[en] [en] BACKGROUND AND OBJECTIVE: Recruitment maneuvers with subsequent positive-end-expiratory-pressure (PEEP) have proven effective in recruiting lung volume and preventing alveoli collapse. However, determining a safe, effective, and patient-specific PEEP is not standardized, and this more optimal PEEP level evolves with patient condition, requiring personalised monitoring and care approaches to maintain optimal ventilation settings.
METHODS: This research examines 3 physiologically relevant basis function sets (exponential, parabolic, cumulative) to enable better prediction of elastance evolution for a virtual patient or digital twin model of MV lung mechanics, including novel elements to model and predict distension elastance. Prediction accuracy and robustness are validated against recruitment maneuver data from 18 volume-controlled ventilation (VCV) patients at 7 different baseline PEEP levels (0 to 12 cmH2O) and 14 pressure-controlled ventilation (PCV) patients at 4 different baseline PEEP levels (6 to 12 cmH2O), yielding 623 and 294 prediction cases, respectively. Predictions were made up to 12 cmH2O of added PEEP ahead, covering 6 × 2 cmH2O PEEP steps.
RESULTS: The 3 basis function sets yield median absolute peak inspiratory pressure (PIP) prediction error of 1.63 cmH2O for VCV patients, and median peak inspiratory volume (PIV) prediction error of 0.028 L for PCV patients. The exponential basis function set yields a better trade-off of overall performance across VCV and PCV prediction than parabolic and cumulative basis function sets from other studies. Comparing predicted and clinically measured distension prediction in VCV demonstrated consistent, robust high accuracy with R2 = 0.90-0.95.
CONCLUSIONS: The results demonstrate recruitment mechanics are best captured by an exponential basis function across different mechanical ventilation modes, matching physiological expectations, and accurately capture, for the first time, distension mechanics to within 5-10 % accuracy. Enabling the risk of lung injury to be predicted before changing ventilator settings. The overall outcomes significantly extend and more fully validate this digital twin or virtual mechanical ventilation patient model.
Disciplines :
Mechanical engineering Cardiovascular & respiratory systems
Author, co-author :
Caljé-van der Klei, Trudy ; Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand. Electronic address: trudy.calje-vanderklei@pg.canterbury.ac.nz
Sun, Qianhui ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Chase, J Geoffrey ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles ; Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
Zhou, Cong; Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
Tawhai, Merryn H; Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
Knopp, Jennifer L; Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
Möller, Knut; Institute for Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
Heines, Serge J ; Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, Netherlands
Bergmans, Dennis C ; Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, Netherlands
Shaw, Geoffrey M; Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
Language :
English
Title :
Pulmonary response prediction through personalized basis functions in a virtual patient model.
This work was supported by the NZ Tertiary Education Commission (TEC) fund MedTech CoRE (Centre of Research Excellence; #3705718 ), the NZ National Science Challenge 7 , Science for Technology and Innovation ( 2019-S3-CRS ) and the Nature Science Foundation of China (NSFC) Grant No 12102362 . The authors also acknowledge support from the EU H2020 R&I programme ( MSCA-RISE-2019 call) under grant agreement #872488 — DCPM, and a University of Canterbury Doctoral Scholarship.
Amato, M.B.P., Barbas, C.S.V., Medeiros, D.M., Magaldi, R.B., Schettino, G.P., Lorenzi-Filho, G., Kairalla, R.A., Deheinzelin, D., Munoz, C., Oliveira, R., Takagaki, T.Y., Carvalho, C.R.R., Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N. Engl. J. Med. 338:6 (1998), 347–354.
Severgnini, P., Selmo, G., Lanza, C., Chiesa, A., Frigerio, A., Bacuzzi, A., Dionigi, G., Novario, R., Gregoretti, C., de Abreu, M.G., Schultz, M.J., Jaber, S., Futier, E., Chiaranda, M., Pelosi, P., Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology: J. Am. Soc. Anesthesiol. 118:6 (2013), 1307–1321.
Needham, D.M., Colantuoni, E., Mendez-Tellez, P.A., Dinglas, V.D., Sevransky, J.E., Dennison Himmelfarb, C.R., Desai, S.V., Shanholtz, C., Brower, R.G., Pronovost, P.J., Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study. BMJ: Br. Med. J., 344, 2012, e2124.
Paternot, A., Repessé, X., Vieillard-Baron, A., Rationale and description of right ventricle-protective ventilation in ARDS. Respir. Care 61:10 (2016), 1391–1396.
Marret, E., Cinotti, R., Berard, L., Piriou, V., Jobard, J., Barrucand, B., Radu, D., Jaber, S., Bonnet, F., group, a.t.P.s. ‘Protective ventilation during anaesthesia reduces major postoperative complications after lung cancer surgery: a double-blind randomised controlled trial. Eur. J. Anaesthesiol. | EJA 35:10 (2018), 727–735.
Meade, M.O., Cook, D.J., Guyatt, G.H., Slutsky, A.S., Arabi, Y.M., Cooper, D.J., Davies, A.R., Hand, L.E., Zhou, Q., Thabane, L., Austin, P., Lapinsky, S., Baxter, A., Russell, J., Skrobik, Y., Ronco, J.J., Stewart, T.E., Lung Open Ventilation Study Investigators, f.t. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:6 (2008), 637–645.
Amato, M.B.P., Meade, M.O., Slutsky, A.S., Brochard, L., Costa, E.L.V., Schoenfeld, D.A., Stewart, T.E., Briel, M., Talmor, D., Mercat, A., Richard, J.-C.M., Carvalho, C.R.R., Brower, R.G., Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. 372:8 (2015), 747–755.
Nakahira, J., Nakano, S., Minami, T., ‘Evaluation of alveolar recruitment maneuver on respiratory resistance during general anesthesia: a prospective observational study. BMC Anesthesiol., 20(1), 2020, 264.
Fodor, G.H., Bayat, S., Albu, G., Lin, N., Baudat, A., Danis, J., Peták, F., Habre, W., Variable ventilation is equally effective as conventional pressure control ventilation for optimizing lung function in a rabbit model of ARDS. Front. Physiol., 10(803), 2019.
O. Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial Cavalcanti, I., Suzumura, A.B., Laranjeira, É.A., Paisani, L.N., Damiani, D.d.M., Guimarães, L.P., Romano, H.P., Regenga, E.R., Taniguchi, M.d.M., Teixeira, L.N.T., Pinheiro de Oliveira, C., Machado, R., Diaz-Quijano, F.R., Filho, F.A., Maia, M.S.d.A., Caser, I.S., Filho, E.B., Borges, W.d.O., Martins, M.d.C., Matsui, P.d.A., Ospina-Tascón, M., Giancursi, G.A., Giraldo-Ramirez, T.S., Vieira, N.D., Assef, S.R.R., Hasan, M.d.G.P.d.L., Szczeklik, M.S., Rios, W., Amato, F., Berwanger, M.B.P., Ribeiro de Carvalho, C.R., Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: A Randomized Clinical Trial. JAMA, 318:14 (2017), 1335–1345.
Pirrone, M., Fisher, D., Chipman, D., Imber, D.A.E., Corona, J., Mietto, C., Kacmarek, R.M., Berra, L., Recruitment maneuvers and positive end-expiratory pressure titration in morbidly obese ICU patients. Crit. Care Med. 44:2 (2016), 300–307.
Zilberberg, M.D., Epstein, S.K., Acute lung injury in the medical ICU. Comorbid conditions, age, etiology, and hospital outcome. Am. J. Respir. Crit. Care Med. 157:4 (1998), 1159–1164.
Dreyfuss, D., Saumon, G., Ventilator-induced lung injury. Lessons from experimental studies. Am. J. Respir. Crit. Care Med. 157:1 (1998), 294–323.
Ranieri, V.M., Suter, P.M., Tortorella, C., De Tullio, R., Dayer, J.M., Brienza, A., Bruno, F., Slutsky, A.S., Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282 (1999), 54–61.
Adams, A.B., Simonson, D.A., Dries, D.J., Ventilatory-induced lung injury. Respir. Care Clin. N. Am. 9:3 (2003), 343–362.
B.Gajic, O., Dara, S.I., Mendez, J.L., Adesanya, A.O., Festic, E., Caples, S.M., Rana, R., Sauver, St., Lymp, J.L., Afessa, J.F., Hubmayr, R.D., Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit. Care Med. 32:9 (2004), 1817–1824.
Moloney, E.D., Griffiths, M.J.D., Protective ventilation of patients with acute respiratory distress syndrome. Br. J. Anaesth. 92:2 (2004), 261–270.
Parsons, P.E., Eisner, M.D., Thompson, B.T., Matthay, M.A., Ancukiewicz, M., Bernard, G.R., Wheeler, A.P., Network, t.N.A.R.D.S.C.T. ‘Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit. Care Med. 33:1 (2005), 1–6.
Lobo, B., Hermosa, C., Abella, A., Gordo, F., Electrical impedance tomography. Ann. Transl. Med., 6(2), 2018, 26.
Morton, S.E., Knopp, J.L., Chase, J.G., Möller, K., Docherty, P., Shaw, G.M., Tawhai, M., Predictive virtual patient modelling of mechanical ventilation: impact of recruitment function. Ann. Biomed. Eng. 47:7 (2019), 1626–1641.
Laviola, M., Bates, D.G., Hardman, J.G., Mathematical and computational modelling in critical illness. Eur. Respir. Pulm. Dis., 5(1), 2019.
Chase, J.G., Preiser, J.-C., Dickson, J.L., Pironet, A., Chiew, Y.S., Pretty, C.G., Shaw, G.M., Benyo, B., Moeller, K., Safaei, S., Tawhai, M., Hunter, P., Desaive, T., Next-generation, personalised, model-based critical care medicine: a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them. Biomed. Eng. Online, 17(1), 2018, 24.
Geoffrey Chase, J.; Zhou, C.; Knopp, J.L.; Moeller, K.; Benyo, B.; Xe, Z.S.; Desaive, T.; Wong, J.H.K.; Malinen, S.; Naswall, K.; Shaw, G.M.; Lambermont, B.; Chiew, Y.S., ‘Digital twins and automation of care in the intensive care unit’ (2023).
Kim, K.T., Morton, S., Howe, S., Chiew, Y.S., Knopp, J.L., Docherty, P., Pretty, C., Desaive, T., Benyo, B., Szlavecz, A., Model-based PEEP titration versus standard practice in mechanical ventilation: a randomised controlled trial. Trials, 21(1), 2020, 130.
Chiew, Y.S., Chase, J.G., Shaw, G.M., Sundaresan, A., Desaive, T., ‘Model-based PEEP optimisation in mechanical ventilation. Biomed. Eng. Online, 10(1), 2011, 111.
Hickling, K.G., The pressure–volume curve is greatly modified by recruitment. Am. J. Respir. Crit. Care Med. 158:1 (1998), 194–202.
Briel, M., Meade, M., Mercat, A., Brower, R.G., Talmor, D., Walter, S.D., Slutsky, A.S., Pullenayegum, E., Zhou, Q., Cook, D., Brochard, L., Richard, J.-C.M., Lamontagne, F., Bhatnagar, N., Stewart, T.E., Guyatt, G., Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303:9 (2010), 865–873.
Sundaresan, A., Chase, J.G., Shaw, G.M., Chiew, Y.S., Desaive, T., Model-based optimal PEEP in mechanically ventilated ARDS patients in the Intensive Care Unit. Biomed. Eng. Online, 10(1), 2011, 64.
Sundaresan, A., Chase, J.G., Positive end expiratory pressure in patients with acute respiratory distress syndrome – The past, present and future’. Biomed. Signal Process. Control 7:2 (2012), 93–103.
Massa, C.B., Allen, G.B., Bates, J.H.T., Modeling the dynamics of recruitment and derecruitment in mice with acute lung injury. J. Appl. Physiol. 105:6 (2008), 1813–1821.
Steimle, K.L., Mogensen, M.L., Karbing, D.S., Bernardino de la Serna, J., Andreassen, S., A model of ventilation of the healthy human lung. Comput. Methods Programs Biomed. 101:2 (2011), 144–155.
Chiew, Y.S., Chase, J.G., Lambermont, B., Janssen, N., Schranz, C., Moeller, K., Shaw, G.M., Desaive, T., Physiological relevance and performance of a minimal lung model – an experimental study in healthy and acute respiratory distress syndrome model piglets. BMC Pulm. Med., 12(1), 2012, 59.
Morton, S.E., Knopp, J.L., Chase, J.G., Docherty, P., Howe, S.L., Möller, K., Shaw, G.M., Tawhai, M., Optimising mechanical ventilation through model-based methods and automation. Annu. Rev. Control 48 (2019), 369–382.
Morton, S.E., Knopp, J.L., Tawhai, M.H., Docherty, P., Heines, S.J., Bergmans, D.C., Möller, K., Chase, J.G., Prediction of lung mechanics throughout recruitment maneuvers in pressure-controlled ventilation. Comput. Methods Programs Biomed., 197, 2020, 105696.
Zhou, C., Chase, J.G., Knopp, J., Sun, Q., Tawhai, M., Möller, K., Heines, S.J., Bergmans, D.C., Shaw, G.M., Desaive, T., ‘Virtual patients for mechanical ventilation in the intensive care unit. Comput. Methods Programs Biomed., 199, 2021, 105912.
Singer, B.D., Corbridge, T.C., Pressure modes of invasive mechanical ventilation. South Med. J. 104:10 (2011), 701–709.
Ashworth, L., Norisue, Y., Koster, M., Anderson, J., Takada, J., Ebisu, H., Clinical management of pressure control ventilation: an algorithmic method of patient ventilatory management to address “forgotten but important variables. J. Crit. Care 43 (2018), 169–182.
Sen, O., Bakan, M., Umutoglu, T., Aydın, N., Toptas, M., Akkoc, I., Effects of pressure-controlled and volume-controlled ventilation on respiratory mechanics and systemic stress response during prone position. Springerplus, 1(5), 2016, 1761.
Cadi, P., Guenoun, T., Journois, D., Chevallier, J.-M., Diehl, J.-L., Safran, D., Pressure-controlled ventilation improves oxygenation during laparoscopic obesity surgery compared with volume-controlled ventilation. BJA: Br. J. Anaesth. 100:5 (2008), 709–716.
Nichols, D., Haranath, S., Pressure control ventilation. Crit. Care Clin. 23:2 (2007), 183–199.
Campbell, R.S., Davis, B.R., Pressure-controlled versus volume-controlled ventilation: does it matter?. Respir. Care 47:4 (2002), 416–424 discussion 424-416.
Ball, L., Dameri, M., Pelosi, P., Modes of mechanical ventilation for the operating room. Best Pract. Res. Clin. Anaesth. 29:3 (2015), 285–299.
Tonetti, T., Vasques, F., Rapetti, F., Maiolo, G., Collino, F., Romitti, F., Camporota, L., Cressoni, M., Cadringher, P., Quintel, M., Gattinoni, L., Driving pressure and mechanical power: new targets for VILI prevention. Ann. Transl. Med., 5(14), 2017, 286.
Garnero, A.J., Abbona, H., Gordo-Vidal, F., Hermosa-Gelbard, C., Pressure versus volume controlled modes in invasive mechanical ventilation. Med. Intensiva (Eng. Ed.) 37:4 (2013), 292–298.
Keszler, M., Volume-targeted ventilation. Early Hum. Dev. 82:12 (2006), 811–818.
Rittayamai, N., Katsios, C.M., Beloncle, F., Friedrich, J.O., Mancebo, J., Brochard, L., Pressure-Controlled vs Volume-Controlled ventilation in acute respiratory failure: a physiology-based narrative and systematic review. Chest 148:2 (2015), 340–355.
Hamlington, K.L., Smith, B.J., Allen, G.B., Bates, J.H., Predicting ventilator-induced lung injury using a lung injury cost function. J. Appl. Physiol. (Bethesda, Md.: 1985) 121:1 (2016), 106–114.
Laufer, B., Docherty, P.D., Knörzer, A., Chiew, Y.S., Langdon, R., Möller, K., Chase, J.G., Performance of variations of the dynamic elastance model in lung mechanics. Control Eng. Pract. 58 (2017), 262–267.
Kanae, S.; Muramatsu, K.; Yang, Z.J.; and Wada, K., ‘Modeling of respiration and estimation of pulmonary elastance’, in: ‘Book Modeling of Respiration and Estimation of Pulmonary Elastance’ 641(2004)649–652.
Morton, S.E., Dickson, J., Chase, J.G., Docherty, P., Desaive, T., Howe, S.L., Shaw, G.M., Tawhai, M., A virtual patient model for mechanical ventilation. Comput. Methods Programs Biomed. 165 (2018), 77–87.
Langdon, R., Docherty, P.D., Chiew, Y.S., Chase, J.G., Extrapolation of a non-linear autoregressive model of pulmonary mechanics. Math. Biosci. 284 (2017), 32–39.
Langdon, R., Docherty, P.D., Mansell, E.J., Chase, J.G., Accurate and precise prediction of insulin sensitivity variance in critically ill patients. Biomed. Signal Process. Control 39 (2018), 327–335.
Stewart, K.W., Pretty, C.G., Shaw, G.M., Chase, J.G., Creating smooth SI. B-spline basis function representations of insulin sensitivity. Biomed. Signal Process. Control 44 (2018), 270–278.
Reymann, M.P., Dorschky, E., Groh, B.H., Martindale, C., Blank, P., Eskofier, B.M., Blood glucose level prediction based on support vector regression using mobile platforms. in Editor (Ed.)^(Eds.) Book Blood Glucose Level Prediction Based On Support Vector Regression Using Mobile Platforms, 2016, IEEE, 2990–2993 edn.
Zhou, C., Chase, J.G., Sun, Q., Knopp, J., A nonlinear hysteretic model for automated prediction of lung mechanics during mechanical ventilation. IFAC-PapersOnLine, 53, 2020, 817–822.
Sun, Q.; Chase, J.G.; Zhou, C.; Tawhai, M.H.; Knopp, J.L.; Möller, K.; Heines, S.J.; Bergmans, D.C.; and Shaw, G.M., ‘Simplified basis-function-based virtual patient model in lung mechanics prediction under mechanical ventilation’, Biological and Medical Systems - 11th BMS 2021, In press.
Dreyfuss, D., Saumon, G., Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary Edema following mechanical ventilation. Am. Rev. Respir. Dis. 148:5 (1993), 1194–1203.
rMarini, J.J., Crooke, P.S., Truwit, J.D., Determinants and limits of pressure-preset ventilation: a mathematical model of pressure control. J. Appl. Physiol. 67:3 (1989), 1081–1092.
Adams, A.B., Cakar, N., Marini, J.J., Static and dynamic pressure-volume curves reflect different aspects of respiratory system mechanics in experimental acute respiratory distress syndrome. Respir. Care 46:7 (2001), 686–693.
Tang, M., Wang, W., Wheeler, J., McCormick, M., Dong, X., ‘The number of electrodes and basis functions in EIT image reconstruction. Physiol. Meas., 23(1), 2002, 129.
Stewart, K.W., Pretty, C.G., Shaw, G.M., Chase, J.G., Interpretation of retrospective BG measurements. J. Diabetes Sci. Technol. 12:5 (2018), 967–975.
Langdon, R., Docherty, P.D., Schranz, C., Chase, J.G., Prediction of high airway pressure using a non-linear autoregressive model of pulmonary mechanics. Biomed. Eng. Online, 16(1), 2017, 126.
Sun, Q., Zhou, C., Chase, J.G., Parameter updating of a patient-specific lung mechanics model for optimising mechanical ventilation. Biomed. Signal Process. Control, 60, 2020, 102003.
Sun, Q., Chase, J.G., Zhou, C., Tawhai, M.H., Knopp, J.L., Möller, K., Shaw, G.M., Over-distension prediction via hysteresis loop analysis and patient-specific basis functions in a virtual patient model. Comput. Biol. Med., 141, 2021, 105022.
Sun, Q., Chase, J.G., Zhou, C., Tawhai, M.H., Knopp, J.L., Möller, K., Heines, S.J., Bergmans, D.C., Shaw, G.M., Prediction and estimation of pulmonary response and elastance evolution for volume-controlled and pressure-controlled ventilation. Biomed. Signal Process. Control, 72, 2022, 103367.
Sun, Q., Chase, J.G., Zhou, C., Tawhai, M.H., Knopp, J.L., Möller, K., Shaw, G.M., Over-distension prediction via hysteresis loop analysis and patient-specific basis functions in a virtual patient model. Comput. Biol. Med., 141, 2022, 105022.
Goligher, E.C., Costa, E.L.V., Yarnell, C.J., Brochard, L.J., Stewart, T.E., Tomlinson, G., Brower, R.G., Slutsky, A.S., Amato, M.P.B., Effect of lowering Vt on mortality in acute respiratory distress syndrome varies with respiratory system elastance. Am. J. Respir. Crit. Care Med. 203:11 (2021), 1378–1385.
Stahl, C.A., Möller, K., Schumann, S., Kuhlen, R., Sydow, M., Putensen, C., Guttmann, J., Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit. Care Med. 34:8 (2006), 2090–2098.
Sasidhar, M., Chatburn, R.L., Tidal volume variability during airway pressure release ventilation: case summary and theoretical analysis. Respir. Care 57:8 (2012), 1325–1333.
Halter, J.M., Steinberg, J.M., Gatto, L.A., DiRocco, J.D., Pavone, L.A., Schiller, H.J., Albert, S., Lee, H.-M., Carney, D., Nieman, G.F., Effect of positive end-expiratory pressure and tidal volume on lung injury induced by alveolar instability. Crit. Care, 11(1), 2007, R20.
Sundaresan, A., Chase, J.G., Positive end expiratory pressure in patients with acute respiratory distress syndrome–The past, present and future’. Biomed. Signal Process. Control 7:2 (2012), 93–103.