Energy; Excitonic response; First principles; Interlayer distance; Intra-layer; Stacking distances; Stackings; Transition metal dichalcogenides (TMD); Two-dimensional; Van der Waal; Electronic, Optical and Magnetic Materials; Condensed Matter Physics
Abstract :
[en] Van der Waals heterostructures of two-dimensional transition metal dichalcogenides provide a unique platform to engineer optoelectronic devices tuning their optical properties via stacking, twisting, or straining. Using ab initio many-body perturbation theory, we predict the electronic and optical (absorption and photoluminescence spectra) properties of MoS2/WS2 and MoSe2/WSe2 heterobilayers with different stacking and twisting. We analyze the valley splitting and optical transitions, and we explain the enhancement or quenching of the inter- and intralayer exciton states. We fully include transitions within the entire Brillouin Zone, contrary to predictions based on continuum models which only consider energies near the K point. As a result, we predict an interlayer exciton with significant electron density in both layers and a mixed intralayer exciton distributed over both MoSe2 and WSe2 in a twisted Se-based heterostructure. We propose that it should be possible to produce an inverted order of the excitonic states in some MoSe2/WSe2 heterostructures, where the energy of the intralayer WSe2 exciton is lower than that in MoSe2. We predict the variability across different stacking of the exciton peak positions (∼100meV) and the exciton radiative lifetimes, from pico- to nanoseconds, and even microseconds in twisted bilayers. The control of exciton energies and lifetimes paves the way toward applications in quantum information technologies and optical sensing.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Reho, R. ; Debye Institute for Nanomaterial Science, European Theoretical Spectroscopy Facility, Utrecht University, Utrecht, Netherlands
Botello-Méndez, A.R. ; Debye Institute for Nanomaterial Science, European Theoretical Spectroscopy Facility, Utrecht University, Utrecht, Netherlands
Sangalli, D. ; Istituto di Struttura della Materia-CNR (ISM-CNR), European Theoretical Spectroscopy Facility, Monterotondo, Italy
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Debye Institute for Nanomaterial Science, European Theoretical Spectroscopy Facility, Utrecht University, Utrecht, Netherlands
Zanolli, Zeila ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Debye Institute for Nanomaterial Science, European Theoretical Spectroscopy Facility, Utrecht University, Utrecht, Netherlands
Language :
English
Title :
Excitonic response in transition metal dichalcogenide heterostructures from first principles: Impact of stacking, twisting, and interlayer distance
FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
The authors acknowledge the fruitful discussion with Pedro M. M. C. de Melo, D. Vanmaekelbergh, M. Palummo, M. Re Fiorentin, A. Marini, and F. Paleari as well as extensive support from the Yambo developer team. R.R., A.B.M., and Z.Z. acknowledge financial support from \u201CMaterials for the Quantum Age\u2014QuMat\u201D project (Registration No. 024.005.006, Gravitation program of the Dutch Ministry of Education, Culture and Science OCW), and the European Union \u201CQuondensate\u201D project (Horizon EIC Pathfinder Open, Grant Agreement No. 101130384). R.R. and Z.Z. acknowledge financial support from Sector Plan Program 2019\u20132023. M.J.V. is supported by ARC project DREAMS (G.A. 21/25-11) funded by Federation Wallonie Bruxelles and ULiege, and the Excellence of Science (EOS) programme (Grant No. 40007563-CONNECT) funded by the FWO and F.R.S.-FNRS. D.S. acknowledges funding from MaX \u201CMAterials design at the eXascale\u201D co-funded by the European High Performance Computing joint Undertaking (JU) and participating countries (Grant Agreement No. 101093374). The results of this research have been achieved using supercomputer facilities provided by NWO-Domain Science (Snellius) and the Tier-0 PRACE Research Infrastructure resources (OptoSpin Project No. 2020225411): Discoverer based in Sofia, Bulgaria and Marenostrum4 at the Barcelona Supercomputing center (Spanish Supercomputing Network, RES Project No. FI-2020-1-0014).
N. P. Wilson, W. Yao, J. Shan, and X. Xu, Excitons and emergent quantum phenomena in stacked 2D semiconductors, Nature (London) 599, 383 (2021) 0028-0836 10.1038/s41586-021-03979-1.
K. S. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102, 10451 (2005) 0027-8424 10.1073/pnas.0502848102.
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer (Equation presented), Nano Lett. 10, 1271 (2010) 1530-6984 10.1021/nl903868w.
Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, Synthesis of large-area (Equation presented) atomic layers with chemical vapor deposition, Adv. Mater. 24, 2320 (2012) 10.1002/adma.201104798.
T. Sohier, P. M. de Melo, Z. Zanolli, and M. J. Verstraete, The impact of valley profile on the mobility and Kerr rotation of transition metal dichalcogenides, 2D Mater. 10, 025006 (2023) 2053-1583 10.1088/2053-1583/acb21c.
K. Tran, G. Moody, F. Wu, X. Lu, J. Choi, K. Kim, A. Rai, D. A. Sanchez, J. Quan, A. Singh, Evidence for moiré excitons in van der Waals heterostructures, Nature (London) 567, 71 (2019) 0028-0836 10.1038/s41586-019-0975-z.
T. Rakib, P. Pochet, E. Ertekin, and H. T. Johnson, Moiré engineering in van der Waals heterostructures, J. Appl. Phys. 132 (2022) 0021-8979 10.1063/5.0105405.
W. Ma, Q. Zhang, L. Li, D. Geng, and W. Hu, Small twist, big miracle-recent progress on fabrication of twisted 2D materials, J. Mater. Chem. C 11, 15793 (2023) 10.1039/D3TC02660D.
R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J. Hone, and C. R. Dean, Twistable electronics with dynamically rotatable heterostructures, Science 361, 690 (2018) 0036-8075 10.1126/science.aat6981.
G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, Colloquium: Excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys. 90, 021001 (2018) 0034-6861 10.1103/RevModPhys.90.021001.
Z. Ji, H. Hong, J. Zhang, Q. Zhang, W. Huang, T. Cao, R. Qiao, C. Liu, J. Liang, C. Jin, Robust stacking-independent ultrafast charge transfer in (Equation presented) bilayers, ACS Nano 11, 12020 (2017) 1936-0851 10.1021/acsnano.7b04541.
C. Trovatello, F. Katsch, N. J. Borys, M. Selig, K. Yao, R. Borrego-Varillas, F. Scotognella, I. Kriegel, A. Yan, A. Zettl, The ultrafast onset of exciton formation in 2D semiconductors, Nat. Commun. 11, 5277 (2020) 2041-1723 10.1038/s41467-020-18835-5.
J.-Y. Tsai, J. Pan, H. Lin, A. Bansil, and Q. Yan, Antisite defect qubits in monolayer transition metal dichalcogenides, Nat. Commun. 13, 492 (2022) 2041-1723 10.1038/s41467-022-28133-x.
Y. Jiang, S. Chen, W. Zheng, B. Zheng, and A. Pan, Interlayer exciton formation, relaxation, and transport in tmd van der Waals heterostructures, Light Sci. Appl. 10, 72 (2021) 2047-7538 10.1038/s41377-021-00500-1.
E. Torun, H. P. C. Miranda, A. Molina-Sánchez, and L. Wirtz, Interlayer and intralayer excitons in (Equation presented) and (Equation presented) heterobilayers, Phys. Rev. B 97, 245427 (2018) 2469-9950 10.1103/PhysRevB.97.245427.
R. Gillen and J. Maultzsch, Interlayer excitons in (Equation presented) heterostructures from first principles, Phys. Rev. B 97, 165306 (2018) 2469-9950 10.1103/PhysRevB.97.165306.
D. Sangalli, A. Ferretti, H. Miranda, C. Attaccalite, I. Marri, E. Cannuccia, P. Melo, M. Marsili, F. Paleari, A. Marrazzo, Many-body perturbation theory calculations using the Yambo code, J. Phys.: Condens. Matter 31, 325902 (2019) 0953-8984 10.1088/1361-648X/ab15d0.
A. Marini, C. Hogan, M. Grüning, and D. Varsano, Yambo: An ab initio tool for excited state calculations, Comput. Phys. Commun. 180, 1392 (2009) 0010-4655 10.1016/j.cpc.2009.02.003.
Pedro Miguel M. C. de Melo and A. Marini, Unified theory of quantized electrons, phonons, and photons out of equilibrium: A simplified ab initio approach based on the generalized Baym-Kadanoff ansatz, Phys. Rev. B 93, 155102 (2016) 2469-9950 10.1103/PhysRevB.93.155102.
P. Lechifflart, F. Paleari, D. Sangalli, and C. Attaccalite, First-principles study of luminescence in hexagonal boron nitride single layer: Exciton-phonon coupling and the role of substrate, Phys. Rev. Mater. 7, 024006 (2023) 2475-9953 10.1103/PhysRevMaterials.7.024006.
F. Paleari, H. P. C. Miranda, A. Molina-Sánchez, and L. Wirtz, Exciton-phonon coupling in the ultraviolet absorption and emission spectra of bulk hexagonal boron nitride, Phys. Rev. Lett. 122, 187401 (2019) 0031-9007 10.1103/PhysRevLett.122.187401.
M. Palummo, M. Bernardi, and J. C. Grossman, Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides, Nano Lett. 15, 2794 (2015) 1530-6984 10.1021/nl503799t.
H.-Y. Chen, M. Palummo, D. Sangalli, and M. Bernardi, Theory and ab initio computation of the anisotropic light emission in monolayer transition metal dichalcogenides, Nano Lett. 18, 3839 (2018) 1530-6984 10.1021/acs.nanolett.8b01114.
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, Quantum Espresso: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009) 0953-8984 10.1088/0953-8984/21/39/395502.
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, Advanced capabilities for materials modelling with Quantum Espresso, J. Phys.: Condens. Matter 29, 465901 (2017) 0953-8984 10.1088/1361-648X/aa8f79.
V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, and A. Vittadini, Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases, J. Comput. Chem. 30, 934 (2009) 0192-8651 10.1002/jcc.21112.
L. Hedin, New method for calculating the one-particle Green's function with application to the electron-gas problem, Phys. Rev. 139, A796 (1965) 0031-899X 10.1103/PhysRev.139.A796.
B. Farid, R. Daling, D. Lenstra, and W. van Haeringen, GW approach to the calculation of electron self-energies in semiconductors, Phys. Rev. B 38, 7530 (1988) 0163-1829 10.1103/PhysRevB.38.7530.
A. Guandalini, P. D'Amico, A. Ferretti, and D. Varsano, Efficient GW calculations in two dimensional materials through a stochastic integration of the screened potential, npj Comput. Mater. 9, 44 (2023) 2057-3960 10.1038/s41524-023-00989-7.
G. Onida, L. Reining, and A. Rubio, Electronic excitations: Density-functional versus many-body Green's-function approaches, Rev. Mod. Phys. 74, 601 (2002) 0034-6861 10.1103/RevModPhys.74.601.
D. Sangalli, J. A. Berger, C. Attaccalite, M. Grüning, and P. Romaniello, Optical properties of periodic systems within the current-current response framework: Pitfalls and remedies, Phys. Rev. B 95, 155203 (2017) 2469-9950 10.1103/PhysRevB.95.155203.
F. Libbi, Pedro Miguel M. C. de Melo, Z. Zanolli, M. J. Verstraete, and N. Marzari, Phonon-assisted luminescence in defect centers from many-body perturbation theory, Phys. Rev. Lett. 128, 167401 (2022) 0031-9007 10.1103/PhysRevLett.128.167401.
X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, Ultrafast charge transfer in atomically thin (Equation presented) heterostructures, Nat. Nanotechnol. 9, 682 (2014) 1748-3387 10.1038/nnano.2014.167.
H. Heo, J. H. Sung, S. Cha, B.-G. Jang, J.-Y. Kim, G. Jin, D. Lee, J.-H. Ahn, M.-J. Lee, J. H. Shim, Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks, Nat. Commun. 6, 7372 (2015) 2041-1723 10.1038/ncomms8372.
H. Chen, X. Wen, J. Zhang, T. Wu, Y. Gong, X. Zhang, J. Yuan, C. Yi, J. Lou, P. M. Ajayan, Ultrafast formation of interlayer hot excitons in atomically thin (Equation presented) heterostructures, Nat. Commun. 7, 12512 (2016) 2041-1723 10.1038/ncomms12512.
L. Li, R. Gillen, M. Palummo, M. Milošević, and F. Peeters, Strain tunable interlayer and intralayer excitons in vertically stacked (Equation presented) heterobilayers, Appl. Phys. Lett. 123, 033102 (2023) 10.1063/5.0147761.
https://github.com/rreho/yambopy.
M. van Setten, M. Giantomassi, E. Bousquet, M. Verstraete, D. Hamann, X. Gonze, and G.-M. Rignanese, The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Commun. 226, 39 (2018) 0010-4655 10.1016/j.cpc.2018.01.012.
J. D. Head and M. C. Zerner, A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries, Chem. Phys. Lett. 122, 264 (1985) 0009-2614 10.1016/0009-2614(85)80574-1.
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132, 154104 (2010) 0021-9606 10.1063/1.3382344.
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996) 0031-9007 10.1103/PhysRevLett.77.3865.
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin (Equation presented): A new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010) 0031-9007 10.1103/PhysRevLett.105.136805.
M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5, 263 (2013) 1755-4330 10.1038/nchem.1589.
Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial (Equation presented), Nat. Nanotechnol. 9, 111 (2014) 1748-3387 10.1038/nnano.2013.277.
W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, Evolution of electronic structure in atomically thin sheets of (Equation presented) and (Equation presented), ACS Nano 7, 791 (2013) 1936-0851 10.1021/nn305275h.
F. Lan, R. Yang, Y. Xu, S. Qian, S. Zhang, H. Cheng, and Y. Zhang, Synthesis of large-scale single-crystalline monolayer (Equation presented) using a semi-sealed method, Nanomaterials 8, 100 (2018) 2079-4991 10.3390/nano8020100.
A. T. Hanbicki, H.-J. Chuang, M. R. Rosenberger, C. S. Hellberg, S. V. Sivaram, K. M. McCreary, I. I. Mazin, and B. T. Jonker, Double indirect interlayer exciton in a (Equation presented) van der Waals heterostructure, ACS Nano 12, 4719 (2018) 1936-0851 10.1021/acsnano.8b01369.
J. Choi, M. Florian, A. Steinhoff, D. Erben, K. Tran, D. S. Kim, L. Sun, J. Quan, R. Claassen, S. Majumder, Twist angle-dependent interlayer exciton lifetimes in van der Waals heterostructures, Phys. Rev. Lett. 126, 047401 (2021) 0031-9007 10.1103/PhysRevLett.126.047401.
D. Lagarde, L. Bouet, X. Marie, C. R. Zhu, B. L. Liu, T. Amand, P. H. Tan, and B. Urbaszek, Carrier and polarization dynamics in monolayer (Equation presented), Phys. Rev. Lett. 112, 047401 (2014) 0031-9007 10.1103/PhysRevLett.112.047401.
T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, Low-temperature photocarrier dynamics in monolayer (Equation presented), Appl. Phys. Lett. 99, 102109 (2011) 0003-6951 10.1063/1.3636402.
H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H. G. Xing, and L. Huang, Exciton dynamics in suspended monolayer and few-layer (Equation presented) 2D crystals, ACS Nano 7, 1072 (2013) 1936-0851 10.1021/nn303973r.
N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. Yeow, and T. Yu, Nonblinking, intense two-dimensional light emitter: Monolayer (Equation presented) triangles, ACS Nano 7, 10985 (2013) 1936-0851 10.1021/nn4046002.
M. Re Fiorentin, F. Risplendi, M. Palummo, and G. Cicero, First-principles calculations of exciton radiative lifetimes in monolayer graphitic carbon nitride nanosheets: Implications for photocatalysis, ACS Appl. Nano Mater. 4, 1985 (2021) 2574-0970 10.1021/acsanm.0c03317.
F. Volmer, M. Ersfeld, P. E. Faria Junior, L. Waldecker, B. Parashar, L. Rathmann, S. Dubey, I. Cojocariu, V. Feyer, K. Watanabe, Twist angle dependent interlayer transfer of valley polarization from excitons to free charge carriers in (Equation presented) heterobilayers, npj 2D Mater. Appl. 7, 58 (2023) 2397-7132 10.1038/s41699-023-00420-1.
B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, Long-lived direct and indirect interlayer excitons in van der Vaals heterostructures, Nano Lett. 17, 5229 (2017) 1530-6984 10.1021/acs.nanolett.7b01304.
M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y.-C. Kung, D. Dumcenco, Probing the interlayer exciton physics in a (Equation presented) van der Waals heterostructure, Nano Lett. 17, 6360 (2017) 1530-6984 10.1021/acs.nanolett.7b03184.
J. Kiemle, F. Sigger, M. Lorke, B. Miller, K. Watanabe, T. Taniguchi, A. Holleitner, and U. Wurstbauer, Control of the orbital character of indirect excitons in (Equation presented) heterobilayers, Phys. Rev. B 101, 121404 (R) (2020) 2469-9950 10.1103/PhysRevB.101.121404.
P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, Observation of long-lived interlayer excitons in monolayer (Equation presented) heterostructures, Nat. Commun. 6, 6242 (2015) 2041-1723 10.1038/ncomms7242.
M. Rohlfing, P. Krüger, and J. Pollmann, Role of semicore (Equation presented) electrons in quasiparticle band-structure calculations, Phys. Rev. B 57, 6485 (1998) 0163-1829 10.1103/PhysRevB.57.6485.
H. Yu, X. Cui, X. Xu, and W. Yao, Valley excitons in two-dimensional semiconductors, Natl. Sci. Rev. 2, 57 (2015) 2053-714X 10.1093/nsr/nwu078.
N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures, Sci. Adv. 3, e1601832 (2017) 2375-2548 10.1126/sciadv.1601832.