[en] Stable isotope ratio measurements provide valuable insights into a broad range of natural processes, from planetary atmospheres and climate to interstellar chemistry. Nitrogen, which has two stable isotopes, exhibits varying isotope ratios across the solar system. To model these observations, the isotope fraction as a function of energy is essential. At the Advanced Light Source (ALS), we measured the photodissociation of molecular nitrogen (N2) with vacuum UV photons where a single photon is sufficiently energetic to dissociate the strong bond. The nitrogen atoms produced are scavenged with H2 to form ammonia, whose isotopic makeup is determined. Blending the experiments with dynamical computations that include the shielding of light, we examine the isotopic composition and electronic atomic states produced. The measured photodissociation of N2 at a natural isotopic composition with a frequency broad light beam exceptionally strongly favors the formation of the heavier nitrogen isotope, 15N. Computations concur and suggest that the maximum in the quantum yield reflects significant variations in the specific electronic quantum states of the product N atoms that have quite different reactivities. Our quantum computations show that at similar energies, photodissociation of 14N14N and 15N14N can lead to different product channels. The computed dynamics include extensive state-selective spin-orbit and nonadiabatic couplings affecting the light absorption and dissociation pathways that proceed via the triplet manifold of states. Our results are relevant for future exploration missions, both in situ and sample-return and for other molecules such as O2 and CO.
Disciplines :
Chemistry
Author, co-author :
Komarova, Ksenia; The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Gelfand, Natalia A; The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Remacle, Françoise ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique ; The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Levine, Raphael D ; The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel ; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 ; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
Chakraborty, Subrata; Department of Chemistry and Biochemistry, University of California, La Jolla, CA 92093
Jackson, Teresa L; Department of Chemistry and Biochemistry, University of California, La Jolla, CA 92093
Kostko, Oleg; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Thiemens, Mark H ; Department of Chemistry and Biochemistry, University of California, La Jolla, CA 92093
Language :
English
Title :
Photoselective isotope fractionation dynamics of N2 with cosmo and atmospheric chemistry perspectives.
Publication date :
22 July 2025
Journal title :
Proceedings of the National Academy of Sciences of the United States of America
M. H. Thiemens, M. Lin, Use of isotope effects to understand the present and past of the atmosphere and climate and track the origin of life. Angew. Chem. Int. Ed. 58, 6826–6844 (2019).
M. H. Thiemens, M. Lin, “Discoveries of mass independent isotope effects in the solar system: Past, present and future” in Triple Oxygen Isotope Geochemistry, I. N. Bindeman, A. Pack, Eds. (De Gruyter, Berlin, Boston, 2021), vol. 86, pp. 35–95.
M. H. Thiemens, R. N. Clayton, Ancient solar wind in lunar microbreccias. Earth Planet. Sci. Lett. 47, 34–42 (1980).
C. A. Prombo, R. N. Clayton, A striking nitrogen isotope anomaly in the Bencubbin and Weatherford meteorites. Science 230, 935–937 (1985).
A. N. Heays, A. D. Bosman, E. F. van Dishoeck, Photodissociation and photoionisation of atoms and molecules of astrophysical interest. Astron. Astrophys. 602, A105 (2017).
A. N. Heays et al., Isotope selective photodissociation of N2 by the interstellar radiation field and cosmic rays. A&A 562, A61 (2014).
D. P. Glavin et al., “Chapter 3—The origin and evolution of organic matter in carbonaceous chondrites and links to their parent bodies” in Primitive Meteorites and Asteroids, N. Abreu, Ed. (Elsevier, 2018), pp. 205–271, 10.1016/B978-0-12-813325-5.00003-3.
D. S. Grewal, Origin of nitrogen isotopic variations in the rocky bodies of the solar system. Astrophys. J. 937, 123 (2022).
B. Marty et al., Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441, 91–102 (2016).
B. Marty, K. Hashizume, M. Chaussidon, R. Wieler, Nitrogen isotopes on the Moon: Archives of the solar and planetary contributions to the inner Solar System. Space Sci. Rev. 106, 175–196 (2003).
M. H. Thiemens, J. E. Heidenreich, The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications. Science 219, 1073–1075 (1983).
R. N. Clayton, Self-shielding in the solar nebula. Nature 415, 860–861 (2002).
J. R. Lyons, E. D. Young, CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435, 317–320 (2005).
S. Chakraborty, M. Ahmed, T. L. Jackson, M. H. Thiemens, Experimental test of self-shielding in vacuum ultraviolet photodissociation of CO. Science 321, 1328–1331 (2008).
S. Chakraborty, B. Rude, M. Ahmed, M. H. Thiemens, Carbon and oxygen isotopic fractionation in the products of low-temperature VUV photodissociation of carbon monoxide. Chem. Phys. 514, 78–86 (2018).
H. C. Urey, The thermodynamic properties of isotopic substances. J. Chem. Soc. (Resumed) 562–581 (1947), 10.1039/JR9470000562.
J. Bigeleisen, M. G. Mayer, Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15, 261–267 (1947).
A. O. Nier, A mass spectrometer for isotope and gas analysis. Rev. Sci. Instrum. 18, 398–411 (1947).
J. Farquhar, H. Bao, M. Thiemens, Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).
G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994).
N. Gelfand, K. Komarova, F. Remacle, R. D. Levine, Nonadiabatic quantum dynamics explores nonmonotonic photodissociation branching of N2 into the N(4S) + N(2D) and N(4S) + N(2P) product channels. Phys. Chem. Chem. Phys. 26, 3274–3284 (2024).
A. N. Heays, J. M. Ajello, A. Aguilar, B. R. Lewis, S. T. Gibson, The high resolution extreme ultraviolet spectrum of N2 by electron impact. ApJS 211, 28 (2014).
A. O. Nier, M. B. McElroy, Y. L. Yung, Isotopic composition of the Martian atmosphere. Science 194, 68–70 (1976).
M. B. McElroy, T. Y. Kong, Y. L. Yung, Photochemistry and evolution of Mars’ atmosphere: A Viking perspective. J. Geophys. Res. 1896–1977, 4379–4388 (1977).
B. Marty et al., Nitrogen isotopes in the recent solar wind from the analysis of Genesis targets: Evidence for large scale isotope heterogeneity in the early solar system. Geochim. Cosmochim. Acta 74, 340–355 (2010).
M.-C. Liang et al., Isotopic composition of stratospheric ozone. J. Geophys. Res. Atmos. 111, D02302 (2006).
M. H. Thiemens, T. Jackson, E. C. Zipf, P. W. Erdman, C. van Egmond, Carbon dioxide and oxygen isotope anomalies in the mesosphere and stratosphere. Science 270, 969–972 (1995).
S. Chakraborty, T. L. Jackson, B. Rude, M. Ahmed, M. H. Thiemens, Nitrogen isotopic fractionations in the low temperature (80 K) vacuum ultraviolet photodissociation of N2. J. Chem. Phys. 145, 114302 (2016).
S. Chakraborty et al., Massive isotopic effect in vacuum UV photodissociation of N-2 and implications for meteorite data. Proc. Natl. Acad. Sci. U.S.A. 111, 14704–14709 (2014).
H. Lefebvre-Brion, B. R. Lewis, Comparison between predissociation mechanisms in two isoelectronic molecules: CO and N2. Mol. Phys. 105, 1625–1630 (2007).
D. Spelsberg, W. Meyer, Dipole-allowed excited states of N2: Potential energy curves, vibrational analysis, and absorption intensities. J. Chem. Phys. 115, 6438–6449 (2001).
M. Hochlaf, H. Ndome, D. Hammoutène, Quintet electronic states of N2. J. Chem. Phys. 132, 104310 (2010).
M. Hochlaf, H. Ndome, D. Hammoutene, M. Vervloet, Valence-rydberg electronic states of N2: Spectroscopy and spin-orbit couplings. J. Phys. B, At. Mol. Opt. Phys. 43, 245101 (2010).
D. A. Little, J. Tennyson, An ab initio study of singlet and triplet Rydberg states of N2. J. Phys. B, At. Mol. Opt. Phys. 46, 145102 (2013).
S. O. Adamson et al., Ab initio calculation of the lowest singlet and triplet excited states of the N2 molecule. Russ. J. Phys. Chem. B 12, 620–631 (2018).
Y. Wu, M. Hochlaf, G. C. Schatz, Modeling of collision-induced excitation and quenching of atomic nitrogen. J. Chem. Phys. 161, 014104 (2024).
K. G. Komarova, F. Remacle, R. D. Levine, Time resolved mechanism of the isotope selectivity in the ultrafast light induced dissociation in N2. J. Chem. Phys. 151, 114308 (2019).
N. Gelfand, K. Komarova, F. Remacle, R. D. Levine, On the energy-specific photodissociation pathways of 14N2 and 14N15N isotopomers to N atoms of different reactivity: A quantum dynamical perspective. Astrophys. J. 948, 58 (2023).
M. Liu et al., Strong isotope-dependent photodissociation branching ratios of N2 and their potential implications for the 14N/15N isotope fractionation in Titan’s atmosphere. Astrophys. J. 923, 196 (2021).
Y. Song et al., Quantum-state dependence of product branching ratios in vacuum ultraviolet photodissociation of N2. Astrophys. J. 819, 13 (2016).
R. J. Donovan, D. Husain, Recent advances in the chemistry of electronically excited atoms. Chem. Rev. 70, 489–516 (1970).
J. T. Herron, Evaluated chemical kinetics data for reactions of N(2D), N(2P), and N2(A 3Σu+) in the gas phase. J. Phys. Chem. Ref. Data 28, 1453–1483 (1999).
T. Suzuki, Y. Shihira, T. Sato, H. Umemoto, S. Tsunashima, Reactions of N(2D) and N(2P) with H2 and D2. J. Chem. Soc., Faraday Trans. 89, 995–999 (1993).
N. Balucani, Elementary reactions of N atoms with hydrocarbons: First steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem. Soc. Rev. 41, 5473–5483 (2012).
L. Mancini et al., The reaction N(2D) + CH3CCH (methylacetylene): A combined crossed molecular beams and theoretical investigation and implications for the atmosphere of Titan. J. Phys. Chem. A 125, 8846–8859 (2021).
G. Vanuzzo et al., Reaction N(2D) + CH2CCH2 (allene): An experimental and theoretical investigation and implications for the photochemical models of Titan. ACS Earth Space Chem. 6, 2305–2321 (2022).
X. Shi et al., Branching ratios in vacuum ultraviolet photodissociation of CO and N2: Implications for oxygen and nitrogen isotopic compositions of the Solar Nebula. Astrophys. J. 850, 48 (2017).
Y. C. Chang, K. Liu, K. S. Kalogerakis, C. Y. Ng, W. M. Jackson, Branching ratios of the N(D-2(3/2)0) and N(D-2(5/2)0) spin-orbit states produced in the state-selected photodissociation of N-2 determined using time-sliced velocity-mapped-imaging phot oionization mass spectrometry (TS-VMI-PI-MS). J. Phys. Chem. A 123, 2289–2300 (2019).
J. Jortner, R. D. Levine, S. A. Rice, Eds., Advances in Chemical Physics: Photoselective Chemistry. Parts 1 and 2 (Wiley, New York, 1981), Vol 47.