Article (Scientific journals)
Excitonic response in transition metal dichalcogenide heterostructures from first principles: Impact of stacking, twisting, and interlayer distance
Reho, R.; Botello-Méndez, A.R.; Sangalli, D. et al.
2024In Physical Review. B, 110 (3)
Peer Reviewed verified by ORBi
 

Files


Full Text
2024_PhysRevB.110.035118_reho_TMD_excitons.pdf
Author postprint (940 B)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Energy; Excitonic response; First principles; Interlayer distance; Intra-layer; Stacking distances; Stackings; Transition metal dichalcogenides (TMD); Two-dimensional; Van der Waal; Electronic, Optical and Magnetic Materials; Condensed Matter Physics
Abstract :
[en] Van der Waals heterostructures of two-dimensional transition metal dichalcogenides provide a unique platform to engineer optoelectronic devices tuning their optical properties via stacking, twisting, or straining. Using ab initio many-body perturbation theory, we predict the electronic and optical (absorption and photoluminescence spectra) properties of MoS2/WS2 and MoSe2/WSe2 heterobilayers with different stacking and twisting. We analyze the valley splitting and optical transitions, and we explain the enhancement or quenching of the inter- and intralayer exciton states. We fully include transitions within the entire Brillouin Zone, contrary to predictions based on continuum models which only consider energies near the K point. As a result, we predict an interlayer exciton with significant electron density in both layers and a mixed intralayer exciton distributed over both MoSe2 and WSe2 in a twisted Se-based heterostructure. We propose that it should be possible to produce an inverted order of the excitonic states in some MoSe2/WSe2 heterostructures, where the energy of the intralayer WSe2 exciton is lower than that in MoSe2. We predict the variability across different stacking of the exciton peak positions (∼100meV) and the exciton radiative lifetimes, from pico- to nanoseconds, and even microseconds in twisted bilayers. The control of exciton energies and lifetimes paves the way toward applications in quantum information technologies and optical sensing.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Reho, R. ;  Debye Institute for Nanomaterial Science, European Theoretical Spectroscopy Facility, Utrecht University, Utrecht, Netherlands
Botello-Méndez, A.R. ;  Debye Institute for Nanomaterial Science, European Theoretical Spectroscopy Facility, Utrecht University, Utrecht, Netherlands
Sangalli, D. ;  Istituto di Struttura della Materia-CNR (ISM-CNR), European Theoretical Spectroscopy Facility, Monterotondo, Italy
Verstraete, Matthieu  ;  Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Debye Institute for Nanomaterial Science, European Theoretical Spectroscopy Facility, Utrecht University, Utrecht, Netherlands
Zanolli, Zeila  ;  Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Debye Institute for Nanomaterial Science, European Theoretical Spectroscopy Facility, Utrecht University, Utrecht, Netherlands
Language :
English
Title :
Excitonic response in transition metal dichalcogenide heterostructures from first principles: Impact of stacking, twisting, and interlayer distance
Publication date :
15 July 2024
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society
Volume :
110
Issue :
3
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
The authors acknowledge the fruitful discussion with Pedro M. M. C. de Melo, D. Vanmaekelbergh, M. Palummo, M. Re Fiorentin, A. Marini, and F. Paleari as well as extensive support from the Yambo developer team. R.R., A.B.M., and Z.Z. acknowledge financial support from \u201CMaterials for the Quantum Age\u2014QuMat\u201D project (Registration No. 024.005.006, Gravitation program of the Dutch Ministry of Education, Culture and Science OCW), and the European Union \u201CQuondensate\u201D project (Horizon EIC Pathfinder Open, Grant Agreement No. 101130384). R.R. and Z.Z. acknowledge financial support from Sector Plan Program 2019\u20132023. M.J.V. is supported by ARC project DREAMS (G.A. 21/25-11) funded by Federation Wallonie Bruxelles and ULiege, and the Excellence of Science (EOS) programme (Grant No. 40007563-CONNECT) funded by the FWO and F.R.S.-FNRS. D.S. acknowledges funding from MaX \u201CMAterials design at the eXascale\u201D co-funded by the European High Performance Computing joint Undertaking (JU) and participating countries (Grant Agreement No. 101093374). The results of this research have been achieved using supercomputer facilities provided by NWO-Domain Science (Snellius) and the Tier-0 PRACE Research Infrastructure resources (OptoSpin Project No. 2020225411): Discoverer based in Sofia, Bulgaria and Marenostrum4 at the Barcelona Supercomputing center (Spanish Supercomputing Network, RES Project No. FI-2020-1-0014).
Available on ORBi :
since 19 July 2025

Statistics


Number of views
31 (1 by ULiège)
Number of downloads
21 (1 by ULiège)

Scopus citations®
 
10
Scopus citations®
without self-citations
9
OpenCitations
 
0
OpenAlex citations
 
10

Bibliography


Similar publications



Contact ORBi