[en] [en] BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) characterized by significant impairments in social, communicative, and behavioral abilities. However, only a limited number of studies address the genetic basis of ASD in the African population. This study aims to document the genes associated with ASD in Africa and the techniques used to identify them. Additionally, genes identified elsewhere but not yet in Africa are also noted.
METHODS: Online databases such as Wiley Online Library, PubMed, and Africa Journal Online were used. The review was conducted using the keyword related to genetic and genomic ASD study in the African population.
RESULT: In this scoping review, 40 genetic studies on ASD in Africa were reviewed. The Egyptian and South African populations were the most studied, with 25 and 5 studies, respectively. Countries with fewer studies included Tunisia (4), East African countries (3), Libya (1), Nigeria (1), and Morocco (1). Some 61 genes responsible for ASD were identified in the African population: 26 were identified using a polymerase chain reaction (PCR)-based method, 22 were identified using sequencing technologies, and 12 genes and one de novo chromosomal aberration were identified through other techniques. No African study identified any ASD gene with genome-wide association studies (GWAS). Notably, at least 20 ASD risk genes reported in non-African countries were yet to be confirmed in Africa's population.
CONCLUSION: There are insufficient genetic studies on ASD in the African population, with sample size being a major limitation in most genetic association studies, leading to inconclusive results. Thus, there is a need to conduct more studies with large sample sizes to identify other genes associated with ASD in Africa's population using high-throughput sequencing technology.
Disciplines :
Genetics & genetic processes
Author, co-author :
Hakizimana, Olivier ; Université de Liège - ULiège > GIGA ; Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
Hitayezu, Janvier; Department of Pediatrics, University Teaching Hospital of Kigali (CHUK), Kigali, Rwanda
Uyisenga, Jeanne Primitive ; Université de Liège - ULiège > GIGA ; Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
Onohuean, Hope; Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Bushenyi, Uganda
Palmeira, Leonor ; Université de Liège - ULiège > Département des sciences cliniques
Bours, Vincent ; Université de Liège - ULiège > GIGA > GIGA Cancer - Human Genetics
Alagbonsi, Abdullateef Isiaka; Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
Uwineza, Annette; Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
Language :
English
Title :
Genetic etiology of autism spectrum disorder in the African population: a scoping review.
This document has been produced with the financial assistance of the European Union (Grant no. DCI-PANAF/2020/420-028) through the African Research Initiative for Scientific Excellence (ARISE) pilot program. ARISE is implemented by the African Academy of Sciences with support from the European Commission and the African Union Commission. The contents of this document are the sole responsibility of the authors and can, under no circumstances, be regarded as reflecting the position of the European Union, the African Academy of Sciences, and the African Union Commission.The authors declare that financial support was received for the research, authorship, and/or publication of this article. This study was sponsored by the African Research Initiative for Scientific Excellence (ARISE), pilot program (grant number ARISE-PP-40).
Abdelhady N. M. S. El-Hefnawy S. M. Elfetoh D. E. A. Abd El Naby S. A. (2022). RELN gene (rs 2229864) polymorphismas genetic risk factor in Egyptian children with autism spectrum disorders. Menoufia Med. J. 35, 1294.
Abdelrahman H. M. Sherief L. M. Alghobashy A. A. Abdel Salam S. M. Hashim H. M. Abdel Fattah N. R. et al. (2015). Association of 5-HT2A receptor gene polymorphisms with gastrointestinal disorders in Egyptian children with autistic disorder. Res. Dev. Disabil. 36C, 485–490. 10.1016/j.ridd.2014.10.023
Aderinto N. Olatunji D. Idowu O. (2023). Autism in Africa: prevalence, diagnosis, treatment and the impact of social and cultural factors on families and caregivers: a review. Ann. Med. Surg. 85, 4410–4416. 10.1097/MS9.0000000000001107
Alvarez Retuerto A. I. Cantor R. M. Gleeson J. G. Ustaszewska A. Schackwitz W. S. Pennacchio L. A. et al. (2008). Association of common variants in the Joubert syndrome gene (AHI1) with autism. Hum. Mol. Genet. 17, 3887–3896. 10.1093/hmg/ddn291
Aman M. G. (2004). Management of hyperactivity and other acting-out problems in patients with autism spectrum disorder. Semin. Pediatr. Neurol. 11, 225–228. 10.1016/j.spen.2004.07.006
Anitha A. Thanseem I. Nakamura K. Yamada K. Iwayama Y. Toyota T. et al. (2013). Protocadherin α (PCDHA) as a novel susceptibility gene for autism. J. Psychiatry Neurosci. Jpn. 38, 192–198. 10.1503/jpn.120058
Anney R. J. L. Ripke S. Anttila V. Grove J. Holmans P. Huang H. et al. (2017). Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol. Autism 8, 21. 10.1186/s13229-017-0137-9
Aoki Y. Cortese S. (2016). Mitochondrial aspartate/glutamate carrier SLC25A12 and autism spectrum disorder: a meta-analysis. Mol. Neurobiol. 53, 1579–1588. 10.1007/s12035-015-9116-3
Arafa M. Hasan T. Alghobashy A. Raafat N. Gohary M. Amer M. et al. (2021). Vitamin D receptor gene rs 731276 (taq1) polymorphism and autism susceptibility in children: a single center study. Türk Fiz. Ve Rehabil. DergisiTurkish J. Physiother. Rehabil. 32, 8318–8324.
Arenella M. Cadby G. De Witte W. Jones R. M. Whitehouse A. J. Moses E. K. et al. (2022). Potential role for immune-related genes in autism spectrum disorders: evidence from genome-wide association meta-analysis of autistic traits. Autism 26, 361–372. 10.1177/13623613211019547
Arieff Z. Kaur M. Gameeldien H. van der Merwe L. Bajic V. B. (2010). 5-HTTLPR polymorphism: analysis in South African autistic individuals. Hum. Biol. 82, 291–300. 10.3378/027.082.0303
Arksey H. O’Malley L. (2005). Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8, 19–32. 10.1080/1364557032000119616
Avdjieva-Tzavella D. M. Todorov T. P. Todorova A. P. Kirov A. V. Hadjidekova S. P. Rukova B. B. et al. (2012). Analysis of the genes encoding neuroligins NLGN3 and NLGN4 in Bulgarian patients with autism. Genet. Couns. Geneva Switz. 23, 505–511.
Azzam A. A. Bahgat D. R. Shahin R. H. Nasralla R. A. (2018). Association study between polymorphisms of dopamine transporter gene (SLC6A3), dopamine D1 receptor gene (DRD1), and autism. J. Med. Sci. Res. 1, 59. 10.4103/jmisr.jmisr_8_18
Bacchelli E. Battaglia A. Cameli C. Lomartire S. Tancredi R. Thomson S. et al. (2015). Analysis of CHRNA7 rare variants in autism spectrum disorder susceptibility. Am. J. Med. Genet. A 167, 715–723. 10.1002/ajmg.a.36847
Bam S. Buchanan E. Mahony C. O’Ryan C. (2021). DNA methylation of PGC-1α is associated with elevated mtDNA copy number and altered urinary metabolites in autism spectrum disorder. Front. Cell Dev. Biol. 9, 696428. 10.3389/fcell.2021.696428
Baranger D. A. A. Hatoum A. S. Polimanti R. Gelernter J. Edenberg H. J. Bogdan R. et al. (2023). Multi‐omics cannot replace sample size in genome‐wide association studies. Genes Brain Behav. 22, e12846. 10.1111/gbb.12846
Barnevik-Olsson M. Gillberg C. Fernell E. (2008). Prevalence of autism in children born to Somali parents living in Sweden: a brief report. Dev. Med. Child. Neurol. 50, 598–601. 10.1111/j.1469-8749.2008.03036.x
Barone R. Fichera M. De Grandi M. Battaglia M. Lo Faro V. Mattina T. et al. (2017). Familial 18q12.2 deletion supports the role of RNA‐binding protein CELF4 in autism spectrum disorders. Am. J. Med. Genet. A 173, 1649–1655. 10.1002/ajmg.a.38205
Bayou N. Belhadj A. Daoud H. Briault S. Helayem M. B. Chaabouni H. et al. (2010). Exploring the 7p22.1 chromosome as a candidate region for autism. J. Biomed. Biotechnol. 2010, 423894–4. 10.1155/2010/423894
Bayou N. M’rad R. Belhaj A. Daoud H. Ben Jemaa L. Zemni R. et al. (2008). De novo balanced translocation t (7;16) (p22.1; p11.2) associated with autistic disorder. J. Biomed. Biotechnol. 2008, 231904–231905. 10.1155/2008/231904
Bensaid M. Loe-Mie Y. Lepagnol-Bestel A.-M. Han W. Santpere G. Klarić T. et al. (2019). Multi-hit autism genomic architecture evidenced from consanguineous families with involvement of FEZF2 and mutations in high-risk genes. Neuroscience. 10.1101/759480
Bernier R. Golzio C. Xiong B. Stessman H. A. Coe B. P. Penn O. et al. (2014). Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158, 263–276. 10.1016/j.cell.2014.06.017
Berryer M. H. Hamdan F. F. Klitten L. L. Møller R. S. Carmant L. Schwartzentruber J. et al. (2013). Mutations in SYNGAP1 cause intellectual disability, autism, and a specific form of epilepsy by inducing haploinsufficiency. Hum. Mutat. 34, 385–394. 10.1002/humu.22248
Blier P. Ward N. M. (2003). Is there a role for 5-HT1A agonists in the treatment of depression? Biol. Psychiatry 53, 193–203. 10.1016/S0006-3223(02)01643-8
Boccuto L. Chen C.-F. Pittman A. R. Skinner C. D. McCartney H. J. Jones K. et al. (2013). Decreased tryptophan metabolism in patients with autism spectrum disorders. Mol. Autism 4, 16. 10.1186/2040-2392-4-16
Bond M. Maram H. Soliman A. Khattab R. (2012). Science and innovation in Egypt. London: Lond. R. Soc.
Brune C. W. Kim S.-J. Salt J. Leventhal B. L. Lord C. Cook E. H. (2006). 5-HTTLPR genotype-specific phenotype in children and adolescents with autism. Am. J. Psychiatry 163, 2148–2156. 10.1176/ajp.2006.163.12.2148
Bu X. Wu D. Lu X. Yang L. Xu X. Wang J. et al. (2017). Role of SIRT1/PGC-1α in mitochondrial oxidative stress in autistic spectrum disorder. Neuropsychiatr. Dis. Treat. 13, 1633–1645. 10.2147/NDT.S129081
Buddell T. Friedman V. Drozd C. J. Quinn C. C. (2019). An autism-causing calcium channel variant functions with selective autophagy to alter axon targeting and behavior. PLOS Genet. 15, e1008488. 10.1371/journal.pgen.1008488
Buxbaum J. D. Cai G. Chaste P. Nygren G. Goldsmith J. Reichert J. et al. (2007). Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B, 484–491. 10.1002/ajmg.b.30493
Buxbaum J. D. Silverman J. M. Smith C. J. Greenberg D. A. Kilifarski M. Reichert J. et al. (2002). Association between a GABRB3 polymorphism and autism. Mol. Psychiatry 7, 311–316. 10.1038/sj.mp.4001011
Campbell D. B. Buie T. M. Winter H. Bauman M. Sutcliffe J. S. Perrin J. M. et al. (2009). Distinct genetic risk based on association of MET in families with Co-occurring autism and gastrointestinal conditions. Pediatrics 123, 1018–1024. 10.1542/peds.2008-0819
Campbell M. C. Tishkoff S. A. (2008). African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu. Rev. Genomics Hum. Genet. 9, 403–433. 10.1146/annurev.genom.9.081307.164258
Carrasco M. Salazar C. Tiznado W. Ruiz L. M. (2019). Alterations of mitochondrial biology in the oral mucosa of Chilean children with autism spectrum disorder (ASD). Cells 8, 367. 10.3390/cells8040367
Caubit X. Gubellini P. Andrieux J. Roubertoux P. L. Metwaly M. Jacq B. et al. (2016). TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons. Nat. Genet. 48, 1359–1369. 10.1038/ng.3681
Chehbani F. Tomaiuolo P. Picinelli C. Baccarin M. Castronovo P. Scattoni M. L. et al. (2022). Yield of array-CGH analysis in Tunisian children with autism spectrum disorder. Mol. Genet. Genomic Med. 10, e1939. 10.1002/mgg3.1939
Chen C.-H. Huang C.-C. Cheng M.-C. Chiu Y.-N. Tsai W.-C. Wu Y.-Y. et al. (2014). Genetic analysis of GABRB3 as a candidate gene of autism spectrum disorders. Mol. Autism 5, 36. 10.1186/2040-2392-5-36
Chen N. Bao Y. Xue Y. Sun Y. Hu D. Meng S. et al. (2017). Meta-analyses of RELN variants in neuropsychiatric disorders. Behav. Brain Res. 332, 110–119. 10.1016/j.bbr.2017.05.028
Chien W.-H. Gau S.-F. Chen C.-H. Tsai W.-C. Wu Y.-Y. Chen P.-H. et al. (2013). Increased gene expression of FOXP1 in patients with autism spectrum disorders. Mol. Autism 4, 23. 10.1186/2040-2392-4-23
Chien Y.-L. Wu Y.-Y. Chen C.-H. Gau S. S.-F. Huang Y.-S. Chien W.-H. et al. (2012). Association of HLA-DRB1 alleles and neuropsychological function in autism. Psychiatr. Genet. 22, 46–49. 10.1097/YPG.0b013e32834915ae
Cho I. H. Yoo H. J. Park M. Lee Y. S. Kim S. A. (2007). Family-based association study of 5-HTTLPR and the 5-HT2A receptor gene polymorphisms with autism spectrum disorder in Korean trios. Brain Res. 1139, 34–41. 10.1016/j.brainres.2007.01.002
Chugani D. C. (2002). Role of altered brain serotonin mechanisms in autism. Mol. Psychiatry 7 (Suppl. 2), S16–S17. 10.1038/sj.mp.4001167
Coghlan S. Horder J. Inkster B. Mendez M. A. Murphy D. G. Nutt D. J. (2012). GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci. Biobehav. Rev. 36, 2044–2055. 10.1016/j.neubiorev.2012.07.005
Conciatori M. Stodgell C. J. Hyman S. L. O’Bara M. Militerni R. Bravaccio C. et al. (2004). Association between the HOXA1 A218G polymorphism and increased head circumference in patients with autism. Biol. Psychiatry 55, 413–419. 10.1016/j.biopsych.2003.10.005
De Diego-Otero Y. Romero-Zerbo Y. Bekay R. E. Decara J. Sanchez L. Fonseca F. R. et al. (2009). α-Tocopherol protects against oxidative stress in the fragile X knockout mouse: an experimental therapeutic approach for the Fmr1 deficiency. Neuropsychopharmacology 34, 1011–1026. 10.1038/npp.2008.152
De Krom M. Staal W. G. Ophoff R. A. Hendriks J. Buitelaar J. Franke B. et al. (2009). A common variant in DRD3 receptor is associated with autism spectrum disorder. Biol. Psychiatry 65, 625–630. 10.1016/j.biopsych.2008.09.035
De La Torre-Ubieta L. Won H. Stein J. L. Geschwind D. H. (2016). Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345–361. 10.1038/nm.4071
Deng W. Zou X. Deng H. Li J. Tang C. Wang X. et al. (2015). The relationship among genetic heritability, environmental effects, and autism spectrum disorders: 37 pairs of ascertained twin study. J. Child. Neurol. 30, 1794–1799. 10.1177/0883073815580645
Dias C. Pfundt R. Kleefstra T. Shuurs-Hoeijmakers J. Boon E. M. J. van Hagen J. M. et al. (2021). De novo variants in TCF7L2 are associated with a syndromic neurodevelopmental disorder. Am. J. Med. Genet. A 185, 2384–2390. 10.1002/ajmg.a.62254
Di Napoli A. Warrier V. Baron-Cohen S. Chakrabarti B. (2014). Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger Syndrome. Mol. Autism 5, 48. 10.1186/2040-2392-5-48
Döcker D. Schubach M. Menzel M. Munz M. Spaich C. Biskup S. et al. (2014). Further delineation of the SATB2 phenotype. Eur. J. Hum. Genet. EJHG 22, 1034–1039. 10.1038/ejhg.2013.280
Eissa N. Al-Houqani M. Sadeq A. Ojha S. K. Sasse A. Sadek B. (2018). Current enlightenment about etiology and pharmacological treatment of autism spectrum disorder. Front. Neurosci. 12, 304. 10.3389/fnins.2018.00304
El-Ansary A. Zayed N. Al-Ayadhi L. Qasem H. Anwar M. Meguid N. A. et al. (2021). GABA synaptopathy promotes the elevation of caspases 3 and 9 as pro-apoptotic markers in Egyptian patients with autism spectrum disorder. Acta Neurol. belg. 121, 489–501. 10.1007/s13760-019-01226-z
El-Hossiny R. M. El-Baz F. Abdel-Aziz E. Abbass A. Abdel Mageed R. Abdel Raouf B. M. (2023). HLA-DR4 gene expression in a sample of Egyptian autistic children and their mothers: is it a risk factor? Egypt. J. Pediatr. Allergy Immunol. 21, 18–26. 10.21608/ejpa.2023.294364
Esmaiel N. N. Ashaat E. A. Mosaad R. Fayez A. Ibrahim M. Abdallah Z. Y. et al. (2020). The potential impact of COMT gene variants on dopamine regulation and phenotypic traits of ASD patients. Behav. Brain Res. 378, 112272. 10.1016/j.bbr.2019.112272
Feil D. Abrishamcar S. Christensen G. M. Vanker A. Koen N. Kilanowski A. et al. (2023). DNA methylation as a potential mediator of the association between indoor air pollution and neurodevelopmental delay in a South African birth cohort. Clin. Epigenetics 15, 31. 10.1186/s13148-023-01444-6
Fischbach R. L. Harris M. J. Ballan M. S. Fischbach G. D. Link B. G. (2016). Is there concordance in attitudes and beliefs between parents and scientists about autism spectrum disorder? Autism 20, 353–363. 10.1177/1362361315585310
Fombonne E. MacFarlane H. Salem A. C. (2021). Epidemiological surveys of ASD: advances and remaining challenges. J. Autism Dev. Disord. 51, 4271–4290. 10.1007/s10803-021-05005-9
Forrest M. P. Penzes P. (2020). Autism genetics: over 100 risk genes and counting. Pediatr. Neurol. Briefs 34, 13. 10.15844/pedneurbriefs-34-13
Frickel E. Mahony C. Bam S. Buchanan E. van der Watt M. O’Ryan C. (2023). Molecular autism research in Africa: emerging themes and prevailing disparities. Rev. J. Autism Dev. Disord. 10.1007/s40489-023-00415-0
Fyke W. Velinov M. (2021). FMR1 and autism, an intriguing connection revisited. Genes 12, 1218. 10.3390/genes12081218
Gardener H. Spiegelman D. Buka S. L. (2011). Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics 128, 344–355. 10.1542/peds.2010-1036
Gaugler T. Klei L. Sanders S. J. Bodea C. A. Goldberg A. P. Lee A. B. et al. (2014). Most genetic risk for autism resides with common variation. Nat. Genet. 46, 881–885. 10.1038/ng.3039
Gebril O. H. Meguid N. A. (2011). HFE gene polymorphisms and the risk for autism in Egyptian children and impact on the effect of oxidative stress. Dis. Markers 31, 289–294. 10.3233/DMA-2011-0830
Genomes Project ConsortiumAbecasis G. R. Auton A. Brooks L. D. DePristo M. A. Durbin R. M. et al. (2012). An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65. 10.1038/nature11632
Glasson E. J. Bower C. Petterson B. de Klerk N. Chaney G. Hallmayer J. F. (2004). Perinatal factors and the development of autism: a population study. Arch. Gen. Psychiatry 61, 618–627. 10.1001/archpsyc.61.6.618
Gomez F. Hirbo J. Tishkoff S. A. (2014). Genetic variation and adaptation in Africa: implications for human evolution and disease. Cold Spring Harb. Perspect. Biol. 6, a008524. 10.1101/cshperspect.a008524
Griswold A. J. Dueker N. D. Van Booven D. Rantus J. A. Jaworski J. M. Slifer S. H. et al. (2015). Targeted massively parallel sequencing of autism spectrum disorder-associated genes in a case control cohort reveals rare loss-of-function risk variants. Mol. Autism 6, 43. 10.1186/s13229-015-0034-z
Grove J. Ripke S. Als T. D. Mattheisen M. Walters R. K. Won H. et al. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444. 10.1038/s41588-019-0344-8
Grozeva D. Carss K. Spasic-Boskovic O. Parker M. J. Archer H. Firth H. V. et al. (2014). De novo loss-of-function mutations in SETD5, encoding a methyltransferase in a 3p25 microdeletion syndrome critical region, cause intellectual disability. Am. J. Hum. Genet. 94, 618–624. 10.1016/j.ajhg.2014.03.006
Guo H. Peng Y. Hu Z. Li Y. Xun G. Ou J. et al. (2017). Genome-wide copy number variation analysis in a Chinese autism spectrum disorder cohort. Prim. Care Companion CNS Disord. 7, 44155. 10.1038/srep44155
Gupta N. Verma V. K. (2019). “Next-generation sequencing and its application: empowering in public health beyond reality,” in Microbial technology for the welfare of society. Editor Arora P. K. (Singapore: Springer Singapore), 313–341. 10.1007/978-981-13-8844-6_15
Gurdasani D. Carstensen T. Tekola-Ayele F. Pagani L. Tachmazidou I. Hatzikotoulas K. et al. (2015). The african genome variation project shapes medical genetics in Africa. Nature 517, 327–332. 10.1038/nature13997
Hamdan F. F. Daoud H. Rochefort D. Piton A. Gauthier J. Langlois M. et al. (2010). De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am. J. Hum. Genet. 87, 671–678. 10.1016/j.ajhg.2010.09.017
Han W. Kwan K. Y. Shim S. Lam M. M. S. Shin Y. Xu X. et al. (2011). TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract. Proc. Natl. Acad. Sci. U. S. A. 108, 3041–3046. 10.1073/pnas.1016723108
Hardy B.-J. Séguin B. Ramesar R. Singer P. A. Daar A. S. (2008). South Africa: from species cradle to genomic applications. Nat. Rev. Genet. 9, S19–S23. 10.1038/nrg2441
Higazi A. M. Kamel H. M. Abdel-Naeem E. A. Abdullah N. M. Mahrous D. M. Osman A. M. (2021). Expression analysis of selected genes involved in tryptophan metabolic pathways in Egyptian children with Autism Spectrum Disorder and learning disabilities. Sci. Rep. 11, 6931. 10.1038/s41598-021-86162-w
Hirschhorn J. N. Daly M. J. (2005). Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108. 10.1038/nrg1521
Hodges H. Fealko C. Soares N. (2020). Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Transl. Pediatr. 9, S55-S65–s65. 10.21037/tp.2019.09.09
Hranilovic D. Blazevic S. Babic M. Smurinic M. Bujas-Petkovic Z. Jernej B. (2010). 5-HT2A receptor gene polymorphisms in Croatian subjects with autistic disorder. Psychiatry Res. 178, 556–558. 10.1016/j.psychres.2010.04.007
Ibrahim S. El-Waleely T. Zakaria N. Ismail R. (2015). A study of serum interleukin-12 in a sample of autistic children in Egypt. Egypt. J. Psychiatry 36, 81–87. 10.4103/1110-1105.158115
Ingram J. L. Stodgell C. J. Hyman S. L. Figlewicz D. A. Weitkamp L. R. Rodier P. M. (2000). Discovery of allelic variants of HOXA1 and HOXB1: genetic susceptibility to autism spectrum disorders. Teratology 62, 393–405. 10.1002/1096-9926(200012)62:6<393::AID-TERA6>3.0.CO;2-V
iPSYCH-SSI-Broad Autism GroupRobinson E. B. St Pourcain B. Anttila V. Kosmicki J. A. Bulik-Sullivan B. et al. (2016). Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat. Genet. 48, 552–555. 10.1038/ng.3529
Irimia M. Weatheritt R. J. Ellis J. D. Parikshak N. N. Gonatopoulos-Pournatzis T. Babor M. et al. (2014). A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159, 1511–1523. 10.1016/j.cell.2014.11.035
Jackson P. B. Boccuto L. Skinner C. Collins J. S. Neri G. Gurrieri F. et al. (2009). Further evidence that the rs1858830 C variant in the promoter region of the MET gene is associated with autistic disorder. Autism Res. 2, 232–236. 10.1002/aur.87
Johannessen J. Nærland T. Hope S. Torske T. Høyland A. Strohmaier J. et al. (2017). Parents’ attitudes toward clinical genetic testing for autism spectrum disorder—data from a Norwegian sample. Int. J. Mol. Sci. 18, 1078. 10.3390/ijms18051078
Jonsson L. Anckarsäter H. Zettergren A. Westberg L. Walum H. Lundström S. et al. (2014). Association between ASMT and autistic-like traits in children from a Swedish nationwide cohort. Psychiatr. Genet. 24, 21–27. 10.1097/YPG.0000000000000010
Jossin Y. (2020). Reelin functions, mechanisms of action and signaling pathways during brain development and maturation. Biomolecules 10, 964. 10.3390/biom10060964
Kainer D. Templeton A. R. Prates E. T. Jacboson D. Allan E. R. O. Climer S. et al. (2023). Structural variants identified using non-Mendelian inheritance patterns advance the mechanistic understanding of autism spectrum disorder. Hum. Genet. Genomics Adv. 4, 100150. 10.1016/j.xhgg.2022.100150
Kamal M. Nady G. Abushady A. Khalil M. (2015). Association of dopamine D4 receptor gene variants with autism. Int. J. Res. Med. Sci., 2658–2663. 10.18203/2320-6012.ijrms20150809
Kanavin O. J. Woldseth B. Jellum E. Tvedt B. Andresen B. S. Stromme P. (2007). 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report. J. Med. Case Rep. 1, 98. 10.1186/1752-1947-1-98
Karam R. A. Rezk N. A. Abdelrahman H. M. Hassan T. H. Mohammad D. Hashim H. M. et al. (2013). Catechol-O-methyltransferase Val158Met polymorphism and hyperactivity symptoms in Egyptian children with autism spectrum disorder. Res. Dev. Disabil. 34, 2092–2097. 10.1016/j.ridd.2013.04.002
Katori S. Hamada S. Noguchi Y. Fukuda E. Yamamoto T. Yamamoto H. et al. (2009). Protocadherin-alpha family is required for serotonergic projections to appropriately innervate target brain areas. J. Neurosci. Off. J. Soc. Neurosci. 29, 9137–9147. 10.1523/JNEUROSCI.5478-08.2009
Kumar B. Prakash A. Sewal R. K. Medhi B. Modi M. (2012). Drug therapy in autism: a present and future perspective. Pharmacol. Rep. 64, 1291–1304. 10.1016/S1734-1140(12)70927-1
Lambert N. Dauve C. Ranza E. Makrythanasis P. Santoni F. Sloan-Béna F. et al. (2018). Novel NEXMIF pathogenic variant in a boy with severe autistic features, intellectual disability, and epilepsy, and his mildly affected mother. J. Hum. Genet. 63, 847–850. 10.1038/s10038-018-0459-2
Lamy M. Erickson C. A. (2018). Pharmacological management of behavioral disturbances in children and adolescents with autism spectrum disorders. Curr. Probl. Pediatr. Adolesc. Health Care 48, 250–264. 10.1016/j.cppeds.2018.08.015
Laumonnier F. Bonnet-Brilhault F. Gomot M. Blanc R. David A. Moizard M.-P. et al. (2004). X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am. J. Hum. Genet. 74, 552–557. 10.1086/382137
Leblond C. S. Heinrich J. Delorme R. Proepper C. Betancur C. Huguet G. et al. (2012). Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet. 8, e1002521. 10.1371/journal.pgen.1002521
Li J. Lin X. Wang M. Hu Y. Xue K. Gu S. et al. (2020). Potential role of genomic imprinted genes and brain developmental related genes in autism. BMC Med. Genomics 13, 54. 10.1186/s12920-020-0693-2
Li M. Hou Y. Zhang Z. Zhang B. Huang T. Sun A. et al. (2023). Structure, activity and function of the lysine methyltransferase SETD5. Front. Endocrinol. 14, 1089527. 10.3389/fendo.2023.1089527
Li M. Santpere G. Imamura Kawasawa Y. Evgrafov O. V. Gulden F. O. Pochareddy S. et al. (2018a). Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615. 10.1126/science.aat7615
Li S.-J. Yu S. Luo H. Li X. Rao B. Wang Y. et al. (2018b). Two de novo variations identified by massively parallel sequencing in 13 Chinese families with children diagnosed with autism spectrum disorder. Clin. Chim. Acta 479, 144–147. 10.1016/j.cca.2018.01.025
Li X. Hu Z. He Y. Xiong Z. Long Z. Peng Y. et al. (2010). Association analysis of CNTNAP2 polymorphisms with autism in the Chinese Han population. Psychiatr. Genet. 20, 113–117. 10.1097/YPG.0b013e32833a216f
Liang H. Ward W. F. (2006). PGC-1alpha: a key regulator of energy metabolism. Adv. Physiol. Educ. 30, 145–151. 10.1152/advan.00052.2006
Liu Y. Hu Z. Xun G. Peng Y. Lu L. Xu X. et al. (2012). Mutation analysis of the NRXN1 gene in a Chinese autism cohort. J. Psychiatr. Res. 46, 630–634. 10.1016/j.jpsychires.2011.10.015
Lohmann K. Klein C. (2014). Next generation sequencing and the future of genetic diagnosis. Neurotherapeutics 11, 699–707. 10.1007/s13311-014-0288-8
Lu Z. A. Mu W. Osborne L. M. Cordner Z. A. (2018). Eighteen-year-old man with autism, obsessive compulsive disorder and a SHANK2 variant presents with severe anorexia that responds to high-dose fluoxetine. BMJ Case Rep. 2018, bcr2018225119. bcr-2018-225119. 10.1136/bcr-2018-225119
Magnusson C. Rai D. Goodman A. Lundberg M. Idring S. Svensson A. et al. (2012). Migration and autism spectrum disorder: population-based study. Br. J. Psychiatry 201, 109–115. 10.1192/bjp.bp.111.095125
Mariggiò M. A. Palumbi R. Vinella A. Laterza R. Petruzzelli M. G. Peschechera A. et al. (2021). DRD1 and DRD2 receptor polymorphisms: genetic neuromodulation of the dopaminergic system as a risk factor for ASD, ADHD and ASD/ADHD overlap. Front. Neurosci. 15, 705890. 10.3389/fnins.2021.705890
Meguid N. A. Eid O. M. Reda M. Elalfy D. Y. Hussein F. (2020). Copy number variations of SHANK3 and related sensory profiles in Egyptian children with autism spectrum disorder. Res. Autism Spectr. Disord. 75, 101558. 10.1016/j.rasd.2020.101558
Meguid N. A. Gebril O. H. Khalil R. O. (2015). A study of blood serotonin and serotonin transporter promoter variant (5-HTTLPR) polymorphism in Egyptian autistic children. Adv. Biomed. Res. 4, 94. 10.4103/2277-9175.156658
Michaelson J. J. Shi Y. Gujral M. Zheng H. Malhotra D. Jin X. et al. (2012). Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151, 1431–1442. 10.1016/j.cell.2012.11.019
Mohamed F. E. B. Zaky E. A. El-Sayed A. B. Elhossieny R. M. Zahra S. S. Salah Eldin W. et al. (2015). Assessment of hair aluminum, lead, and mercury in a sample of autistic Egyptian children: environmental risk factors of heavy metals in autism. Behav. Neurol. 2015, 545674. 10.1155/2015/545674
Monaco A. P. Bailey A. J. (2001). The search for susceptibility genes. Lancet 358, S3. 10.1016/S0140-6736(01)07016-7
Moonesinghe R. Yang Q. Khoury M. J. (2008). Sample size requirements to detect the effect of a group of genetic variants in case-control studies. Emerg. Themes Epidemiol. 5, 24. 10.1186/1742-7622-5-24
Mostafa G. A. ElGebaly H. H. Shehab A. A. S. Mohamed M. A. E. H. (2022). Up-regulated serum levels of TAM receptor tyrosine kinases in a group of Egyptian autistic children. J. Neuroimmunol. 364, 577811. 10.1016/j.jneuroim.2022.577811
Mostafa G. A. Shehab A. A. (2010). The link of C4B null allele to autism and to a family history of autoimmunity in Egyptian autistic children. J. Neuroimmunol. 223, 115–119. 10.1016/j.jneuroim.2010.03.025
Mostafa G. A. Shehab A. A. Al-Ayadhi L. Y. (2013). The link between some alleles on human leukocyte antigen system and autism in children. J. Neuroimmunol. 255, 70–74. 10.1016/j.jneuroim.2012.10.002
Muratore C. R. Hodgson N. W. Trivedi M. S. Abdolmaleky H. M. Persico A. M. Lintas C. et al. (2013). Age-dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism. PLoS ONE 8, e56927. 10.1371/journal.pone.0056927
Na M. Oh G. (2014). Iron-regulated transporter SLC40A1 gene polymorphism and autism: a pilot study.
Nagarajan R. Hogart A. Gwye Y. Martin M. R. LaSalle J. M. (2006). Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 1, e1–e11. 10.4161/epi.1.4.3514
Narita A. Nagai M. Mizuno S. Ogishima S. Tamiya G. Ueki M. et al. (2020). Clustering by phenotype and genome-wide association study in autism. Transl. Psychiatry 10, 290. 10.1038/s41398-020-00951-x
Nascimento P. P. Bossolani-Martins A. L. Rosan D. B. A. Mattos L. C. Brandão-Mattos C. Fett-Conte A. C. (2016). Single nucleotide polymorphisms in the CNTNAP2 gene in Brazilian patients with autistic spectrum disorder. Genet. Mol. Res. 15. 10.4238/gmr.15017422
Neale B. M. Kou Y. Liu L. Ma’ayan A. Samocha K. E. Sabo A. et al. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245. 10.1038/nature11011
Odell D. Maciulis A. Cutler A. Warren L. McMahon W. M. Coon H. et al. (2005). Confirmation of the association of the C4B null allelle in autism. Hum. Immunol. 66, 140–145. 10.1016/j.humimm.2004.11.002
Ögren S. O. Eriksson T. M. Elvander-Tottie E. D’Addario C. Ekström J. C. Svenningsson P. et al. (2008). The role of 5-HT1A receptors in learning and memory. Serot. Cogn. Mech. Appl. 195, 54–77. 10.1016/j.bbr.2008.02.023
Oleari R. Lettieri A. Manzini S. Paganoni A. André V. Grazioli P. et al. (2023). Autism-linked NLGN3 is a key regulator of gonadotropin-releasing hormone deficiency. Dis. Model. Mech. 16, dmm049996. 10.1242/dmm.049996
Omotoso O. E. Teibo J. O. Atiba F. A. Oladimeji T. Adebesin A. O. Babalghith A. O. (2022). Bridging the genomic data gap in Africa: implications for global disease burdens. Glob. Health 18, 103. 10.1186/s12992-022-00898-2
O’Roak B. J. Vives L. Girirajan S. Karakoc E. Krumm N. Coe B. P. et al. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250. 10.1038/nature10989
Oshodi Y. Ojewunmi O. Oshodi T. A. Ijarogbe G. T. Ogun O. C. Aina O. F. et al. (2017). Oxidative stress markers and genetic polymorphisms of glutathione S-transferase T1, M1, and P1 in a subset of children with autism spectrum disorder in Lagos, Nigeria. Niger. J. Clin. P. R. 20, 1161–1167. 10.4103/njcp.njcp_282_16
Pan Y. Chen J. Guo H. Ou J. Peng Y. Liu Q. et al. (2015). Association of genetic variants of GRIN2B with autism. Sci. Rep. 5, 8296. 10.1038/srep08296
Panahi Y. Salasar Moghaddam F. Babaei K. Eftekhar M. Shervin Badv R. Eskandari M. R. et al. (2023). Sexual dimorphism in telomere length in childhood autism. J. Autism Dev. Disord. 53, 2050–2061. 10.1007/s10803-022-05486-2
Parisi M. A. Doherty D. Eckert M. L. Shaw D. W. W. Ozyurek H. Aysun S. et al. (2006). AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J. Med. Genet. 43, 334–339. 10.1136/jmg.2005.036608
Pilorge M. Fassier C. Le Corronc H. Potey A. Bai J. De Gois S. et al. (2016). Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism. Mol. Psychiatry 21, 936–945. 10.1038/mp.2015.139
Polleux F. Lauder J. M. (2004). Toward a developmental neurobiology of autism. Ment. Retard. Dev. Disabil. Res. Rev. 10, 303–317. 10.1002/mrdd.20044
Puts N. A. J. Wodka E. L. Harris A. D. Crocetti D. Tommerdahl M. Mostofsky S. H. et al. (2017). Reduced GABA and altered somatosensory function in children with autism spectrum disorder. Autism Res. 10, 608–619. 10.1002/aur.1691
Radoeva P. D. Coman I. L. Salazar C. A. Gentile K. L. Higgins A. M. Middleton F. A. et al. (2014). Association between autism spectrum disorder in individuals with velocardiofacial (22q11.2 deletion) syndrome and PRODH and COMT genotypes. Psychiatr. Genet. 24, 269–272. 10.1097/YPG.0000000000000062
Rahbar M. H. Samms-Vaughan M. Kim S. Saroukhani S. Bressler J. Hessabi M. et al. (2022). Detoxification role of metabolic glutathione S-transferase (GST) genes in blood lead concentrations of Jamaican children with and without autism spectrum disorder. Genes 13, 975. 10.3390/genes13060975
Reiersen A. M. Todorov A. A. (2011). Association between DRD4 genotype and autistic symptoms in DSM-IV ADHD. J. Can. Acad. Child. Adolesc. Psychiatry J. Acad. Can. Psychiatr. Enfant Adolesc. 20, 15–21.
Reiss J. Cooper D. N. (1990). Application of the polymerase chain reaction to the diagnosis of human genetic disease. Hum. Genet. 85, 1–8. 10.1007/BF00276316
Richardson-Jones J. W. Craige C. P. Guiard B. P. Stephen A. Metzger K. L. Kung H. F. et al. (2010). 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 65, 40–52. 10.1016/j.neuron.2009.12.003
Saad K. Abdallah A.-E. M. Abdel-Rahman A. A. Al-Atram A. A. Abdel-Raheem Y. F. Gad E. F. et al. (2020). Polymorphism of interleukin-1β and interleukin-1 receptor antagonist genes in children with autism spectrum disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 103, 109999. 10.1016/j.pnpbp.2020.109999
Saeliw T. Tangsuwansri C. Thongkorn S. Chonchaiya W. Suphapeetiporn K. Mutirangura A. et al. (2018). Integrated genome-wide Alu methylation and transcriptome profiling analyses reveal novel epigenetic regulatory networks associated with autism spectrum disorder. Mol. Autism 9, 27. 10.1186/s13229-018-0213-9
Said S. Moubarz G. Awadalla H. Sharaf N. Hegazy N. Elsaied A. et al. (2021). Role of glutathione-S-transferase M1 (GSTM1) and T1 (GSTT1) genes on aluminum concentration and oxidative markers among autistic children. Egypt. J. Chem. 64, 0–7601. 10.21608/ejchem.2021.94656.4464
Salari N. Rasoulpoor S. Rasoulpoor S. Shohaimi S. Jafarpour S. Abdoli N. et al. (2022). The global prevalence of autism spectrum disorder: a comprehensive systematic review and meta-analysis. Ital. J. Pediatr. 48, 112. 10.1186/s13052-022-01310-w
Salem A. M. Ismail S. Zarouk W. A. Abdul Baky O. Sayed A. A. Abd El-Hamid S. et al. (2013). Genetic variants of neurotransmitter-related genes and miRNAs in Egyptian autistic patients. ScientificWorldJournal 2013, 670621. 10.1155/2013/670621
Salem S. Ashaat E. (2023). Association of relative telomere length and LINE-1 methylation with autism but not with severity. J. Autism Dev. Disord. 54, 2266–2273. 10.1007/s10803-023-05965-0
Sanders S. J. He X. Willsey A. J. Ercan-Sencicek A. G. Samocha K. E. Cicek A. E. et al. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233. 10.1016/j.neuron.2015.09.016
Sanders S. J. Murtha M. T. Gupta A. R. Murdoch J. D. Raubeson M. J. Willsey A. J. et al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241. 10.1038/nature10945
Santos J. X. Rasga C. Marques A. R. Martiniano H. Asif M. Vilela J. et al. (2022). A role for gene-environment interactions in autism spectrum disorder is supported by variants in genes regulating the effects of exposure to xenobiotics. Front. Neurosci. 16, 862315. 10.3389/fnins.2022.862315
Schaefer G. (2016). Clinical genetic aspects of ASD spectrum disorders. Int. J. Mol. Sci. 17, 180. 10.3390/ijms17020180
Sekita Y. Wagatsuma H. Nakamura K. Ono R. Kagami M. Wakisaka N. et al. (2008). Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat. Genet. 40, 243–248. 10.1038/ng.2007.51
Sen B. Surindro Singh A. Sinha S. Chatterjee A. Ahmed S. Ghosh S. et al. (2010). Family‐based studies indicate association of Engrailed 2 gene with autism in an Indian population. Genes Brain Behav. 9, 248–255. 10.1111/j.1601-183X.2009.00556.x
Sharma J. R. Arieff Z. Gameeldien H. Davids M. Kaur M. van der Merwe L. (2013). Association analysis of two single-nucleotide polymorphisms of the RELN gene with autism in the South African population. Genet. Test. Mol. Biomark. 17, 93–98. 10.1089/gtmb.2012.0212
Shawky R. M. El-baz F. Kamal T. M. Elhossiny R. M. Ahmed M. A. El Nady G. H. (2014). Study of genotype–phenotype correlation of methylene tetrahydrofolate reductase (MTHFR) gene polymorphisms in a sample of Egyptian autistic children. Egypt. J. Med. Hum. Genet. 15, 335–341. 10.1016/j.ejmhg.2014.05.004
Sheikh M. Hamza R. Rashad M. Elhawary N. (2007). The implication of HOXA1 and HOXB1 gene variants in the occurrence and severity of childhood autism in Egypt. Curr. Psychol. 14, 75–88.
Shen L. Feng C. Zhang K. Chen Y. Gao Y. Ke J. et al. (2019). Proteomics study of peripheral blood mononuclear cells (PBMCs) in autistic children. Front. Cell. Neurosci. 13, 105. 10.3389/fncel.2019.00105
Stathopoulos S. Gaujoux R. Lindeque Z. Mahony C. Van Der Colff R. Van Der Westhuizen F. et al. (2020). DNA methylation associated with mitochondrial dysfunction in a South African autism spectrum disorder cohort. Autism Res. 13, 1079–1093. 10.1002/aur.2310
Stathopoulos S. Gaujoux R. O’Ryan C. (2018). Genome-wide DNA methylation patterns in Autism Spectrum Disorder and mitochondrial function. Genetics. 10.1101/310748
Tangsuwansri C. Saeliw T. Thongkorn S. Chonchaiya W. Suphapeetiporn K. Mutirangura A. et al. (2018). Investigation of epigenetic regulatory networks associated with autism spectrum disorder (ASD) by integrated global LINE-1 methylation and gene expression profiling analyses. PLOS ONE 13, e0201071. 10.1371/journal.pone.0201071
The Autism Genome Project ConsortiumSzatmari P. Paterson A. D. Zwaigenbaum L. Roberts W. Brian J. et al. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat. Genet. 39, 319–328. 10.1038/ng1985
Tian Q. Tong P. Chen G. Deng M. Cai T. Tian R. et al. (2023). GLRA2 gene mutations cause high myopia in humans and mice. J. Med. Genet. 60, 193–203. 10.1136/jmedgenet-2022-108425
Tishkoff S. A. Verrelli B. C. (2003). Role of evolutionary history on haplotype block structure in the human genome: implications for disease mapping. Curr. Opin. Genet. Dev. 13, 569–575. 10.1016/j.gde.2003.10.010
Tondera D. Grandemange S. Jourdain A. Karbowski M. Mattenberger Y. Herzig S. et al. (2009). SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28, 1589–1600. 10.1038/emboj.2009.89
Tordjman S. Somogyi E. Coulon N. Kermarrec S. Cohen D. Bronsard G. et al. (2014). Gene × Environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front. Psychiatry 5, 53. 10.3389/fpsyt.2014.00053
Torres A. R. Maciulis A. Stubbs E. G. Cutler A. Odell D. (2002). The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder. Hum. Immunol. 63, 311–316. 10.1016/S0198-8859(02)00374-9
Torres A. R. Westover J. B. Rosenspire A. J. (2012). HLA immune function genes in autism. Autism Res. Treat. 2012, 959073. 10.1155/2012/959073
Torrico B. Fernàndez-Castillo N. Hervás A. Milà M. Salgado M. Rueda I. et al. (2015). Contribution of common and rare variants of the PTCHD1 gene to autism spectrum disorders and intellectual disability. Eur. J. Hum. Genet. 23, 1694–1701. 10.1038/ejhg.2015.37
Toya A. Fukada M. Aoki E. Matsuki T. Ueda M. Eda S. et al. (2023). The distribution of neuroligin4, an autism-related postsynaptic molecule, in the human brain. Mol. Brain 16, 20. 10.1186/s13041-023-00999-y
Tremblay M. W. Jiang Y. H. (2019). DNA methylation and susceptibility to autism spectrum disorder. Annu. Rev. Med. 70, 151–166. 10.1146/annurev-med-120417-091431
Tricco A. C. Lillie E. Zarin W. O’Brien K. K. Colquhoun H. Levac D. et al. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann. Intern. Med. 169, 467–473. 10.7326/M18-0850
Tuncay I. O. DeVries D. Gogate A. Kaur K. Kumar A. Xing C. et al. (2023). The genetics of autism spectrum disorder in an East African familial cohort. Cell Genomics 100322, 100322. 10.1016/j.xgen.2023.100322
Turunen J. A. Rehnström K. Kilpinen H. Kuokkanen M. Kempas E. Ylisaukko‐oja T. (2008). Mitochondrial aspartate/glutamate carrier SLC25A12 gene is associated with autism. Autism Res. 1, 189–192. 10.1002/aur.25
van Heijst B. F. Geurts H. M. (2015). Quality of life in autism across the lifespan: a meta-analysis. Autism 19, 158–167. 10.1177/1362361313517053
Wang G. Ye S. Gao L. Han Y. Guo X. Dong X. et al. (2018). Two single-nucleotide polymorphisms of the RELN gene and symptom-based and developmental deficits among children and adolescents with autistic spectrum disorders in the Tianjin, China. Behav. Brain Res. 350, 1–5. 10.1016/j.bbr.2018.04.048
Wang H. Yin F. Gao J. Fan X. (2019). Association between 5-HTTLPR polymorphism and the risk of autism: a meta-analysis based on case-control studies. Front. Psychiatry 10, 51. 10.3389/fpsyt.2019.00051
Wang K. Zhang H. Ma D. Bucan M. Glessner J. T. Abrahams B. S. et al. (2009). Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459, 528–533. 10.1038/nature07999
Wang L. Jia M. Yue W. Tang F. Qu M. Ruan Y. et al. (2008). Association of the ENGRAILED 2 (EN2) gene with autism in Chinese Han population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 434–438. 10.1002/ajmg.b.30623
Wang L. Li J. Ruan Y. Lu T. Liu C. Jia M. et al. (2013). Sequencing ASMT identifies rare mutations in Chinese han patients with autism. PLoS ONE 8, e53727. 10.1371/journal.pone.0053727
Warrier V. Baron-Cohen S. Chakrabarti B. (2013). Genetic variation in GABRB3 is associated with Asperger syndrome and multiple endophenotypes relevant to autism. Mol. Autism 4, 48. 10.1186/2040-2392-4-48
Wassink T. H. Piven J. Patil S. R. (2001). Chromosomal abnormalities in a clinic sample of individuals with autistic disorder. Psychiatr. Genet. 11, 57–63. 10.1097/00041444-200106000-00001
Wei H. Zhu Y. Wang T. Zhang X. Zhang K. Zhang Z. (2021). Genetic risk factors for autism-spectrum disorders: a systematic review based on systematic reviews and meta-analysis. J. Neural Transm. Vienna Austria 1996 128, 717–734. 10.1007/s00702-021-02360-w
Wen Z. Cheng T.-L. Li G. Sun S.-B. Yu S.-Y. Zhang Y. et al. (2017). Identification of autism-related MECP2 mutations by whole-exome sequencing and functional validation. Mol. Autism 8, 43. 10.1186/s13229-017-0157-5
Wiśniowiecka-Kowalnik B. Nowakowska B. A. (2019). Genetics and epigenetics of autism spectrum disorder—current evidence in the field. J. Appl. Genet. 60, 37–47. 10.1007/s13353-018-00480-w
Witters P. Debbold E. Crivelly K. Vande Kerckhove K. Corthouts K. Debbold B. et al. (2016). Autism in patients with propionic acidemia. Mol. Genet. Metab. 119, 317–321. 10.1016/j.ymgme.2016.10.009
World Health Organization (2013). Meeting report: autism spectrum disorders and other developmental disorders: from raising awareness to building capacity. Geneva, Switzerland: World Health Organization. Available at: https://iris.who.int/handle/10665/103312 (Accessed February 25, 2024).
Wu S. Jia M. Ruan Y. Liu J. Guo Y. Shuang M. et al. (2005). Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese han population. Biol. Psychiatry 58, 74–77. 10.1016/j.biopsych.2005.03.013
Yahya S. Gebril O. L. A. Raouf E. Elhadidy E. (2019). A PRELIMINARY INVESTIGATION OF HTR1A GENE EXPRESSION LEVELS IN AUTISM SPECTRUM DISORDERS. Int. J. Pharm. Pharm. Sci., 1–3. 10.22159/ijpps.2019v11i8.34141
Yang S. Rothman R. E. (2004). PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect. Dis. 4, 337–348. 10.1016/s1473-3099(04)01044-8
Yoo H. J. Cho I. H. Park M. Yang S. Y. Kim S. A. (2012). Family based association of GRIN2A and GRIN2B with Korean autism spectrum disorders. Neurosci. Lett. 512, 89–93. 10.1016/j.neulet.2012.01.061
Yu J. He X. Yao D. Li Z. Li H. Zhao Z. (2011). A sex-specific association of common variants of neuroligin genes (NLGN3 and NLGN4X) with autism spectrum disorders in a Chinese Han cohort. Behav. Brain Funct. 7, 13. 10.1186/1744-9081-7-13
Zeglam A. Alhmadi S. (2020). Novel homozygous variant of TBC1D8 gene in four Libyan siblings with autistic spectrum disorder and intellectual disability without epilepsy. 9.
Zeidan J. Fombonne E. Scorah J. Ibrahim A. Durkin M. S. Saxena S. et al. (2022). Global prevalence of autism: a systematic review update. Autism Res. 15, 778–790. 10.1002/aur.2696
Zhang R. He H. Yuan B. Wu Z. Wang X. Du Y. et al. (2021). An intronic variant of CHD7 identified in autism patients interferes with neuronal differentiation and development. Neurosci. Bull. 37, 1091–1106. 10.1007/s12264-021-00685-w
Zhang Z. Li S. Yu L. Liu J. (2018). Polymorphisms in vitamin D receptor genes in association with childhood autism spectrum disorder. Dis. Markers 2018, 7862892. 10.1155/2018/7862892