Article (Scientific journals)
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
Mersni, Manel; Souissi, Dhekra; Amiri, Adnen et al.
2025In Geosciences, 15 (8)
Peer Reviewed verified by ORBi
 

Files


Full Text
_geosciences-15-00297.pdf
Publisher postprint (28.87 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
landslide susceptibility mapping; GIS; AHP; ANN; histogram method; ROC curve
Abstract :
[en] Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Mersni, Manel;  Faculté des Sciences de Tunis, Unité de Recherche de la Géophysique Appliquée aux Minerais et Matériaux (URGAMM), Université Tunis El Manar, Tunis, Tunisia
Souissi, Dhekra;  Laboratoire des Interactions Plantes, Sols et Environnements LR21ES01, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
Amiri, Adnen;  Faculté des Sciences de Tunis, Unité de Recherche de la Géophysique Appliquée aux Minerais et Matériaux (URGAMM), Université Tunis El Manar, Tunis, Tunisia
Sebei, Abdelaziz;  Laboratoire des Ressources Minérales et Environnement LR01ES06, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
Inoubli, Mohamed;  Faculté des Sciences de Tunis, Unité de Recherche de la Géophysique Appliquée aux Minerais et Matériaux (URGAMM), Université Tunis El Manar, Tunis, Tunisia
Havenith, Hans-Balder  ;  Université de Liège - ULiège > Département de géologie > Géologie de l'environnement
Language :
English
Title :
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
Publication date :
03 August 2025
Journal title :
Geosciences
eISSN :
2076-3263
Publisher :
MDPI, Basel, Switzerland
Volume :
15
Issue :
8
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 03 August 2025

Statistics


Number of views
44 (2 by ULiège)
Number of downloads
77 (1 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi