Acoustic experiments; Antiferromagnetic phasis; Brillouin light scattering; Experimental determination; Ferromagnetic and anti-ferromagnetic; Ferromagnetic phasis; Phase dependent; Picosecond acoustics; Rayleigh wave velocity; Temperature dependent; Electronic, Optical and Magnetic Materials; Condensed Matter Physics
Abstract :
[en] The elastic constants of an epitaxial film of FeRh have been determined experimentally in both ferromagnetic (FM) and antiferromagnetic (AF) phases, using a combination of Brillouin light scattering and picosecond acoustics experiments. The C11 constant is noticeably larger in the FM phase than in the AF phase, while C12 and C44 are both lower, leading to larger Rayleigh wave velocities in the FM phase than in the AF phase. The elastic constants were calculated numerically using first-principles anharmonic modeling and machine-learned interatomic potentials. We find that using a temperature-dependent effective potential is indispensable to correctly reproduce the experimental values to within 80-100%. The accurate knowledge of the temperature- and phase-dependences of the elastic constants of crystalline FeRh are valuable ingredients for the predictive modeling of the acoustic and magnetoacoustic properties of this magnetostrictive material.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Ourdani, D. ; Sorbonne Université, CNRS, Institut des Nanosciences de Paris, Paris, France ; LSPM, Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France
Castellano, Aloïs ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Vythelingum, A.K.; Sorbonne Université, CNRS, Institut des Nanosciences de Paris, Paris, France
Arregi, J.A. ; CEITEC, Brno University of Technology, Brno, Czech Republic
Uhlíř, V. ; CEITEC, Brno University of Technology, Brno, Czech Republic ; Institute of Physical Engineering, Brno University of Technology, Brno, Czech Republic
Perrin, B.; Sorbonne Université, CNRS, Institut des Nanosciences de Paris, Paris, France
Belmeguenai, M. ; LSPM, Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France
Roussigné, Y. ; LSPM, Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France
Gourdon, C. ; Sorbonne Université, CNRS, Institut des Nanosciences de Paris, Paris, France
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; ITP, Physics Department, Utrecht University, Utrecht, Netherlands
Thevenard, L. ; Sorbonne Université, CNRS, Institut des Nanosciences de Paris, Paris, France
Language :
English
Title :
Experimental determination of the temperature- and phase-dependent elastic constants of FeRh
Publication date :
July 2024
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society
Volume :
110
Issue :
1
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercalculateur
ANR - Agence Nationale de la Recherche MSMT - Ministerstvo školství, mládeže a tělovýchovy České republiky F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
This work has been partly supported by the French Agence Nationale de la Recherche (ANR ACAF 20-CE30-0027). Access to the CEITEC Nano Research Infrastructure was supported by the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic under the project CzechNanoLab (LM2023051). A.C. and M.J.V. acknowledge the Fonds de la Recherche Scientifique (FRS-FNRS Belgium) for PdR Grant No. T.0103.19 - ALPS, and ARC project DREAMS (G.A. 21/25-11) funded by F\u00E9d\u00E9ration Wallonie Bruxelles and ULiege. Simulation time was awarded by the Belgian share of EuroHPC in LUMI hosted by CSC in Finland, by the CECI (FRS-FNRS Belgium Grant No. 2.5020.11), as well as the Zenobe Tier-1 of the F\u00E9d\u00E9ration Wallonie-Bruxelles (Walloon Region Grant Agreement No. 1117545). We acknowledge the technical assistance of Mathieu Bernard from Institut des Nanosciences de Paris.
M. Fallot, Les alliages du fer avec les métaux de la famille du platine, Ann. Phys. 11, 291 (1938) 0003-4169 10.1051/anphys/193811100291.
T. Moriyama, N. Matsuzaki, K.-J. Kim, I. Suzuki, T. Taniyama, and T. Ono, Sequential write-read operations in FeRh antiferromagnetic memory, Appl. Phys. Lett. 107, 122403 (2015) 0003-6951 10.1063/1.4931567.
X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J.-H. Chu, C. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh, Room-temperature antiferromagnetic memory resistor, Nat. Mater. 13, 367 (2014) 1476-1122 10.1038/nmat3861.
H. Wu, H. Zhang, B. Wang, F. Groß, C. Y. Yang, G. Li, C. Guo, H. He, K. Wong, D. Wu, X. Han, C. H. Lai, J. Gräfe, R. Cheng, and K. L. Wang, Current-induced Néel order switching facilitated by magnetic phase transition, Nat. Commun. 13, 1 (2022) 10.1038/s41467-022-29170-2.
N. A. Blumenschein, G. M. Stephen, C. D. Cress, S. W. LaGasse, A. T. Hanbicki, S. P. Bennett, and A. L. Friedman, High-speed metamagnetic switching of FeRh through Joule heating, Sci. Rep. 12, 22061 (2022) 2045-2322 10.1038/s41598-022-26587-z.
Y. Liu, L. C. Phillips, R. Mattana, M. Bibes, A. Barthélémy, and B. Dkhil, Large reversible caloric effect in FeRh thin films via a dual-stimulus multicaloric cycle, Nat. Commun. 7, 11614 (2016) 2041-1723 10.1038/ncomms11614.
J. Lyubina, Magnetocaloric materials for energy efficient cooling, J. Phys. D 50, 053002 (2017) 0022-3727 10.1088/1361-6463/50/5/053002.
V. Uhlíř, J. A. Arregi, and E. E. Fullerton, Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes, Nat. Commun. 7, 13113 (2016) 2041-1723 10.1038/ncomms13113.
J. A. Arregi, O. Caha, and V. Uhlíř, Evolution of strain across the magnetostructural phase transition in epitaxial FeRh films on different substrates, Phys. Rev. B 101, 174413 (2020) 2469-9950 10.1103/PhysRevB.101.174413.
F. Pressacco, D. Sangalli, V. Uhlí, D. Kutnyakhov, J. A. Arregi, S. Y. Agustsson, G. Brenner, H. Redlin, M. Heber, D. Vasilyev, J. Demsar, G. Schönhense, M. Gatti, A. Marini, W. Wurth, and F. Sirotti, Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics, Nat. Commun. 12, 5088 (2021) 2041-1723 10.1038/s41467-021-25347-3.
S. O. Mariager, F. Pressacco, G. Ingold, A. Caviezel, E. Möhr-Vorobeva, P. Beaud, S. L. Johnson, C. J. Milne, E. Mancini, S. Moyerman, E. E. Fullerton, R. Feidenhans'l, C. H. Back, and C. Quitmann, Structural and magnetic dynamics of a laser induced phase transition in FeRh, Phys. Rev. Lett. 108, 087201 (2012) 0031-9007 10.1103/PhysRevLett.108.087201.
D. W. Cooke, F. Hellman, C. Baldasseroni, C. Bordel, S. Moyerman, and E. E. Fullerton, Thermodynamic measurements of Fe-Rh alloys, Phys. Rev. Lett. 109, 255901 (2012) 0031-9007 10.1103/PhysRevLett.109.255901.
S. B. Palmer, P. Dentschuk, and D. Melville, Elastic properties of an iron-rhodium alloy, Phys. Status Solidi A 32, 503 (1975) 0031-8965 10.1002/pssa.2210320220.
J. A. Ricodeau and D. Melville, Model of the antiferromagnetic-ferromagnetic transition in FeRh alloys, J. Phys. F 2, 337 (1972) 0305-4608 10.1088/0305-4608/2/2/024.
A. Castets, D. Tochetti, and B. Hennion, Spin wave spectrum of iron-rhodium alloy in antiferromagnetic and ferromagnetic phases, Physica B+C 86-88, 353 (1977) 0378-4363 10.1016/0378-4363(77)90344-8.
W. He, H. Huang, and X. Ma, First-principles calculations on elastic and entropy properties in FeRh alloys, Mater. Lett. 195, 156 (2017) 0167577X 10.1016/j.matlet.2017.02.043.
U. Aschauer, R. Braddell, S. A. Brechbühl, P. M. Derlet, and N. A. Spaldin, Strain-induced structural instability in FeRh, Phys. Rev. B 94, 014109 (2016) 2469-9950 10.1103/PhysRevB.94.014109.
M. J. Jiménez, A. B. Schvval, and G. F. Cabeza, Ab initio study of FeRh alloy properties, Comput. Mater. Sci. 172, 109385 (2020) 0927-0256 10.1016/j.commatsci.2019.109385.
Y. Hao, L. Zhang, and J. Zhu, The electronic structure, phase transition, elastic, thermodynamic, and thermoelectric properties of FeRh: High-temperature and high-pressure study, Z. Naturforsch. A 75, 789 (2020) 1865-7109 10.1515/zna-2020-0155.
J. Gump, H. Xia, M. Chirita, R. Sooryakumar, M. A. Tomaz, and G. R. Harp, Elastic constants of face-centered-cubic cobalt, J. Appl. Phys. 86, 6005 (1999) 0021-8979 10.1063/1.371647.
G. Carlotti, J. Sadhu, and F. Dumont, Dependence of the different elastic constants of ScAlN films on Sc content: A Brillouin scattering study with polarization analysis, in 2017 IEEE International Ultrasonics Symposium (IUS) (IEEE, Piscataway, NJ, 2017), pp. 1-5.
J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn, and S. A. Barnett, Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy, J. Appl. Phys. 72, 1805 (1992) 0021-8979 10.1063/1.351651.
P. Hemme, P. Djemia, P. Rovillain, Y. Gallais, A. Sacuto, A. Forget, D. Colson, E. Charron, B. Perrin, L. Belliard, and M. Cazayous, Elastic properties assessment in the multiferroic (Equation presented) by pump and probe method, Appl. Phys. Lett. 118, 062902 (2021) 0003-6951 10.1063/5.0039505.
J. A. Arregi, F. Ringe, J. Hajduček, O. Gomonay, T. Molnár, J. Jaskowiec, and V. Uhlí, Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh, J. Phys.: Mater. 6, 034003 (2023) 2515-7639 10.1088/2515-7639/acce6f.
S. M. Rezende, A. Azevedo, and R. L. Rodríguez-Suárez, Introduction to antiferromagnetic magnons, J. Appl. Phys. 126, 151101 (2019) 0021-8979 10.1063/1.5109132.
S. Maat, J.-U. Thiele, and E. E. Fullerton, Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films, Phys. Rev. B 72, 214432 (2005) 0021-8979 10.1103/PhysRevB.72.214432.
The maximum temperature rise in Fig. 3 ((Equation presented), incident angle of 40°) was estimated using a layer-on-substrate approach and thermal conductivities (Equation presented) of FeRh and MgO of Ref. [57]; in particular, (Equation presented) (10) W (Equation presented) in the AF (FM) phase. The effective incident power was taken as (Equation presented) with (Equation presented) in the FM phase (smaller than (Equation presented) in the AF phase) at (Equation presented) nm [57], and a beam radius of 60 (Equation presented).
E. Péronne, N. Chuecos, L. Thevenard, and B. Perrin, Acoustic solitons: A robust tool to investigate the generation and detection of ultrafast acoustic waves, Phys. Rev. B 95, 064306 (2017) 2469-9950 10.1103/PhysRevB.95.064306.
W. G. W. Farnell, Types and properties of surface, in Acoustic Surface Waves, Topics in Applied Physics (Springer, Berlin, 1978), pp. 13-60.
M. R. Karim and A. K. Mal, Inversion of leaky Lamb wave data by simplex algorithm, J. Acoust. Soc. Am. 88, 482 (1990) 0001-4966 10.1121/1.399927.
Y. Sumino, O. L. Anderson, and I. Suzuki, Temperature coefficients of elastic constants of single crystal MgO between 80 and 1,300 K, Phys. Chem. Miner. 9, 38 (1983) 0342-1791 10.1007/BF00309468.
R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. London, Sect. A 65, 349 (1952) 0370-1298 10.1088/0370-1298/65/5/307.
A. I. Zakharov, A. M. Kadomtseva, R. Z. Levitin, and E. G. Ponyatovskil, Magnetic and magnetoelastic properties of a metamagnetic iron-rhodium alloy, Sov. Phys. JETP 19, 1348 (1964).
J. J. Adams, D. S. Agosta, R. G. Leisure, and H. Ledbetter, Elastic constants of monocrystal iron from 3 to 500 K, J. Appl. Phys. 100, 113530 (2006) 0021-8979 10.1063/1.2365714.
J. Kim, R. Ramesh, and N. Kioussis, Revealing the hidden structural phases of FeRh, Phys. Rev. B 94, 180407 (R) (2016) 2469-9950 10.1103/PhysRevB.94.180407.
N. A. Zarkevich and D. D. Johnson, FeRh ground state and martensitic transformation, Phys. Rev. B 97, 014202 (2018) 2469-9950 10.1103/PhysRevB.97.014202.
M. P. Belov, A. B. Syzdykova, and I. A. Abrikosov, Temperature-dependent lattice dynamics of antiferromagnetic and ferromagnetic phases of FeRh, Phys. Rev. B 101, 134303 (2020) 2469-9950 10.1103/PhysRevB.101.134303.
O. Hellman, I. A. Abrikosov, and S. I. Simak, Lattice dynamics of anharmonic solids from first principles, Phys. Rev. B 84, 180301 (R) (2011) 1098-0121 10.1103/PhysRevB.84.180301.
O. Hellman and I. A. Abrikosov, Temperature-dependent effective third-order interatomic force constants from first principles, Phys. Rev. B 88, 144301 (2013) 1098-0121 10.1103/PhysRevB.88.144301.
O. Hellman and D. A. Broido, Phonon thermal transport in (Equation presented) from first principles, Phys. Rev. B 90, 134309 (2014) 1098-0121 10.1103/PhysRevB.90.134309.
A. V. Shapeev, Moment tensor potentials: A class of systematically improvable interatomic potentials, Multiscale Model. Simul. 14, 1153 (2016) 1540-3459 10.1137/15M1054183.
C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Surface generation and detection of phonons by picosecond light pulses, Phys. Rev. B 34, 4129 (1986) 0163-1829 10.1103/PhysRevB.34.4129.
X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet, J.-M. Beuken, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet, N. Brouwer, F. Bruneval, G. Brunin, T. Cavignac, J.-B. Charraud, W. Chen, M. Côté, S. Cottenier, J. Denier, G. Geneste, The abinit project: Impact, environment and recent developments, Comput. Phys. Commun. 248, 107042 (2020) 0010-4655 10.1016/j.cpc.2019.107042.
A. H. Romero, D. C. Allan, B. Amadon, G. Antonius, T. Applencourt, L. Baguet, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet, F. Bruneval, G. Brunin, D. Caliste, M. Côté, J. Denier, C. Dreyer, P. Ghosez, M. Giantomassi, Y. Gillet, O. Gingras, ABINIT: Overview and focus on selected capabilities, J. Chem. Phys. 152, 124102 (2020) 0021-9606 10.1063/1.5144261.
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996) 0031-9007 10.1103/PhysRevLett.77.3865.
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994) 0163-1829 10.1103/PhysRevB.50.17953.
F. Jollet, M. Torrent, and N. Holzwarth, Generation of projector augmented-wave atomic data: A 71 element validated table in the XML format, Comput. Phys. Commun. 185, 1246 (2014) 0010-4655 10.1016/j.cpc.2013.12.023.
I. S. Novikov, K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev, The MLIP package: Moment tensor potentials with MPI and active learning, Machine Learn.: Sci. Technol. 2, 025002 (2021) 2632-2153 10.1088/2632-2153/abc9fe.
S. Ono and D. Kobayashi, Role of the M point phonons for the dynamical stability of B2 compounds, Sci. Rep. 12, 7258 (2022) 10.1038/s41598-022-10658-2.
A. Castellano, F. Bottin, J. Bouchet, A. Levitt, and G. Stoltz, Ab initio canonical sampling based on variational inference, Phys. Rev. B 106, L161110 (2022) 2469-9950 10.1103/PhysRevB.106.L161110.
E. V. Podryabinkin and A. V. Shapeev, Active learning of linearly parametrized interatomic potentials, Comput. Mater. Sci. 140, 171 (2017) 0927-0256 10.1016/j.commatsci.2017.08.031.
P. T. Jochym and C. Badger, jochym/elastic: Maintenance release, Zenodo (2018), doi: 10.5281/zenodo.593721.
A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comput. Phys. Commun. 271, 108171 (2022) 0010-4655 10.1016/j.cpc.2021.108171.
D. C. Wallace, Statistical Physics of Crystals and Liquids (World Scientific, Singapore, 2003), pp. 115-153.
G. Leibfried and W. Ludwig, Theory of anharmonic effects in crystals, in Solid State Physics (Elsevier, Amsterdam, 1961), pp. 275-444.
F. Knoop, N. Shulumba, A. Castellano, J. P. A. Batista, R. Farris, M. J. Verstraete, M. Heine, D. Broido, D. S. Kim, J. Klarbring, I. A. Abrikosov, S. I. Simak, and O. Hellman, TDEP: Temperature dependent effective potentials, J. Open Source Softw. 9, 6150 (2024) 2475-9066 10.21105/joss.06150.
A. Castellano, J. A. Arregi, V. Uhlí, B. Perrin, S. Université, and N. D. Paris, Magnetic phase dependency of the thermal conductivity of FeRh from thermoreflectance experiments and numerical simulations, HAL 1 (2024).