΛCDM model. Phys. Rev. D, 100(2), 2019, 023532 arXiv:1905.06949 [astro-ph.CO].
Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C., Herlt, E., Exact solutions of Einstein's field equations Cambridge Monographs on Mathematical Physics, 2003, Cambridge Univ. Press, Cambridge.
Pontzen, A., Challinor, A., Bianchi model CMB polarization and its implications for CMB anomalies. Mon. Not. R. Astron. Soc. 380 (2007), 1387–1398 arXiv:0706.2075 [astro-ph].
Russell, E., Kılınç, C.B., Pashaev, O.K., Bianchi I model: an alternative way to model the present-day Universe. Mon. Not. R. Astron. Soc. 442:3 (2014), 2331–2341 arXiv:1312.3502 [astro-ph.CO].
Lemaitre, G., The expanding universe. Ann. Soc. Sci. Brux. A 53 (1933), 51–85.
Tolman, R.C., Effect of imhomogeneity on cosmological models. Proc. Nat. Acad. Sci. 20 (1934), 169–176.
Bondi, H., Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 107 (1947), 410–425.
Marra, V., Castro, T., Camarena, D., Borgani, S., Ragagnin, A., The BEHOMO project: Λ Lemaître-Tolman-Bondi N-body simulations. Astron. Astrophys., 664, 2022, A179 arXiv:2203.04009 [astro-ph.CO].
Barriola, M., Vilenkin, A., Gravitational field of a global monopole. Phys. Rev. Lett., 63, 1989, 341.
Perivolaropoulos, L., Six puzzles for LCDM cosmology. 2008 arXiv:0811.4684 [astro-ph].
Sanchez, J.C.B., Perivolaropoulos, L., Evolution of dark energy perturbations in scalar-tensor cosmologies. Phys. Rev. D, 81, 2010, 103505 arXiv:1002.2042 [astro-ph.CO].
Perivolaropoulos, L., Large scale cosmological anomalies and inhomogeneous dark energy. Galaxies 2 (2014), 22–61 arXiv:1401.5044 [astro-ph.CO].
Ellis, G.F.R., The Bianchi models: Then and now. Gen. Relativity Gravitation 38 (2006), 1003–1015.
Schucker, T., Tilquin, A., Valent, G., Bianchi I meets the Hubble diagram. Mon. Not. R. Astron. Soc. 444:3 (2014), 2820–2836 arXiv:1405.6523 [astro-ph.CO].
Valent, G., Bianchi type II,III and V diagonal Einstein metrics re-visited. Gen. Relativity Gravitation 41 (2009), 2433–2459 arXiv:1002.1454 [math-ph].
King, D.H., Gravity wave insights to Bianchi type IX universes. Phys. Rev. D 44 (1991), 2356–2368.
Ringstrom, H., The Bianchi IX attractor. Ann. Henri Poincare 2 (2001), 405–500 arXiv:gr-qc/0006035.
Ashtekar, A., Samuel, J., Bianchi cosmologies: The Role of spatial topology. Cl. Quant. Grav., 8, 2011, 2191.
Ellis, G.F.R., MacCallum, M.A.H., A Class of homogeneous cosmological models. Comm. Math. Phys. 12 (1969), 108–141.
Cea, P., The ellipsoidal universe in the planck satellite era. Mon. Not. R. Astron. Soc. 441:2 (2014), 1646–1661 arXiv:1401.5627 [astro-ph.CO].
Koivisto, T., Mota, D.F., Accelerating cosmologies with an anisotropic equation of state. Astrophys. J. 679 (2008), 1–5 arXiv:0707.0279 [astro-ph].
McVittie, G.C., The mass-particle in an expanding universe. Mon. Not. R. Astron. Soc. 93 (1933), 325–339.
Kaloper, N., Kleban, M., Martin, D., McVittie's Legacy: Black holes in an expanding universe. Phys. Rev. D, 81, 2010, 104044 arXiv:1003.4777 [hep-th].
Sereno, M., Jetzer, P., Evolution of gravitational orbits in the expanding universe. Phys. Rev. D, 75, 2007, 064031 arXiv:astro-ph/0703121.
Faraoni, V., Jacques, A., Cosmological expansion and local physics. Phys. Rev. D, 76, 2007, 063510 arXiv:0707.1350 [gr-qc].
Nandra, R., Lasenby, A.N., Hobson, M.P., The effect of a massive object on an expanding universe. Mon. Not. R. Astron. Soc. 422 (2012), 2931–2944 arXiv:1104.4447 [gr-qc].
Benisty, D., Chaichian, M.M., Tureanu, A., Galaxy groups in the presence of cosmological constant: Increasing the masses of groups. Phys. Lett. B, 858, 2024, 139033 arXiv:2405.14944 [astro-ph.GA].
Peirani, S., de Freitas Pacheco, J.A., Mass determination of groups of galaxies: effects of the cosmological constant. New Astron. 11 (2006), 325–330 arXiv:astro-ph/0508614.
Peirani, S., Pacheco, J.A.D.F., Dynamics of nearby groups of galaxies: the role of the cosmological constant. Astron. Astrophys. 488 (2008), 845–851 arXiv:0806.4245 [astro-ph].
Karachentsev, I.D., Kashibadze, O.G., Makarov, D.I., Tully, R.B., The Hubble flow around the local group. Mon. Not. R. Astron. Soc., 393, 2009, 1265 arXiv:0811.4610 [astro-ph].
Peñarrubia, J., Ma, Y.-Z., Walker, M.G., McConnachie, A., A dynamical model of the local cosmic expansion. Mon. Not. R. Astron. Soc. 443:3 (2014), 2204–2222 arXiv:1405.0306 [astro-ph.GA].
Teerikorpi, P., Chernin, A.D., The Hubble diagram for a system within dark energy: the location of the zero-gravity radius and the global Hubble rate. Astron. Astrophys., 516, 2010, A93 arXiv:1006.0066 [astro-ph.CO].
Del Popolo, A., Deliyergiyev, M., Chan, M.H., Improved Lemaitre–Tolman model and the mass and turn-around radius in group of galaxies. Phys. Dark Univ., 31, 2021, 100780 arXiv:2103.12714 [astro-ph.CO].
Del Popolo, A., Chan, M.H., Improved Lemaitre–Tolman model and the mass and turn-around radius in group of galaxies. II. The role of dark energy. Astrophys. J., 926(2), 2022, 156 arXiv:2210.10397 [astro-ph.CO].
Célérier, M.-N., Precision cosmology with exact inhomogeneous solutions of general relativity: the szekeres models. 2024 arXiv e-prints, arXiv:2407.04452 [gr-qc].
Kristian, J., Sachs, R.K., Observations in cosmology. Astrophys. J. 143 (1966), 379–399.
Clarkson, C.A., On the Observational Characteristics of Inhomogeneous Cosmologies: Undermining the Cosmological Principle or Have Cosmologists Put All Their EGS in One Basket?. 1999, Glasgow U. arXiv:astro-ph/0008089.
Nadolny, T., Durrer, R., Kunz, M., Padmanabhan, H., A new way to test the Cosmological Principle: measuring our peculiar velocity and the large-scale anisotropy independently. J. Cosmol. Astropart. Phys., 11, 2021, 009 arXiv:2106.05284 [astro-ph.CO].
Wiltshire, D.L., Cosmic clocks, cosmic variance and cosmic averages. New J. Phys., 9, 2007, 377 arXiv:gr-qc/0702082.
Wiltshire, D.L., Average observational quantities in the timescape cosmology. Phys. Rev. D, 80, 2009, 123512 arXiv:0909.0749 [astro-ph.CO].
Wiltshire, D.L., Cosmic structure, averaging and dark energy. Cosmology and Gravitation: XVth Brazilian School of Cosmology and Gravitation, 2014, Cambridge Scientific Publishers arXiv:1311.3787 [astro-ph.CO].
Buchert, T., On average properties of inhomogeneous fluids in general relativity. 1. Dust cosmologies. Gen. Relativity Gravitation 32 (2000), 105–125 arXiv:gr-qc/9906015.
Buchert, T., On average properties of inhomogeneous fluids in general relativity: Perfect fluid cosmologies. Gen. Relativity Gravitation 33 (2001), 1381–1405 arXiv:gr-qc/0102049.
Buchert, T., Mourier, P., Roy, X., On average properties of inhomogeneous fluids in general relativity III: general fluid cosmologies. Gen. Relativity Gravitation, 52(3), 2020, 27 arXiv:1912.04213 [gr-qc].
Ishibashi, A., Wald, R.M., Can the acceleration of our universe be explained by the effects of inhomogeneities?. Cl. Quant. Grav. 23 (2006), 235–250 arXiv:gr-qc/0509108.
Wiltshire, D.L., Cosmological equivalence principle and the weak-field limit. Phys. Rev. D, 78, 2008, 084032 arXiv:0809.1183 [gr-qc].
Bolejko, K., Nazer, M.A., Wiltshire, D.L., Differential cosmic expansion and the Hubble flow anisotropy. J. Cosmol. Astropart. Phys., 06, 2016, 035 arXiv:1512.07364 [astro-ph.CO].
Sapone, D., Majerotto, E., Nesseris, S., Curvature versus distances: Testing the FLRW cosmology. Phys. Rev. D, 90(2), 2014, 023012 arXiv:1402.2236 [astro-ph.CO].
Clarkson, C., Bassett, B., Lu, T.H.-C., A general test of the Copernican Principle. Phys. Rev. Lett., 101, 2008, 011301 arXiv:0712.3457 [astro-ph].
Camilleri, R., et al., DES Collaboration. The dark energy survey supernova program: investigating beyond-ΛCDM. Mon. Not. R. Astron. Soc. 533:3 (2024), 2615–2639 arXiv:2406.05048 [astro-ph.CO].
Heinesen, A., Blake, C., Li, Y.-Z., Wiltshire, D.L., Baryon acoustic oscillation methods for generic curvature: application to the SDSS-III Baryon Oscillation Spectroscopic Survey. J. Cosmol. Astropart. Phys., 03, 2019, 003 arXiv:1811.11963 [astro-ph.CO].
Eddington, A.S., On the instability of Einstein's spherical world. Mon. Not. R. Astro. Soc. 90 (1930), 668–678.
Leavitt, H.S., 1777 variables in the magellanic clouds. Harv. Obs. Ann. 60 (1908), 87–108.
Lemaitre, G., A homogeneous universe of constant mass and growing radius accounting for the radial velocity of extragalactic nebulae. Ann. Soc. Sci. Brux. A 47 (1927), 49–59.
Hubble, E., A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. 15 (1929), 168–173.
Schwarz, D.J., Bacon, D., Chen, S., Clarkson, C., Huterer, D., Kunz, M., Maartens, R., Raccanelli, A., Rubart, M., Starck, J.-L., Testing foundations of modern cosmology with SKA all-sky surveys. PoS, AASKA14, 2015, 032 arXiv:1501.03820 [astro-ph.CO].
Horava, P., Quantum gravity at a Lifshitz point. Phys. Rev. D, 79, 2009, 084008 arXiv:0901.3775 [hep-th].
Horava, P., Spectral dimension of the universe in quantum gravity at a Lifshitz point. Phys. Rev. Lett., 102, 2009, 161301 arXiv:0902.3657 [hep-th].
Calcagni, G., Cosmology of the Lifshitz universe. JHEP, 09, 2009, 112 arXiv:0904.0829 [hep-th].
Charmousis, C., Niz, G., Padilla, A., Saffin, P.M., Strong coupling in Horava gravity. JHEP, 08, 2009, 070 arXiv:0905.2579 [hep-th].
Brandenberger, R., Matter bounce in horava–lifshitz cosmology. Phys. Rev. D, 80, 2009, 043516 arXiv:0904.2835 [hep-th].
Sotiriou, T.P., Visser, M., Weinfurtner, S., Quantum gravity without Lorentz invariance. JHEP, 10, 2009, 033 arXiv:0905.2798 [hep-th].
Cai, R.-G., Cao, L.-M., Ohta, N., Topological black holes in Horava–Lifshitz gravity. Phys. Rev. D, 80, 2009, 024003 arXiv:0904.3670 [hep-th].
Panotopoulos, G., Vernieri, D., Lopes, I., Quark stars with isotropic matter in Hořava gravity and Einstein–æther theory. Eur. Phys. J. C, 80(6), 2020, 537 arXiv:2006.07652 [gr-qc].
Vernieri, D., Anisotropic fluid spheres in Hořava gravity and Einstein-æther theory with a nonstatic æther. Phys. Rev. D, 100(10), 2019, 104021 arXiv:1906.07738 [gr-qc].
Sotiriou, T.P., Vega, I., Vernieri, D., Rotating black holes in three-dimensional Hořava gravity. Phys. Rev. D, 90(4), 2014, 044046 arXiv:1405.3715 [gr-qc].
Leon, G., Paliathanasis, A., Extended phase-space analysis of the Hořava–Lifshitz cosmology. Eur. Phys. J. C, 79(9), 2019, 746 arXiv:1902.09961 [gr-qc].
Di Valentino, E., Nilsson, N.A., Park, M.-I., A new test of dynamical dark energy models and cosmic tensions in Hořava gravity. Mon. Not. R. Astron. Soc. 519:4 (2023), 5043–5058 arXiv:2212.07683 [astro-ph.CO].
Nilsson, N.A., Preferred-frame effects, the H0 tension, and probes of Hořava–Lifshitz gravity. Eur. Phys. J. Plus, 135(4), 2020, 361 arXiv:1910.14414 [gr-qc].
Alves Batista, R., et al. EuCAPT white paper: Opportunities and challenges for theoretical astroparticle physics in the next decade. 2021 arXiv:2110.10074 [astro-ph.HE].
Amati, D., Ciafaloni, M., Veneziano, G., Can space-time be probed below the string size?. Phys. Lett. B 216 (1989), 41–47.
Maggiore, M., A generalized uncertainty principle in quantum gravity. Phys. Lett. B 304 (1993), 65–69 arXiv:hep-th/9301067.
Quesne, C., Tkachuk, V.M., Lorentz-covariant deformed algebra with minimal length. Czech. J. Phys. 56 (2006), 1269–1274 arXiv:quant-ph/0612093.
Quesne, C., Tkachuk, V.M., Lorentz-covariant deformed algebra with minimal length and application to the 1+1-dimensional Dirac oscillator. J. Phys. A 39 (2006), 10909–10922 arXiv:quant-ph/0604118.
Abazajian, K.N., et al. Inflation physics from the cosmic microwave background and large scale structure. Astropart. Phys. 63 (2015), 55–65 arXiv:1309.5381 [astro-ph.CO].
Kaya, A., The imprint of primordial gravitational waves on the CMB intensity profile. Phys. Lett. B, 817, 2021, 136353 arXiv:2105.02236 [astro-ph.CO].
Kempf, A., Mangano, G., Mann, R.B., Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52 (1995), 1108–1118 arXiv:hep-th/9412167.
Ali, A.F., Das, S., Vagenas, E.C., Discreteness of space from the generalized uncertainty principle. Phys. Lett. B 678 (2009), 497–499 arXiv:0906.5396 [hep-th].
Das, A., Das, S., Vagenas, E.C., Discreteness of space from GUP in strong gravitational fields. Phys. Lett. B, 809, 2020, 135772 arXiv:2006.05781 [gr-qc].
Aghababaei, S., Moradpour, H., Vagenas, E.C., Hubble tension bounds the GUP and EUP parameters. Eur. Phys. J. Plus, 136(10), 2021, 997 arXiv:2109.14826 [gr-qc].
Jacobson, T., Liberati, S., Mattingly, D., Lorentz violation at high energy: Concepts, phenomena and astrophysical constraints. Ann. Phys. 321 (2006), 150–196 arXiv:astro-ph/0505267.
Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., Sarkar, S., Tests of quantum gravity from observations of gamma-ray bursts. Nature 393 (1998), 763–765 arXiv:astro-ph/9712103.
Ellis, J.R., Farakos, K., Mavromatos, N.E., Mitsou, V.A., Nanopoulos, D.V., Astrophysical probes of the constancy of the velocity of light. Astrophys. J. 535 (2000), 139–151 arXiv:astro-ph/9907340.
Albert, J., et al., MAGIC, Other Contributors Collaboration. Probing Quantum Gravity using Photons from a flare of the active galactic nucleus Markarian 501 Observed by the MAGIC telescope. Phys. Lett. B 668 (2008), 253–257 arXiv:0708.2889 [astro-ph].
Pfeifer, C., Redshift and lateshift from homogeneous and isotropic modified dispersion relations. Phys. Lett. B 780 (2018), 246–250 arXiv:1802.00058 [gr-qc].
Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., Quantum gravitational diffusion and stochastic fluctuations in the velocity of light. Gen. Relativity Gravitation 32 (2000), 127–144 arXiv:gr-qc/9904068.
Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., Derivation of a vacuum refractive index in a stringy space-time foam model. Phys. Lett. B 665 (2008), 412–417 arXiv:0804.3566 [hep-th].
Ellis, J., Mavromatos, N.E., Nanopoulos, D.V., D-Foam phenomenology: dark energy, the velocity of light and a possible D-Void. Internat. J. Modern Phys. A 26 (2011), 2243–2262 arXiv:0912.3428 [astro-ph.CO].
Jacob, U., Piran, T., Lorentz-violation-induced arrival delays of cosmological particles. J. Cosmol. Astropart. Phys., 01, 2008, 031 arXiv:0712.2170 [astro-ph].
Amelino-Camelia, G., Frattulillo, D., Gubitosi, G., Rosati, G., Bedić, S., Phenomenology of DSR-relativistic in-vacuo dispersion in FLRW spacetime. J. Cosmol. Astropart. Phys., 01, 2024, 070 arXiv:2307.05428 [gr-qc].
Mavromatos, N.E., Mitsou, V.A., Sarkar, S., Vergou, A., Implications of a stochastic microscopic Finsler cosmology. Eur. Phys. J. C, 72, 2012, 1956 arXiv:1012.4094 [hep-ph].
Mavromatos, N.E., Mitsou, V.A., Observational evidence for negative-energy dust in late-times cosmology. Astropart. Phys. 29 (2008), 442–452 arXiv:0707.4671 [astro-ph].
Basilakos, S., Mavromatos, N.E., Mitsou, V.A., Plionis, M., Dynamics and constraints of the dissipative liouville cosmology. Astropart. Phys. 36 (2012), 7–17 arXiv:1107.3532 [astro-ph.CO].
Protheroe, R.J., Meyer, H., An Infrared background TeV gamma-ray crisis?. Phys. Lett. B 493 (2000), 1–6 arXiv:astro-ph/0005349.
Amelino-Camelia, G., Piran, T., Cosmic rays and TeV photons as probes of quantum properties of space-time. Phys. Lett. B 497 (2001), 265–270 arXiv:hep-ph/0006210.
Uzan, J.-P., The fundamental constants and their variation: Observational status and theoretical motivations. Rev. Modern Phys., 75, 2003, 403 arXiv:hep-ph/0205340.
Uzan, J.-P., Varying constants, gravitation and cosmology. Living Rev. Rel., 14, 2011, 2 arXiv:1009.5514 [astro-ph.CO].
Martins, C.J.A.P., The status of varying constants: a review of the physics, searches and implications. 2017 arXiv:1709.02923 [astro-ph.CO].
Bekenstein, J.D., Fine structure constant: Is it really a constant?. Phys. Rev. D 25 (1982), 1527–1539.
Martins, C.J.A.P., Vielzeuf, P.E., Martinelli, M., Calabrese, E., Pandolfi, S., Evolution of the fine-structure constant in runaway dilaton models. Phys. Lett. B 743 (2015), 377–382 arXiv:1503.05068 [astro-ph.CO].
Rich, J., Which fundamental constants for cosmic microwave background and baryon-acoustic oscillation?. Astron. Astrophys., 584, 2015, A69 arXiv:1503.06012 [astro-ph.CO].
Galli, S., Martins, C.J.A.P., Melchiorri, A., Menegoni, E., Testing the variation of fundamental constants with the CMB. Astrophys. Space Sci. Proc., 2011, 59–67.
Lamine, B., Ozdalkiran, Y., Mirouze, L., Erdogan, F., Ilic, S., Tutusaus, I., Kou, R., Blanchard, A., Cosmological measurement of the gravitational constant G using the CMB, the BAO and the BBN. 2024 arXiv e-prints. arXiv:2407.15553 [astro-ph.CO].
van Putten, M.H., Entropic constraint on cosmic variation of Planck mass and the Boltzmann constant. Results Phys., 57, 2024, 107425 https://www.sciencedirect.com/science/article/pii/S2211379724001074.
Banik, I., Desmond, H., Samaras, N., Strong constraints on a sharp change in G as a solution to the Hubble tension. Mon. Not. R. Astro. Soc., 2025 arXiv:2411.15301 [astro-ph.CO].
Kaplinghat, M., Scherrer, R.J., Turner, M.S., Constraining variations in the fine structure constant with the cosmic microwave background. Phys. Rev. D, 60, 1999, 023516 arXiv:astro-ph/9810133.
Avelino, P.P., Martins, C.J.A.P., Rocha, G., Viana, P.T.P., Looking for a varying alpha in the cosmic microwave background. Phys. Rev. D, 62, 2000, 123508 arXiv:astro-ph/0008446.
Battye, R.A., Crittenden, R., Weller, J., Cosmic concordance and the fine structure constant. Phys. Rev. D, 63, 2001, 043505 arXiv:astro-ph/0008265.
Avelino, P.P., Esposito, S., Mangano, G., Martins, C.J.A.P., Melchiorri, A., Miele, G., Pisanti, O., Rocha, G., Viana, P.T.P., Early universe constraints on a time varying fine structure constant. Phys. Rev. D, 64, 2001, 103505 arXiv:astro-ph/0102144.
Rocha, G., Trotta, R., Martins, C.J.A.P., Melchiorri, A., Avelino, P.P., Bean, R., Viana, P.T.P., Measuring alpha in the early universe: cmb polarization, reionization and the fisher matrix analysis. Mon. Not. R. Astron. Soc., 352, 2004, 20 arXiv:astro-ph/0309211.
Martins, C.J.A.P., Melchiorri, A., Rocha, G., Trotta, R., Avelino, P.P., Viana, P.T.P., Wmap constraints on varying alpha and the promise of reionization. Phys. Lett. B 585 (2004), 29–34 arXiv:astro-ph/0302295.
Scoccola, C.G., Landau, S.J., Vucetich, H., WMAP 5-year constraints on α and me. Mem. Soc. Ast. It. 80:4 (2009), 814–819 arXiv:0910.1083 [astro-ph.CO].
Menegoni, E., Archidiacono, M., Calabrese, E., Galli, S., Martins, C.J.A.P., Melchiorri, A., The fine structure constant and the CMB damping scale. Phys. Rev. D, 85, 2012, 107301 arXiv:1202.1476 [astro-ph.CO].
Hart, L., Chluba, J., New constraints on time-dependent variations of fundamental constants using Planck data. Mon. Not. R. Astron. Soc. 474:2 (2018), 1850–1861 arXiv:1705.03925 [astro-ph.CO].
Chluba, J., Thomas, R.M., Towards a complete treatment of the cosmological recombination problem. Mon. Not. R. Astron. Soc., 412, 2011, 748 arXiv:1010.3631 [astro-ph.CO].
Hart, L., Chluba, J., Updated fundamental constant constraints from Planck 2018 data and possible relations to the Hubble tension. Mon. Not. R. Astron. Soc. 493:3 (2020), 3255–3263 arXiv:1912.03986 [astro-ph.CO].
Ade, P.A.R., et al., Planck Collaboration. Planck intermediate results - XXIV. Constraints on variations in fundamental constants. Astron. Astrophys., 580, 2015, A22 arXiv:1406.7482 [astro-ph.CO].
Bize, S., et al. Testing the stability of fundamental constants with the Hg-199+ single-ion optical clock. Phys. Rev. Lett., 90, 2003, 150802 arXiv:physics/0212109.
Rosenband, T., et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science, 319(5871), 2008, 1154622.
Bonifacio, P., et al. Fundamental constants and high resolution spectroscopy. Astron. Nachr., 335, 2014, 83 arXiv:1310.6280 [astro-ph.CO].
Kotuš, S.M., Murphy, M.T., Carswell, R.F., High-precision limit on variation in the fine-structure constant from a single quasar absorption system. Mon. Not. R. Astron. Soc. 464:3 (2017), 3679–3703 arXiv:1609.03860 [astro-ph.CO].
Seto, O., Toda, Y., Big bang nucleosynthesis constraints on varying electron mass solution to the Hubble tension. Phys. Rev. D, 107(8), 2023, 083512 arXiv:2206.13209 [astro-ph.CO].
Smith, T.L., Grin, D., Robinson, D., Qi, D., Probing spatial variation of the fine-structure constant using the CMB. Phys. Rev. D, 99(4), 2019, 043531 arXiv:1808.07486 [astro-ph.CO].
Lucca, M., Chluba, J., Rotti, A., CRRfast: an emulator for the cosmological recombination radiation with effects from inhomogeneous recombination. Mon. Not. R. Astron. Soc. 530:1 (2024), 668–683 arXiv:2306.08085 [astro-ph.CO].
Sekiguchi, T., Takahashi, T., Early recombination as a solution to the H0 tension. Phys. Rev. D, 103(8), 2021, 083507 arXiv:2007.03381 [astro-ph.CO].
Hart, L., Chluba, J., Varying fundamental constants principal component analysis: additional hints about the Hubble tension. Mon. Not. R. Astron. Soc. 510:2 (2022), 2206–2227 arXiv:2107.12465 [astro-ph.CO].
Lee, N., Ali-Haïmoud, Y., Schöneberg, N., Poulin, V., What it takes to solve the hubble tension through modifications of cosmological recombination. Phys. Rev. Lett., 130(16), 2023, 161003 arXiv:2212.04494 [astro-ph.CO].
Hoshiya, K., Toda, Y., Electron mass variation from dark sector interactions and compatibility with cosmological observations. Phys. Rev. D, 107(4), 2023, 043505 arXiv:2202.07714 [astro-ph.CO].
Damour, T., Polyakov, A.M., The String dilaton and a least coupling principle. Nuclear Phys. B 423 (1994), 532–558 arXiv:hep-th/9401069.
Chiba, T., Kobayashi, T., Yamaguchi, M., Yokoyama, J., Time variation of proton-electron mass ratio and fine structure constant with runaway dilaton. Phys. Rev. D, 75, 2007, 043516 arXiv:hep-ph/0610027.
da Fonseca, V., et al. Fundamental physics with ESPRESSO: Constraining a simple parametrisation for varying α. Astron. Astrophys., 666, 2022, A57 arXiv:2204.02930 [astro-ph.CO].
Barros, B.J., da Fonseca, V., Coupling quintessence kinetics to electromagnetism. J. Cosmol. Astropart. Phys., 06, 2023, 048 arXiv:2209.12189 [astro-ph.CO].
Vacher, L., Dias, J.a.F., Schöneberg, N., Martins, C.J.A.P., Vinzl, S., Nesseris, S., Cañas Herrera, G., Martinelli, M., Constraints on extended Bekenstein models from cosmological, astrophysical, and local data. Phys. Rev. D, 106(8), 2022, 083522 arXiv:2207.03258 [astro-ph.CO].
Tohfa, H.M., Crump, J., Baker, E., Hart, L., Grin, D., Brosius, M., Chluba, J., Cosmic microwave background search for fine-structure constant evolution. Phys. Rev. D, 109(10), 2024, 103529 arXiv:2307.06768 [astro-ph.CO].
Vacher, L., Schöneberg, N., Dias, J.D.F., Martins, C.J.A.P., Pimenta, F., Runaway dilaton models: improved constraints from the full cosmological evolution. Phys. Rev. D, 107(10), 2023, 104002 arXiv:2301.13500 [astro-ph.CO].
Vacher, L., Schöneberg, N., Incompatibility of fine-structure constant variations at recombination with local observations. Phys. Rev. D, 109(10), 2024, 103520 arXiv:2403.02256 [astro-ph.CO].
Lynch, G.P., Knox, L., Chluba, J., Reconstructing the recombination history by combining early and late cosmological probes. Phys. Rev. D, 110(6), 2024, 063518 arXiv:2404.05715 [astro-ph.CO].
Seto, O., Toda, Y., DESI constraints on the varying electron mass model and axionlike early dark energy. Phys. Rev. D, 110(8), 2024, 083501 arXiv:2405.11869 [astro-ph.CO].
Lynch, G.P., Knox, L., Chluba, J., DESI observations and the Hubble tension in light of modified recombination. Phys. Rev. D, 110(8), 2024, 083538 arXiv:2406.10202 [astro-ph.CO].
Sunyaev, R.A., Zeldovich, Y.B., Small scale entropy and adiabatic density perturbations? Antimatter in the Universe. Astrophys. Space Sci. 9:3 (1970), 368–382.
Hu, W., Sugiyama, N., Anisotropies in the cosmic microwave background: An Analytic approach. Astrophys. J. 444 (1995), 489–506 arXiv:astro-ph/9407093.
Hu, W., Scott, D., Sugiyama, N., White, M.J., The Effect of physical assumptions on the calculation of microwave background anisotropies. Phys. Rev. D 52 (1995), 5498–5515 arXiv:astro-ph/9505043.
Chluba, J., Sunyaev, R.A., Induced two-photon decay of the 2s level and the rate of cosmological hydrogen recombination. Astron. Astrophys. 446 (2006), 39–42 arXiv:astro-ph/0508144.
Lewis, A., Weller, J., Battye, R., The cosmic microwave background and the ionization history of the universe. Mon. Not. R. Astron. Soc. 373 (2006), 561–570 arXiv:astro-ph/0606552.
Shaw, J.R., Chluba, J., Precise cosmological parameter estimation using CosmoRec. Mon. Not. R. Astron. Soc., 415, 2011, 1343 arXiv:1102.3683 [astro-ph.CO].
Chluba, J., Sunyaev, R.A., Is there need and another way to measure the Cosmic Microwave Background temperature more accurately?. Astron. Astrophys., 478, 2008, L27 arXiv:0707.0188 [astro-ph].
Sunyaev, R.A., Chluba, J., Signals from the epoch of cosmological recombination. Astron. Nachr. 330 (2009), 657–674 arXiv:0908.0435 [astro-ph.CO].
Hart, L., Rotti, A., Chluba, J., Sensitivity forecasts for the cosmological recombination radiation in the presence of foregrounds. Mon. Not. R. Astron. Soc. 497:4 (2020), 4535–4548 arXiv:2006.04826 [astro-ph.CO].
Chluba, J., et al. New horizons in cosmology with spectral distortions of the cosmic microwave background. Exper. Astron. 51:3 (2021), 1515–1554 arXiv:1909.01593 [astro-ph.CO].
Desmond, H., Jain, B., Sakstein, J., Local resolution of the Hubble tension: The impact of screened fifth forces on the cosmic distance ladder. Phys. Rev. D, 100(4), 2019, 043537 arXiv:1907.03778 [astro-ph.CO] Phys.Rev.D, 101, 2020, 069904 Erratum Phys. Rev. D, 101, 2020, 129901 Erratum.
Burrage, C., Sakstein, J., A compendium of chameleon constraints. J. Cosmol. Astropart. Phys., 11, 2016, 045 arXiv:1609.01192 [astro-ph.CO].
Burrage, C., Sakstein, J., Tests of chameleon gravity. Living Rev. Rel., 21(1), 2018, 1 arXiv:1709.09071 [astro-ph.CO].
Baker, T., et al. Novel Probes Project: Tests of gravity on astrophysical scales. Rev. Modern Phys., 93(1), 2021, 015003 arXiv:1908.03430 [astro-ph.CO].
Sakstein, J., Astrophysical tests of screened modified gravity. Internat. J. Modern Phys. D, 27(15), 2018, 1848008 arXiv:2002.04194 [astro-ph.CO].
Berezhiani, L., Khoury, J., Wang, J., Universe without dark energy: Cosmic acceleration from dark matter-baryon interactions. Phys. Rev. D, 95(12), 2017, 123530 arXiv:1612.00453 [hep-th].
Wojtak, R., Hjorth, J., Intrinsic tension in the supernova sector of the local Hubble constant measurement and its implications. Mon. Not. R. Astron. Soc. 515:2 (2022), 2790–2799 arXiv:2206.08160 [astro-ph.CO].
Högås, M., Mörtsell, E., Hubble tension and fifth forces. Phys. Rev. D, 108(12), 2023, 124050 arXiv:2309.01744 [astro-ph.CO].
Ruchika, Rathore, H., Roy Choudhury, S., Rentala, V., A gravitational constant transition within cepheids as supernovae calibrators can solve the Hubble tension. J. Cosmol. Astropart. Phys., 06, 2024, 056 arXiv:2306.05450 [astro-ph.CO].
Amendola, L., Corasaniti, P.S., Occhionero, F., Time variability of the gravitational constant and type Ia supernovae. 1999 arXiv:astro-ph/9907222.
Garcia-Berro, E., Gaztanaga, E., Isern, J., Benvenuto, O., Althaus, L., On the evolution of cosmological type ia supernovae and the gravitational constant. 1999 arXiv:astro-ph/9907440.
Gaztanaga, E., Garcia-Berro, E., Isern, J., Bravo, E., Dominguez, I., Bounds on the possible evolution of the gravitational constant from cosmological type Ia supernovae. Phys. Rev. D, 65, 2002, 023506 arXiv:astro-ph/0109299.
Wright, B.S., Li, B., Type Ia supernovae, standardizable candles, and gravity. Phys. Rev. D, 97(8), 2018, 083505 arXiv:1710.07018 [astro-ph.CO].
Zhao, W., Wright, B.S., Li, B., Constraining the time variation of Newton's constant G with gravitational-wave standard sirens and supernovae. J. Cosmol. Astropart. Phys., 10, 2018, 052 arXiv:1804.03066 [astro-ph.CO].
Goldman, I., Neutron Stars constraints on a late G transition. Phys. Lett. B, 858, 2024, 139084 arXiv:2402.09859 [astro-ph.CO].
Gupta, R.P., Constraining coupling constants’ Variation with Supernovae, Quasars, and GRBs. Symmetry, 15(2), 2023, 259 arXiv:2301.09795 [astro-ph.CO].
Gupta, R.P., Effect of evolving physical constants on type Ia supernova luminosity. Mon. Not. R. Astron. Soc. 511:3 (2022), 4238–4250 arXiv:2112.10654 [gr-qc].
Barrow, J.D., Magueijo, J., Varying alpha theories and solutions to the cosmological problems. Phys. Lett. B 443 (1998), 104–110 arXiv:astro-ph/9811072.
Anderson, A.J., Barry, P., Bender, A.N., Benson, B.A., Bleem, L.E., Carlstrom, J.E., Cecil, T.W., Chang, C.L., Crawford, T.M., Dibert, K.R., Dobbs, M.A., Fichman, K., Halverson, N.W., Holzapfel, W.L., Hryciuk, A., Karkare, K.S., Li, J., Lisovenko, M., Marrone, D., McMahon, J., Montgomery, J., Natoli, T., Pan, Z., Raghunathan, S., Reichardt, C.L., Rouble, M., Shirokoff, E., Smecher, G., Stark, A.A., Vieira, J.D., Young, M.R., SPT-3G+: mapping the high-frequency cosmic microwave background using kinetic inductance detectors. Zmuidzinas, J., Gao, J.-R., (eds.) Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 12190, 2022, 1219003 arXiv:2208.08559 [astro-ph.IM].
Coulton, W., et al., ACT Collaboration. Atacama Cosmology Telescope: High-resolution component-separated maps across one third of the sky. Phys. Rev. D, 109(6), 2024, 063530 arXiv:2307.01258 [astro-ph.CO].
Suzuki, A., et al., POLARBEAR Collaboration. The POLARBEAR-2 and the Simons Array Experiment. J. Low Temp. Phys. 184:3-4 (2016), 805–810 arXiv:1512.07299 [astro-ph.IM].
Li, H., et al. Probing primordial gravitational waves: Ali CMB polarization telescope. Natl. Sci. Rev. 6:1 (2019), 145–154 arXiv:1710.03047 [astro-ph.CO].
Hamilton, J.C., et al., QUBIC Collaboration. QUBIC I: Overview and science program. J. Cosmol. Astropart. Phys., 04(04), 2022, 034 arXiv:2011.02213 [astro-ph.IM].
Datta, R., et al., CLASS Collaboration. Cosmology Large Angular Scale Surveyor (CLASS): 90 GHz Telescope pointing, beam profile, window function, and polarization performance. Astrophys. J. Suppl., 273(2), 2024, 26 arXiv:2308.13309 [astro-ph.IM].
Lee, K., et al., GroundBIRD Collaboration. GroundBIRD: A CMB polarization experiment with MKID Arrays. J. Low Temp. Phys. 200:5-6 (2020), 384–391 arXiv:2011.07705 [astro-ph.IM].
Hui, H., et al. BICEP Array: a multi-frequency degree-scale CMB polarimeter. Proc. SPIE Int. Soc. Opt. Eng., 10708, 2018, 1070807 arXiv:1808.00568 [astro-ph.IM].
Namikawa, T., et al., LiteBIRD Collaboration. LiteBIRD science goals and forecasts: improving sensitivity to inflationary gravitational waves with multitracer delensing. J. Cosmol. Astropart. Phys., 06, 2024, 010 arXiv:2312.05194 [astro-ph.CO].
Paoletti, D., et al., LiteBIRD Collaboration. LiteBIRD science goals and forecasts: primordial magnetic fields. J. Cosmol. Astropart. Phys., 07, 2024, 086 arXiv:2403.16763 [astro-ph.CO].
Remazeilles, M., et al., LiteBIRD Collaboration. LiteBIRD science goals and forecasts. Mapping the hot gas in the Universe. J. Cosmol. Astropart. Phys., 12, 2024, 026 arXiv:2407.17555 [astro-ph.CO].
de la Hoz, E., et al., LiteBIRD Collaboration. LiteBIRD Science Goals and Forecasts: constraining isotropic cosmic birefringence. 2025 arXiv:2503.22322 [astro-ph.CO].
Sehgal, N., et al. CMB-HD: An ultra-deep, high-resolution millimeter-wave survey over half the sky. 2019 arXiv:1906.10134 [astro-ph.CO].
Aiola, S., et al., CMB-HD Collaboration. Snowmass2021 CMB-HD White Paper. 2022 arXiv:2203.05728 [astro-ph.CO].
Hanany, S., et al. PICO: Probe of inflation and cosmic origins. 2019 arXiv e-prints, arXiv:1902.10541 [astro-ph.IM].
André, P., et al., PRISM Collaboration. PRISM (Polarized Radiation Imaging and Spectroscopy Mission): An extended white paper. J. Cosmol. Astropart. Phys., 02, 2014, 006 arXiv:1310.1554 [astro-ph.CO].
Amiri, M., et al., CHIME Collaboration. An overview of CHIME, the Canadian Hydrogen Intensity Mapping Experiment. Astrophys. J. Supp., 261(2), 2022, 29 arXiv:2201.07869 [astro-ph.IM].
Abdalla, E., et al. The BINGO project - I. Baryon acoustic oscillations from integrated neutral gas observations. Astron. Astrophys., 664, 2022, A14 arXiv:2107.01633 [astro-ph.CO].
Amendola, L., et al. Cosmology and fundamental physics with the euclid satellite. Living Rev. Rel., 21(1), 2018, 2 arXiv:1606.00180 [astro-ph.CO].
Takada, M., Ellis, R.S., Chiba, M., Greene, J.E., Aihara, H., Arimoto, N., Bundy, K., Cohen, J., Doré, O., Graves, G., Gunn, J.E., Heckman, T., Hirata, C.M., Ho, P., Kneib, J.-P., Le Fèvre, O., Lin, L., More, S., Murayama, H., Nagao, T., Ouchi, M., Seiffert, M., Silverman, J.D., Sodré, L., Spergel, D.N., Strauss, M.A., Sugai, H., Suto, Y., Takami, H., Wyse, R., Extragalactic science, cosmology, and galactic archaeology with the subaru prime focus spectrograph. Publ. Astron. Soc. Jpn., 66(1), 2014, R1 arXiv:1206.0737 [astro-ph.CO].
Tamura, N., et al. Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives. Proc. SPIE Int. Soc. Opt. Eng., 9908, 2016, 99081M arXiv:1608.01075 [astro-ph.IM].
Blum, B., et al. Snowmass2021 cosmic frontier white paper: Rubin observatory after LSST. Snowmass 2021, 2022 arXiv:2203.07220 [astro-ph.CO].
Braun, R., Bourke, T.L., Green, J.A., Keane, E., Wagg, J., Advancing astrophysics with the square kilometre array. PoS, AASKA14, 2015, 174.
Schlegel, D.J., et al., DESI Collaboration. A spectroscopic road map for cosmic frontier: DESI, DESI-II, Stage-5. 2022 arXiv:2209.03585 [astro-ph.CO].
de Jong, R.S., et al. 4MOST: 4-metre multi-object spectroscopic telescope. McLean, I.S., Ramsay, S.K., Takami, H., (eds.) Ground-based and Airborne Instrumentation for Astronomy IV Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8446, 2012, 84460T arXiv:1206.6885 [astro-ph.IM].
Doré, O., et al., SPHEREx Collaboration. Cosmology with the SPHEREX all-sky spectral survey. 2014 arXiv:1412.4872 [astro-ph.CO].
Cleary, K.A., et al. COMAP early science: I. Overview. 2021 arXiv:2111.05927 [astro-ph.CO].
Slosar, A., et al., PUMA Collaboration. Packed Ultra-wideband Mapping Array (PUMA): A radio telescope for cosmology and transients. Bull. Am. Astron. Soc., 51, 2019, 53 arXiv:1907.12559 [astro-ph.IM].
Abbott, T., et al., DES Collaboration. The Dark Energy Survey: more than dark energy – an overview. Mon. Not. R. Astron. Soc. 460:2 (2016), 1270–1299 arXiv:1601.00329 [astro-ph.CO].
Romualdez, L.J., et al. Overview, design, and flight results from SuperBIT: a high-resolution, wide-field, visible-to-near-UV balloon-borne astronomical telescope. Evans, C.J., Simard, L., Takami, H., (eds.) Ground-based and Airborne Instrumentation for Astronomy VII Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10702, 2018, 107020R arXiv:1807.02887 [astro-ph.IM].
Sathyaprakash, B., et al. Scientific objectives of einstein telescope. Cl. Quant. Grav., 29, 2012, 124013 arXiv:1206.0331 [gr-qc] Class. Quant. Grav., 30, 2013, 079501 Erratum.
Abac, A., et al. The science of the Einstein telescope. 2025 arXiv:2503.12263 [gr-qc].
Punturo, M., et al. The Einstein Telescope: A third-generation gravitational wave observatory. Cl. Quant. Grav., 27, 2010, 194002.
Utina, A., et al. ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors. Cl. Quant. Grav., 39(21), 2022, 215008 arXiv:2206.04905 [astro-ph.IM].
Borhanian, S., Sathyaprakash, B.S., Listening to the Universe with next generation ground-based gravitational-wave detectors. Phys. Rev. D, 110(8), 2024, 083040 arXiv:2202.11048 [gr-qc].
Gupta, I., et al. Characterizing gravitational wave detector networks: from A♯ to cosmic explorer. Cl. Quant. Grav., 41(24), 2024, 245001 arXiv:2307.10421 [gr-qc].
Mei, J., et al., TianQin Collaboration. The TianQin project: current progress on science and technology. PTEP, 2021(5), 2021, 05A107 arXiv:2008.10332 [gr-qc].
Luo, J., et al. Fundamental physics and cosmology with TianQin. 2025 arXiv:2502.20138 [gr-qc].
Kawamura, S., et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO. PTEP, 2021(5), 2021, 05A105 arXiv:2006.13545 [gr-qc].
Agazie, G., et al., NANOGrav Collaboration. The NANOGrav 15 yr Data Set: Evidence for a gravitational-wave background. Astrophys. J. Lett., 951(1), 2023, L8 arXiv:2306.16213 [astro-ph.HE].
Manchester, R.N., Hobbs, G., Bailes, M., Coles, W.A., van Straten, W., Keith, M.J., Shannon, R.M., Bhat, N.D.R., Brown, A., Burke-Spolaor, S.G., Champion, D.J., Chaudhary, A., Edwards, R.T., Hampson, G., Hotan, A.W., Jameson, A., Jenet, F.A., Kesteven, M.J., Khoo, J., Kocz, J., Maciesiak, K., Oslowski, S., Ravi, V., Reynolds, J.R., Sarkissian, J.M., Verbiest, J.P.W., Wen, Z.L., Wilson, W.E., Yardley, D., Yan, W.M., You, X.P., The parkes pulsar timing array project. Publ. Astron. Soc. Aust., 30, 2013, e017 arXiv:1210.6130 [astro-ph.IM].
Manchester, R.N., IPTA, The international pulsar timing array. Classical Quantum Gravity, 30(22), 2013, 224010 arXiv:1309.7392 [astro-ph.IM].
Beardsley, A.P., et al. Science with the Murchison Widefield Array: Phase I results and Phase II opportunities. Publ. Astron. Soc. Aust., 36, 2019, e050 arXiv:1910.02895 [astro-ph.IM].
Cumner, J., et al. Radio antenna design for sky-averaged 21cm cosmology experiments: The REACH case. J. Astron. Inst., 11(01), 2022, 2250001 arXiv:2109.10098 [astro-ph.IM].
Intema, H.T., Jagannathan, P., Mooley, K.P., Frail, D.A., The GMRT 150 MHz All-sky Radio Survey: First alternative data release TGSS ADR1. Astron. Astrophys., 598, 2017, A78 arXiv:1603.04368 [astro-ph.CO].
Nan, R., Li, D., Jin, C., Wang, Q., Zhu, L., Zhu, W., Zhang, H., Yue, Y., Qian, L., The Five-Hundred Aperture Spherical Radio Telescope (fast) Project. Internat. J. Modern Phys. D 20:6 (2011), 989–1024 arXiv:1105.3794 [astro-ph.IM].
Graham, M.J., et al. The Zwicky transient facility: Science objectives. Publ. Astron. Soc. Pac., 131(1001), 2019, 078001 arXiv:1902.01945 [astro-ph.IM].
Wood-Vasey, W.M., et al. The nearby supernova factory. New Astron. Rev. 48 (2004), 637–640 arXiv:astro-ph/0401513.
Wang, Y., et al. ATLAS Probe: Breakthrough science of galaxy evolution, cosmology, milky way, and the solar system. 2019 arXiv:1909.00070 [astro-ph.IM].
Hook, I., The science case for the European ELT. Moorwood, A., (eds.) Science with the VLT in the ELT Era Astrophysics and Space Science Proceedings, vol. 9, 2009, 225.
Colless, M., Key early science with MANIFEST on GMT. 2018 arXiv e-prints, arXiv:1809.05804 [astro-ph.IM].
Skidmore, W., et al., TMT International Science Development Teams & TMT Science Advisory Committee Collaboration. Thirty meter telescope detailed science case: 2015. Res. Astron. Astrophys. 15:12 (2015), 1945–2140 arXiv:1505.01195 [astro-ph.IM].
ESO Very Large Telescope, The VLT White Book. 1988, European Organisation for Astronomical Research in the Southern Hemisphere https://www.eso.org/public/products/books/book_0004/.
Bustos, R., Rubio, M., Otárola, A., Nagar, N., Parque astronómico de atacama: An ideal site for millimeter, submillimeter, and mid-infrared astronomy. Publ. Astron. Soc. Aust., 126(946), 2014, 1126 arXiv:1410.2451 [astro-ph.IM].
Davis, M., et al. Science objectives and early results of the DEEP2 redshift survey. Proc. SPIE Int. Soc. Opt. Eng. 4834 (2003), 161–172 arXiv:astro-ph/0209419.
Johnston, S., Wall, J., Science with ASKAP - the Australian Square Kilometre Array Pathfinder. Exper. Astron., 22, 2008, 151 arXiv:0810.5187 [astro-ph].
Bailes, M., Jameson, A., Flynn, C., Bateman, T., Barr, E.D., Bhandari, S., Bunton, J.D., Caleb, M., Campbell-Wilson, D., Farah, W., Gaensler, B., Green, A.J., Hunstead, R.W., Jankowski, F., Keane, E.F., Krishnan, V.V., Murphy, T., O'Neill, M., Osłowski, S., Parthasarathy, A., Ravi, V., Rosado, P., Temby, D., The UTMOST: A hybrid digital signal processor transforms the Molonglo observatory synthesis telescope. Publ. Astron. Soc. Aust., 34, 2017, e045 arXiv:1708.09619 [astro-ph.IM].
Jonas, J., MeerKAT Team, The meerkat radio telescope. MeerKAT Science: On the Pathway to the SKA, 2016, 1.
Law, C.J., et al. Deep synoptic array science: First FRB and host galaxy catalog. Astrophys. J., 967(1), 2024, 29 arXiv:2307.03344 [astro-ph.HE].
Clarke, T., Peters, W., Brisken, W., Giacintucci, S., Kassim, N., Polisensky, E., Helmboldt, J., Richards, E.E., Erickson, A., Ray, P.S., Kerr, M.T., Deneva, J., Coburn, W., Huber, R., Long, J., The VLA Low-band Ionosphere and Transient Experiment (VLITE). American Astronomical Society Meeting Abstracts #231 American Astronomical Society Meeting Abstracts, vol. 231, 2018, 354.11.
Hallinan, G., DSA-2000 collaboration, The dsa-2000: the future of radio survey science. American Astronomical Society Meeting Abstracts American Astronomical Society Meeting Abstracts, vol. 241, 2023, 239.07.
Vanderlinde, K., Liu, A., Gaensler, B., Bond, D., Hinshaw, G., Ng, C., Chiang, C., Stairs, I., Brown, J.-A., Sievers, J., Mena, J., Smith, K., Bandura, K., Masui, K., Spekkens, K., Belostotski, L., Dobbs, M., Turok, N., Boyle, P., Rupen, M., Landecker, T., Pen, U.-L., Kaspi, V., The Canadian Hydrogen Observatory and Radio-transient Detector (CHORD). Canadian Long Range Plan for Astronomy and Astrophysics White Papers, vol. 2020, 2019, 28 arXiv:1911.01777 [astro-ph.IM].
Hill, G.J., et al. The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX): Description and early pilot survey results. ASP Conf. Ser. 399 (2008), 115–118 arXiv:0806.0183 [astro-ph].
Fasano, A., et al. CONCERTO: Instrument and status. EPJ Web Conf., 293, 2024, 00018 arXiv:2311.04704 [astro-ph.IM].
Butler, V.L., et al. TIME: the Tomographic Ionized-carbon Mapping Experiment: an update on design, characterization, and data from the 2022 commissioning observations. Zmuidzinas, J., Gao, J.-R., (eds.) Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 13102, 2024, 131022G.
Cooray, A., Chang, T.-C., Unwin, S., Zemcov, M., Coffey, A., Morrissey, P., Raouf, N., Lipscy, S., Shannon, M., Wu, G., Cen, R., Chary, R.R., Doré, O., Fan, X., Fazio, G.G., Finkelstein, S.L., Heneka, C., Lee, B., Linden, P., Nayyeri, H., Rhodes, J., Sadoun, R., Silva, M.B., Trac, H., Wu, H.-Y., Zheng, Z., Cosmic dawn intensity mapper. Bulletin of the American Astronomical Society, vol. 51, 2019, 23 arXiv:1903.03144 [astro-ph.GA].
Stacey, G.J., et al. CCAT-prime: Science with an ultra-widefield submillimeter observatory at cerro chajnantor. Ground-based and Airborne Telescopes VII, 2018 arXiv:1807.04354 [astro-ph.GA].
Sutherland, W., Emerson, J., Dalton, G., Atad-Ettedgui, E., Beard, S., Bennett, R., Bezawada, N., Born, A., Caldwell, M., Clark, P., Craig, S., Henry, D., Jeffers, P., Little, B., McPherson, A., Murray, J., Stewart, M., Stobie, B., Terrett, D., Ward, K., Whalley, M., Woodhouse, G., The Visible and Infrared Survey Telescope for Astronomy (VISTA): Design, technical overview, and performance. Astron. Astrophys., 575, 2015, A25 arXiv:1409.4780 [astro-ph.IM].
Silk, J., The limits of cosmology: role of the Moon. Phil. Trans. A. Math. Phys. Eng. Sci., 379, 2021, 20190561 arXiv:2011.04671 [astro-ph.CO].