Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast) - 2025
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
[en] Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by
geographic information systems (GIS) can help mitigate potential losses and enhance
disaster resilience. This study evaluates landslide susceptibility using logistic regression
and frequency ratio models. The analysis is based on a dataset comprising 54 mapped
landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor
variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and
an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived
from multiple data sources, supports the spatial analysis. The landslide inventory was
randomly divided into two subsets: 80% for model calibration and 20% for validation.
After optimization and statistical testing, the selected thematic layers were integrated to
produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is
classified as very highly susceptible. The proportion of the sample (61.2%) in this class had
a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE,
S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model
performance was assessed using the area under the receiver operating characteristic curve
(AUC), demonstrating strong predictive capability. These findings can support informed
land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in making decisions and implementing protective measures.
Schmitz, Serge ; Université de Liège - ULiège > Département de géographie > Service de géographie rurale (Laboratoire pour l'analyse des lieux, des paysages et des campagnes européennes LAPLEC)
Kouadio, Hélène; Hydrogeology Lab, UFR Earth Sciences and Mineral Resources, University of Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
Hubert, Aurelia ; Université de Liège - ULiège > Département de géographie > Géomorphologie et Géologie du Quaternaire
Biémi, Jean; Hydrogeology Lab, UFR Earth Sciences and Mineral Resources, University of Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
Demoulin, Alain ; Université de Liège - ULiège > Département de géographie
Language :
English
Title :
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
Cruden D.M. A simple definition of a landslide Bull. Int. Assoc. Eng. Geol. 1991 43 27 29 10.1007/BF02590167
Petley D.N. Global patterns of loss of life from landslides Geology 2012 40 927 930 10.1130/G33217.1
Ozturk U. Bozzolan E. Holcombe E.A. Shukla R. Pianosi F. Wagener T. How climate change and unplanned urban sprawl bring more landslides Nature 2022 608 262 265 10.1038/d41586-022-02141-9 35941295
Zhang T.Y. Quevedo R.P. Wang H.Y. Fu Q. Luo D. Wang T. de Oliveira G.G. Guasselli L.A. Renno C.D. Improved tree-based machine learning algorithms combining with bagging strategy for landslide susceptibility modeling Arab. J. Geosci. 2022 15 183 10.1007/s12517-022-09488-3
Ye P. Yu B. Chen W. Liu K. Ye L. Rainfall-induced landslide susceptibility mapping using machine learning algorithms and comparison of their performance in hilly area of Fujian Province China Nat. Hazards 2022 113 965 995 10.1007/s11069-022-05332-9
Orhan O. Bilgilioglu S.S. Kaya Z. Ozcan A.K. Bilgilioglu H. Assessing and mapping landslide susceptibility using different machine learning methods Geocarto Int. 2022 37 2795 2820 10.1080/10106049.2020.1837258
Yan F. Zhang Q. Ye S. Ren S. A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model Geomorphology 2019 327 170 187 10.1016/j.geomorph.2018.10.024
Wang X. Ma X. Guo D. Yuan G. Huang Z. Construction and Optimization of Landslide Susceptibility Assessment Model Based on Machine Learning Appl. Sci. 2024 14 6040 10.3390/app14146040
Li Y. Duan W. Decoding vegetation’s role in landslide susceptibility mapping: An integrated review of techniques and future directions Biogeotechnics 2023 2 100056 10.1016/j.bgtech.2023.100056
Zhang W.G. He Y.W. Wang L.Q. Liu S.L. Meng X.Y. Landslide susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing Geol. J. 2023 58 2372 2387 10.1002/gj.4683
Sahin E.K. Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping Geocarto Int. 2022 37 2441 2465 10.1080/10106049.2020.1831623
Achu A.L. Aju C.D. Reghunath R. Spatial modelling of shallow landslide susceptibility:A study from the Southern Western Ghats region of Kerala, India Ann. GIS 2020 26 113 131 10.1080/19475683.2020.1758207
Chen W. Sun Z. Han J. Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models Appl. Sci. 2019 9 171 10.3390/app9010171
Aghdam I.N. Varzandeh M.H.M. Pradhan B. Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran) Environ. Earth Sci. 2016 75 553 10.1007/s12665-015-5233-6
Tien Bui D. Tuan T.A. Klempe H. Pradhan B. Revhaug I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree Landslides 2016 13 361 378 10.1007/s10346-015-0557-6
Ding D. Wu Y. Wu T. Gong C. Landslide susceptibility assessment in Tongguan District Anhui China using information value and certainty factor models Sci. Rep. 2025 15 12275 10.1038/s41598-025-93704-z
Cui K. Lu D. Li W. Comparison of landslide susceptibility mapping based on statistical index, certainty factors, weights of evidence and evidential belief function models Geocarto Int. 2017 32 935 955 10.1080/10106049.2016.1195886
Ayalew L. Yamagishi H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan Geomorphology 2005 65 15 31 10.1016/j.geomorph.2004.06.010
Zhang T. Han L. Chen W. Shahabi H. Hybrid integration approach of entropy with logistic regression and support vector machine for landslide susceptibility modeling Entropy 2018 20 884 10.3390/e20110884
Traore H.K. De Angeli S. Lebaut S. Drogue G. Konan Kouadio E. A spatio-temporal analysis of the risks of flooding and landslides in Greater Abidjan, Ivory Coast, by applying a multi-risk framework Proceedings of the EGU General Assembly Vienna, Austria 14–19 April 2024
Hauhouot C. Analyse du risque pluvial dans les quartiers précaires d’Abidjan. Etude de cas à Attécoubé Géo-Eco-Trop 2008 10 75 82
Marcel B.K. Athanase A.A. Joël K.K. Della André A. Accidents related to the 2014 rains and their socio-economic consequences in the city of Abidjan: The case of the municipalities of Abobo and Attécoubé (Côte d’Ivoire) J. Geosci. Environ. Prot. 2021 9 195 208 10.4236/gep.2021.93012
Fraternité Matin Les pluies font six morts à Abidjan Fratern. Matin 2023 17536 9
Recensement Général de la Population et de L’habitat Agence Nationale de la Statistique Abidjan, Côte d’Ivoire 2014
N’dri B.E. Niamke K.H. Bakayoko S. Soro G. Niangoran K.C. N’go Y.A. Dynamique de l’occupation des sols de la commune urbaine d’Attécoubé (Côte D’Ivoire) LARHYSS J. 2016 26 129 147
Kouassi A. Kouassi F. Mangoua J. Savane I. Modèle conceptuel de l’aquifère du Continental Terminal d’Abidjan IAHS Publ. 2014 363 256 262
Sidle R.C. Ochiai H. Landslides: Processes, Prediction and Land Use Water Resources Monograph American Geophysical Union Washington, DC, USA 2006
Dewitte O. Jones A. Spaargaren O. Breuning-Madsen H. Brossard M. Dampha A. Deckers J. Gallali T. Hallett S. Jones R. et al. Harmonisation of the soil map of Africa at the continental scale Geoderma 2013 211–212 138 153 10.1016/j.geoderma.2013.07.007
Jones A. Breuning-Madsen H. Brossard M. Dampha A. Deckers J. Dewitte O. Gallali T. Hallett S. Jones R. Kilasara M. et al. Soil Atlas of Africa European Commission Publications Office of the European Union Gasperich, Luxembourg 2013 176
Kouakou K.E. Moussa H. Kouassi A.M. Goula B.T.A. Savane I. Redefinition of homogeneous climatic zones in Côte d’Ivoire in a context of climate change Int. J. Sci. Eng. Res. 2017 8 453 462
Peel M. Finlayson B. McMahon T. Updated world map of the Köppen-Geiger climate classification Hydrol. Earth Syst. Sci. 2007 11 1633 1644 10.5194/hess-11-1633-2007
Hungr O. Leroueil S. Picarelli L. The Varnes classification of landslide types: An update Landslides 2014 11 167 194 10.1007/s10346-013-0436-y
Sidle R.C. Bogaard T.A. Dynamic earth system and ecological controls of rainfall-initiated landslides Earth-Sci. Rev. 2016 159 275 291 10.1016/j.earscirev.2016.05.013
ESRI ArcGIS Desktop: Release 10.1 Environmental Systems Research Institute Redlands, CA, USA 2015
Chleborad A.F. Baum R.L. Godt J.W. Rainfall Thresholds for Forecasting Landslides in the Seattle, Washington, Area-Exceedance and Probability U.S. Geological Survey Open-File Report 2006–1064 U.S. Geological Survey Reston, VA, USA 2006 31p
Zêzere J.L. Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal) Nat. Hazards Earth Syst. Sci. 2002 2 73 82 10.5194/nhess-2-73-2002
Irigaray C. Chac’on J. Fern’andez T. Methodology for the analysis of landslide determinant factors by means of a GIS: Application to the Colmenar area (Malaga, Spain) Landslides, Proceedings of the Eighth International Conference and Field Trip on Landslides, Granada, Spain, 27–28 September 1996 Balkema Rotterdam, The Netherlands 1996 163 172
Kubwimana D. Ait Brahim L. Nkurunziza P. Dille A. Depicker A. Nahimana L. Abdelouafi A. Dewitte O. Characteristics and Distribution of Landslides in the Populated Hillslopes of Bujumbura, Burundi Geosciences 2021 11 259 10.3390/geosciences11060259
Regmi N.R. Giardino J.R. McDonald E.V. Vitek J.D. A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA Landslides 2014 11 247 262 10.1007/s10346-012-0380-2
Kainthura P. Sharma N. Hybrid machine learning approach for landslide prediction Uttarakhand India Sci. Rep. 2022 12 20 101
Achour Y. Pourghasemi R.H. How do machine learning techniques help in increasing the accuracy of landslide susceptibility maps? Geosci. Front. 2019 11 871 883 10.1016/j.gsf.2019.10.001
Cavazzi S. Corstanje R. Mayr T. Hannam J. Fealy R. Are fine resolution digital elevation models always the best choice in digital soil mapping? Geoderma 2013 195–196 111 121 10.1016/j.geoderma.2012.11.020
Youssef A.M. Pourghasemi H.R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region Saudi Arab. Geosci Front. 2021 12 639 655 10.1016/j.gsf.2020.05.010
Saha A.K. Gupta R.P. Sarkar I. Arora M.K. Csaplovics E. An approach for GIS-based statistical landslide susceptibility zonation- with a case study in the Himalayas Landslides 2005 2 61 69 10.1007/s10346-004-0039-8
Ercanoglu M. Gokceoglu C. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey) Eng. Geol. 2004 75 229 250 10.1016/j.enggeo.2004.06.001
Mohammad A. The Effect of Slope Aspect on Soil and Vegetation Characteristics in Southern West Bank Bethlehem Univ. J. 2008 27 9 25
Glade T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand Catena 2003 51 297 314 10.1016/S0341-8162(02)00170-4
Kalantar B. Pradhan B. Amir Naghibi S. Motevalli A. Mansor S. Assessment of the effects of training data selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN) Geomat. Nat. Hazards Risk 2018 2 49 69 10.1080/19475705.2017.1407368
Nanda A.M. Lone F.A. Ahmed P. Prediction of rainfall-induced landslide using machine learning models along highway Bandipora to Gurez road, India Nat. Hazards 2024 120 6169 6197 10.1007/s11069-024-06405-7
Lee S. Pradhan B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models Landslides 2007 4 33 41 10.1007/s10346-006-0047-y
Hosmer D.W. Lemeshow S. Applied Logistic Regression 2nd ed. John Wiley and Sons Hoboken, NJ, USA 2000 375
Akaike H. Information theory and an extension of the maximum likelihood principle Proceedings of the Second International Symposium on Information Theory Akademiai Kiado Budapest, Hungary 1973 267 281
Usta Z. Akıncı H. Akin T.A. Comparison of tree-based ensemble learning algorithms for landslide susceptibility mapping in Murgul (Artvin), Turkey Earth Sci. Inform. 2024 17 1459 1481 10.1007/s12145-024-01259-w
Günnemann N. Pfeffer J. Cost matters: A new example-dependent cost-sensitive logistic regression model Pacific-Asia Conference on Knowledge Discovery and Data Mining Springer Cham, Switzerland 2017 210 222
Alcântara E. Baião C.F. Guimarães Y.C. Marengo A.J. Mantovani J.R. Climate change-induced shifts in landslide susceptibility in São Sebastião (southeastern Brazil) Nat. Hazards Res. 2024 5 321 334 10.1016/j.nhres.2024.11.005
Pham B.T. Phong T.V. Nguyen-Thoi T. Trinh P.T. Prakash I. GIS-based ensemble soft computing models for landslide susceptibility mapping Adv. Space Res. 2020 66 1303 1320 10.1016/j.asr.2020.05.016
Wang Y. Sun D. Wen H. Zhang H. Zhang F. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China) Int. J. Environ. Res. Public Health 2020 17 4206 10.3390/ijerph17124206
Trinh T. Luu B.T. Le T.T.H. Nguyen D.H. Tran T.V. Nguyen T.H.V. Nguyen K.Q. Nguyen L.T. A comparative analysis of weight-based machine learning methods for landslide susceptibility mapping in Ha Giang area Big Earth Data 2023 7 1005 1034 10.1080/20964471.2022.2043520
Quevedo R.P. Velastegui-Montoya A. Montalvan-Burbano N. Morante-Carballo F. Korup O. Renno C.D. Land use and land cover as a conditioning factor in landslide susceptibility: A literature review Landslides 2023 20 967 982 10.1007/s10346-022-02020-4
Cohen D. Schwarz M. Tree-root control of shallow landslides Earth Surf. Dyn. 2017 5 451 477 10.5194/esurf-5-451-2017
Chen C. Shen Z. Weng Y. You S. Lin J. Li S. Wang K. Modeling Landslide Susceptibility in Forest-Covered Areas in Lin’an, China, Using Logistical Regression, a Decision Tree, and Random Forests Remote Sens. 2023 15 4378 10.3390/rs15184378
Jacobs L. Dewitte O. Poesen J. Maes J. Mertens K. Sekajugo J. Kervyn M. Landslide characteristics and spatial distribution in the Rwenzori Mountains, Uganda J. Afr. Earth Sci. 2016 134 917 930 10.1016/j.jafrearsci.2016.05.013
Liu Q. Norbu N. Modeling of landslides susceptibility prediction using deep belief networks with optimized learning rate control Geocarto Int. 2024 39 2322060 10.1080/10106049.2024.2322060
Ali N. Chen J. Fu X. Ali R. Hussain M.A. Daud H. Hussain J. Altalbe A. Integrating Machine Learning Ensembles for Landslide Susceptibility Mapping in Northern Pakistan Remote Sens. 2024 6 988 10.3390/rs16060988
Van Den Eeckhaut M. Vanwalleghem T. Poesen J. Govers G. Verstraeten G. Vandekerckhove L. Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium) Geomorphology 2006 76 392 410 10.1016/j.geomorph.2005.12.003
MacAfee E. Lohr A.J. Jong E. Leveraging local knowledge for landslide disaster risk reduction in an urban informal settlement in Manado, Indonesia Int. J. Disaster Risk Reduct. 2024 111 104710 10.1016/j.ijdrr.2024.104710
Tsangaratos P. Ilia I. Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece Landslides 2016 13 305 320 10.1007/s10346-015-0565-6