Article (Périodiques scientifiques)
Automated Class Imbalance Learning via Few-Shot Multi-Objective Bayesian Optimization With Deep Kernel Gaussian Processes
Wang, Zhaoyang; Wang, Shuo; Ernst, Damien et al.
2025In IEEE Access, 13
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Automated_Class_Imbalance_Learning_via_Few-Shot_Multi-Objective_Bayesian_Optimization_With_Deep_Kernel_Gaussian_Processes.pdf
Postprint Éditeur (6.34 MB)
Télécharger

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Class imbalance learning; multi-objective optimization; automated machine learning; meta-learning; Gaussian processes
Résumé :
[en] Combined Algorithm Selection and Hyperparameter Optimization (CASH) to automate the configuration of resampling strategies and classifiers for imbalanced classification tasks. Existing AutoCIL methods focus solely on single-objective optimization. However, real-world applications often involve multiple, conflicting objectives—such as predictive performance and computational cost—that must be jointly optimized. Ignoring such trade-offs limits the adaptability and practicality of current methods. In this work, we propose a novel approach called AutoCIL-FMOBO (AutoCIL via Few-shot Multi-Objective Bayesian Optimization). Specifically, we design meta-learned deep kernel Gaussian process surrogates trained on a meta-dataset constructed from pre-evaluated results obtained by running configurations in the search space on classimbalanced datasets. Then, these surrogate models with prior optimization knowledge are combined with the Expected Hypervolume Improvement (EHVI) acquisition function in a Bayesian optimization framework to efficiently discover Pareto-optimal configurations for the target task, which enables AutoCIL-FMOBO to jointly optimize key components, such as resampling methods, classifiers, and their hyperparameters, under a multi-objective setting. Experimental results on 15 real-world class-imbalanced datasets demonstrate that our approach outperforms baselines in both effectiveness and sample efficiency, while maintaining generalization across tasks and achieving competitive performance under a multi-objective setting.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Wang, Zhaoyang
Wang, Shuo
Ernst, Damien  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart grids
Xiao, Chenguang
Langue du document :
Anglais
Titre :
Automated Class Imbalance Learning via Few-Shot Multi-Objective Bayesian Optimization With Deep Kernel Gaussian Processes
Date de publication/diffusion :
juillet 2025
Titre du périodique :
IEEE Access
ISSN :
2169-3536
Maison d'édition :
Institute of Electrical and Electronics Engineers, Etats-Unis - New Jersey
Volume/Tome :
13
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBi :
depuis le 02 août 2025

Statistiques


Nombre de vues
41 (dont 1 ULiège)
Nombre de téléchargements
27 (dont 0 ULiège)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBi