Dichalcogenides; Group velocities; Heat transport; Key factors; Layered material; Phonon lifetimes; Practical use; Silicene; Theoretical investigations; Thermal transport properties; Electronic, Optical and Magnetic Materials; Condensed Matter Physics
Abstract :
[en] Transition metal dichalcogenides (TMDs) are a class of layered materials that hold great promise for a wide range of applications. Their practical use can be limited by their thermal transport properties, which have proven challenging to determine accurately, both from a theoretical and experimental perspective. We have conducted a thorough theoretical investigation of the thermal conductivity of four common TMDs, MoSe2, WSe2, MoS2, and WS2, at room temperature, to determine the key factors that influence their thermal behavior. We analyze these materials using ab initio calculations performed with the siesta program, anharmonic lattice dynamics and the Boltzmann transport equation formalism, as implemented in the temperature-dependent effective potentials method. Within this framework, we analyze the microscopic parameters influencing the thermal conductivity, such as the phonon dispersion and the phonon lifetimes. The aim is to precisely identify the origin of differences in thermal conductivity among these canonical TMD materials. We compare their in-plane thermal properties in monolayer and bulk form, and we analyze how the thickness and the chemical composition affect the thermal transport behavior. We showcase how bonding and the crystal structure influence the thermal properties by comparing the TMDs with silicon, reporting the cases of bulk silicon and monolayer silicene. We find that the interlayer bond type (covalent vs. van der Waals) involved in the structure is crucial in the heat transport. In two-dimensional silicene, we observe a reduction by a factor ∼15 compared to the Si bulk thermal conductivity due to the smaller group velocities and shorter phonon lifetimes. In the TMDs, where the group velocities and the phonon bands do not vary significantly passing from the bulk to the monolayer limit, we do not see as strong a decrease in the thermal conductivity: only a factor 2-3. Moreover, our analysis reveals that differences in the thermal conductivity arise from variations in atomic species, bond strengths, and phonon lifetimes. These factors are closely interconnected and collectively impact the overall thermal conductivity. We inspect each of them separately and explain how they influence the heat transport. We also study artificial TMDs with modified masses, in order to assess how the chemistry of the compounds modifies the microscopic quantities and thus the thermal conductivity.
Disciplines :
Physics
Author, co-author :
Farris, Roberta ; Catalan Institute of Nanoscience and Nanotechnology - ICN2 (BIST and CSIC), Campus UAB, Barcelona, Spain
Hellman, Olle; Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
Zanolli, Zeila ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Chemistry Department, Debye Institute for Nanomaterials Science Condensed Matter and Interfaces, Utrecht University, Utrecht, Netherlands
Saleta Reig, David ; Catalan Institute of Nanoscience and Nanotechnology - ICN2 (BIST and CSIC), Campus UAB, Barcelona, Spain ; Department of Applied Physics, TU Eindhoven, Eindhoven, Netherlands
Varghese, Sebin ; Catalan Institute of Nanoscience and Nanotechnology - ICN2 (BIST and CSIC), Campus UAB, Barcelona, Spain ; Department of Applied Physics, TU Eindhoven, Eindhoven, Netherlands
Ordejón, Pablo ; Catalan Institute of Nanoscience and Nanotechnology - ICN2 (BIST and CSIC), Campus UAB, Barcelona, Spain
Tielrooij, Klaas-Jan ; Catalan Institute of Nanoscience and Nanotechnology - ICN2 (BIST and CSIC), Campus UAB, Barcelona, Spain ; Department of Applied Physics, TU Eindhoven, Eindhoven, Netherlands
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Physics Department, ITP Utrecht University, Utrecht, Netherlands
Language :
English
Title :
Microscopic understanding of the in-plane thermal transport properties of 2H transition metal dichalcogenides
EU - European Union AEI - Agencia Estatal de Investigación ERDF - European Regional Development Fund OCW - Ministerie van Onderwijs, Cultuur en Wetenschap ULiège - Université de Liège FWB - Fédération Wallonie-Bruxelles
Funding text :
We acknowledge Dr. Alois Castellano for providing the 4phi implementation in TDEP useful for computing the four phonons scattering contributions. R.F. and P.O. acknowledge support by the EU H2020-NMBP-TO-IND-2018 project \u201CINTERSECT\u201D (Grant No. 814487) and Grant No. PID2022-139776NB-C62 funded by Spanish MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe. R.F. and K.-J.T. acknowledge financial support by the Spanish State Research Agency under Contract No. PID2019-111673GB-I00/AEI/10.13039/501100011033 and the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement No. 804349 (ERC StG CUHL). M.-J.V. acknowledges funding from ARC project DREAMS (G.A. 21/25-11) funding by the Federation Wallonie Bruxelles and ULiege, Belgium. Z.Z. acknowledges financial support by the Netherlands Sector Plan program 2019-2023 and the research program \u201CMaterials for the Quantum Age\u201D (QuMat, registration number 024.005.006), part of the Gravitation program of the Dutch Ministry of Education, Culture and Science (OCW). We acknowledge a PRACE award granting access to MareNostrum4 at Barcelona Supercomputing Center (BSC), Spain and Discoverer in SofiaTech, Bulgaria (OptoSpin Project Id. 2020225411). The ICN2 is supported by the Severo Ochoa Centres of Excellence programme, Grant No. CEX2021-001214-S, funded by MCIN/AEI/10.13039.501100011033
P. Ajayan, P. Kim, and K. Banerjee, Two-dimensional van der Waals materials, Phys. Today 69 (9), 38 (2016) 0031-9228 10.1063/PT.3.3297.
A. Chaves, J. Azadani, H. Alsalman, D. Da Costa, R. Frisenda, A. Chaves, S. Song, Y. Kim, D. He, J. Zhou, A. Castellanos-Gomez, F. Peeters, Z. Liu, C. Hinkle, S.-H. Oh, P. Ye, S. Koester, Y. H. Lee, P. Avouris, and T. Low, Bandgap engineering of two-dimensional semiconductor materials, npj 2D Mater. appl. 4, 29 (2020) 2397-7132 10.1038/s41699-020-00162-4.
S. A. Han, R. Bhatia, and S.-W. Kim, Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides, Nano Convergence 2, 17 (2015) 2196-5404 10.1186/s40580-015-0048-4.
R. Peierls, Quantum Theory of Solids, International Series of Monographs on Physics (Clarendon Press, Oxford, 1955).
M. Born and K. Huang, Dynamical Theory of Crystal Lattices, International Series of Monographs on Physics (Clarendon Press, Oxford, 1988).
L. Lindsay, A. Katre, A. Cepellotti, and N. Mingo, Perspective on ab initio phonon thermal transport, J. Appl. Phys. 126, 050902 (2019) 0021-8979 10.1063/1.5108651.
A. McGaughey and X. Ruan, 2016 IMECE Tutorials on Phonon Transport Modeling (2017), https://nanohub.org/resources/25465.
B. D. Todd and P. J. Daivis, Nonequilibrium Molecular Dynamics: Theory, Algorithms and Applications (Cambridge University Press, Cambridge, 2017).
G. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids 34, 321 (1973) 0022-3697 10.1016/0022-3697(73)90092-9.
K. Y. Camsari, S. Chowdhury, and S. Datta, The nonequilibrium green function (NEGF) method, in Springer Handbooks (Springer International Publishing, Berlin, 2022), pp. 1583-1599.
X. Liu, G. Zhang, Q.-X. Pei, and Y.-W. Zhang, Phonon thermal conductivity of monolayer (Equation presented) sheet and nanoribbons, Appl. Phys. Lett. 103, 133113 (2013) 0003-6951 10.1063/1.4823509.
J. Zhang, Y. Hong, X. Wang, Y. Yue, D. Xie, J. Jiang, Y. Xiong, and P. Li, Phonon thermal properties of transition-metal dichalcogenides (Equation presented) and (Equation presented) heterostructure, J. Phys. Chem. C 121, 10336 (2017) 1932-7447 10.1021/acs.jpcc.7b02547.
K. Xu, A. J. Gabourie, A. Hashemi, Z. Fan, N. Wei, A. B. Farimani, H.-P. Komsa, A. V. Krasheninnikov, E. Pop, and T. Ala-Nissila, Thermal transport in (Equation presented) from molecular dynamics using different empirical potentials, Phys. Rev. B 99, 054303 (2019) 2469-9950 10.1103/PhysRevB.99.054303.
X. Wang and A. Tabarraei, Phonon thermal conductivity of monolayer (Equation presented), Appl. Phys. Lett. 108, 191905 (2016) 10.1063/1.4949561.
Y. Cai, J. Lan, G. Zhang, and Y.-W. Zhang, Lattice vibrational modes and phonon thermal conductivity of monolayer (Equation presented), Phys. Rev. B 89, 035438 (2014) 1098-0121 10.1103/PhysRevB.89.035438.
B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, Thermal conductivity of monolayer (Equation presented) and (Equation presented): Interplay of mass effect interatomic bonding and anharmonicity, RSC Adv. 6, 5767 (2016) 2046-2069 10.1039/C5RA19747C.
J. Su, Z.-t. Liu, L.-p. Feng, and N. Li, Effect of temperature on thermal properties of monolayer (Equation presented) sheet, J. Alloys Compd. 622, 777 (2015) 0925-8388 10.1016/j.jallcom.2014.10.191.
W. Li, J. Carrete, and N. Mingo, Thermal conductivity and phonon linewidths of monolayer (Equation presented) from first principles, Appl. Phys. Lett. 103, 253103 (2013) 0003-6951 10.1063/1.4850995.
X. Gu and R. Yang, Phonon transport in single-layer transition metal dichalcogenides: A first-principles study, Appl. Phys. Lett. 105, 131903 (2014) 0003-6951 10.1063/1.4896685.
A. N. Gandi and U. Schwingenschlögl, Thermal conductivity of bulk and monolayer (Equation presented), Europhys. Lett. 113, 36002 (2016) 0295-5075 10.1209/0295-5075/113/36002.
A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, and N. Marzari, Phonon hydrodynamics in two-dimensional materials, Nature Commun. 6, 6400 (2015) 2041-1723 10.1038/ncomms7400.
D. O. Lindroth and P. Erhart, Thermal transport in van der waals solids from first-principles calculations, Phys. Rev. B 94, 115205 (2016) 2469-9950 10.1103/PhysRevB.94.115205.
A. Kandemir, H. Yapicioglu, A. Kinaci, T. Çaǧin, and C. Sevik, Thermal transport properties of (Equation presented) and (Equation presented) monolayers, Nanotechnol. 27, 055703 (2016) 0957-4484 10.1088/0957-4484/27/5/055703.
M. K. Gupta, S. Kumar, R. Mittal, S. K. Mishra, S. Rols, O. Delaire, A. Thamizhavel, P. U. Sastry, and S. L. Chaplot, Distinct anharmonic characteristics of phonons driven lattice thermal conductivity and thermal expansion in bulk (Equation presented) and (Equation presented), J. Mater. Chem. A 11, 21864 (2023) 10.1039/D3TA03830K.
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964) 0031-899X 10.1103/PhysRev.136.B864.
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965) 0031-899X 10.1103/PhysRev.140.A1133.
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-(Equation presented) materials simulation, J. Phys.: Condens. Matter 14, 2745 (2002) 0953-8984 10.1088/0953-8984/14/11/302.
A. García, N. Papior, A. Akhtar, E. Artacho, V. Blum, E. Bosoni, P. Brandimarte, M. Brandbyge, J. I. Cerdá, F. Corsetti, SIESTA: Recent developments and applications, J. Chem. Phys. 152, 204108 (2020) 0021-9606 10.1063/5.0005077.
F. Knoop, N. Shulumba, A. Castellano, J. P. A. Batista, R. Farris, M. J. Verstraete, M. Heine, D. Broido, D. S. Kim, J. Klarbring, I. A. Abrikosov, S. I. Simak, and O. Hellman, Tdep: Temperature dependent effective potentials, J. Open Source Software 9, 6150 (2024) 2475-9066 10.21105/joss.06150.
O. Hellman, I. A. Abrikosov, and S. I. Simak, Lattice dynamics of anharmonic solids from first principles, Phys. Rev. B 84, 180301 (R) (2011) 1098-0121 10.1103/PhysRevB.84.180301.
O. Hellman, P. Steneteg, I. A. Abrikosov, and S. I. Simak, Temperature dependent effective potential method for accurate free energy calculations of solids, Phys. Rev. B 87, 104111 (2013) 1098-0121 10.1103/PhysRevB.87.104111.
A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1, 011002 (2013) 2166-532X 10.1063/1.4812323.
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996) 0031-9007 10.1103/PhysRevLett.77.3865.
K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Higher-accuracy van der Waals density functional, Phys. Rev. B 82, 081101 (R) (2010) 1098-0121 10.1103/PhysRevB.82.081101.
M. van Setten, M. Giantomassi, E. Bousquet, M. Verstraete, D. Hamann, X. Gonze, and G.-M. Rignanese, The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Commun. 226, 39 (2018) 0010-4655 10.1016/j.cpc.2018.01.012.
D. R. Hamann, M. Schlüter, and C. Chiang, Norm-conserving pseudopotentials, Phys. Rev. Lett. 43, 1494 (1979) 0031-9007 10.1103/PhysRevLett.43.1494.
A. H. Romero, E. K. U. Gross, M. J. Verstraete, and O. Hellman, Thermal conductivity in PbTe from first principles, Phys. Rev. B 91, 214310 (2015) 1098-0121 10.1103/PhysRevB.91.214310.
D. S. Kim, O. Hellman, N. Shulumba, C. N. Saunders, J. Y. Y. Lin, H. L. Smith, J. E. Herriman, J. L. Niedziela, D. L. Abernathy, C. W. Li, and B. Fultz, Temperature-dependent phonon lifetimes and thermal conductivity of silicon by inelastic neutron scattering and ab initio calculations, Phys. Rev. B 102, 174311 (2020) 2469-9950 10.1103/PhysRevB.102.174311.
J. Klarbring, O. Hellman, I. A. Abrikosov, and S. I. Simak, Anharmonicity and ultralow thermal conductivity in lead-free halide double perovskites, Phys. Rev. Lett. 125, 045701 (2020) 0031-9007 10.1103/PhysRevLett.125.045701.
D. Dangić, O. Hellman, S. Fahy, and I. Savić, The origin of the lattice thermal conductivity enhancement at the ferroelectric phase transition in GeTe, npj Comput. Mater. 7, 57 (2021) 2057-3960 10.1038/s41524-021-00523-7.
D. Saleta Reig, S. Varghese, R. Farris, A. Block, J. D. Mehew, O. Hellman, P. Woźniak, M. Sledzinska, A. El Sachat, E. Chávez-Źngel, S. O. Valenzuela, N. F. van Hulst, P. Ordejón, Z. Zanolli, C. M. Sotomayor Torres, M. J. Verstraete, and K.-J. Tielrooij, Unraveling heat transport and dissipation in suspended (Equation presented) from bulk to monolayer, Adv. Mater. 34, 2108352 (2022) 0935-9648 10.1002/adma.202108352.
I. Errea, M. Calandra, and F. Mauri, Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides, Phys. Rev. B 89, 064302 (2014) 1098-0121 10.1103/PhysRevB.89.064302.
S. Y. Hu, Y. C. Lee, J. L. Shen, K. W. Chen, and Y. S. Huang, Urbach tail in the absorption spectra of (Equation presented) layered crystals, Phys. Status Solidi (a) 204, 2389 (2007) 1862-6300 10.1002/pssa.200622443.
S. Alam, A. G. Gokhale, and A. Jain, Revisiting thermal transport in single-layer graphene: On the applicability of thermal snapshot interatomic force constant extraction methodology for layered materials, J. Appl. Phys. 133, 215102 (2023) 0021-8979 10.1063/5.0152112.
K. Esfarjani, G. Chen, and H. T. Stokes, Heat transport in silicon from first-principles calculations, Phys. Rev. B 84, 085204 (2011) 1098-0121 10.1103/PhysRevB.84.085204.
X. Wu, V. Varshney, J. Lee, Y. Pang, A. K. Roy, and T. Luo, How to characterize thermal transport capability of 2D materials fairly-sheet thermal conductance and the choice of thickness, Chem. Phys. Lett. 669, 233 (2017) 0009-2614 10.1016/j.cplett.2016.12.054.
A. Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer (Equation presented) and (Equation presented), Phys. Rev. B 84, 155413 (2011) 1098-0121 10.1103/PhysRevB.84.155413.
A. Ward and D. A. Broido, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge, Phys. Rev. B 81, 085205 (2010) 1098-0121 10.1103/PhysRevB.81.085205.
L. Lindsay, D. A. Broido, J. Carrete, N. Mingo, and T. L. Reinecke, Anomalous pressure dependence of thermal conductivities of large mass ratio compounds, Phys. Rev. B 91, 121202 (R) (2015) 1098-0121 10.1103/PhysRevB.91.121202.
I. M. Lifshitz, On thermal properties of chained and layered structures at low temperatures, Zh. Éksp. Teor. Fiz. 22, 475 (1952).
M. I. Katsnelson and A. Fasolino, Graphene as a prototype crystalline membrane, Acc. Chem. Res. 46, 97 (2013) 0001-4842 10.1021/ar300117m.
M. S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids, J. Chem. Phys. 22, 398 (1954) 0021-9606 10.1063/1.1740082.
R. Kubo, Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12, 570 (1957) 0031-9015 10.1143/JPSJ.12.570.
P. Jiang, X. Qian, X. Gu, and R. Yang, Probing anisotropic thermal conductivity of transition metal dichalcogenides (Equation presented) (M = Mo, W and X = S, Se) using time-domain thermoreflectance, Adv. Mater. 29, 1701068 (2017) 0935-9648 10.1002/adma.201701068.
S. Varghese, J. D. Mehew, A. Block, D. S. Reig, P. Woźniak, R. Farris, Z. Zanolli, P. Ordejón, M. J. Verstraete, N. F. Van Hulst, and K. J. Tielrooij, A pre-time-zero spatiotemporal microscopy technique for the ultrasensitive determination of the thermal diffusivity of thin films, Rev. Sci. Instrum. 94, 034903 (2023) 0034-6748 10.1063/5.0102855.
A. Mobaraki, C. Sevik, H. Yapicioglu, D. Çaklr, and O. Gülseren, Temperature-dependent phonon spectrum of transition metal dichalcogenides calculated from the spectral energy density: Lattice thermal conductivity as an application, Phys. Rev. B 100, 035402 (2019) 2469-9950 10.1103/PhysRevB.100.035402.
W.-X. Zhou and K.-Q. Chen, First-principles determination of ultralow thermal conductivity of monolayer (Equation presented), Sci. Rep. 5, 15070 (2015) 2045-2322 10.1038/srep15070.
K. Yuan, X. Zhang, L. Li, and D. Tang, Effects of tensile strain and finite size on thermal conductivity in monolayer (Equation presented), Phys. Chem. Chem. Phys. 21, 468 (2019) 1463-9076 10.1039/C8CP06414H.
Z. Ding, J.-W. Jiang, Q.-X. Pei, and Y.-W. Zhang, In-plane and cross-plane thermal conductivities of molybdenum disulfide, Nanotechnol. 26, 065703 (2015) 0957-4484 10.1088/0957-4484/26/6/065703.
S. Kumar and U. Schwingenschlögl, Thermoelectric response of bulk and monolayer (Equation presented) and (Equation presented), Chem. Mater. 27, 1278 (2015) 0897-4756 10.1021/cm504244b.
X. Gu, B. Li, and R. Yang, Layer thickness-dependent phonon properties and thermal conductivity of (Equation presented), J. Appl. Phys. 119, 085106 (2016) 0021-8979 10.1063/1.4942827.
N. Bonini, J. Garg, and N. Marzari, Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene, Nano Lett. 12, 2673 (2012) 1530-6984 10.1021/nl202694m.
L. Pan, J. Carrete, and Z. Wang, Strain-tunable lattice thermal conductivity of the janus ptste monolayer, J. Phys.: Condens. Matter 34, 015303 (2021) 0953-8984 10.1088/1361-648X/ac2a7a.
B. Peng, D. Zhang, H. Zhang, H. Shao, G. Ni, Y. Zhu, and H. Zhu, The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials, Nanoscale 9, 7397 (2017) 2040-3364 10.1039/C7NR00838D.
D. Jose and A. Datta, Structures and chemical properties of silicene: Unlike graphene, Acc. Chem. Res. 47, 593 (2014) 0001-4842 10.1021/ar400180e.
E. Scalise, M. Houssa, G. Pourtois, B. van den Broek, V. Afanas'ev, and A. Stesmans, Vibrational properties of silicene and germanene, Nano Res. 6, 19 (2013) 1998-0124 10.1007/s12274-012-0277-3.
J. E. Padilha and R. B. Pontes, Free-standing bilayer silicene: The effect of stacking order on the structural, electronic, and transport properties, J. Phys. Chem. C 119, 3818 (2015) 1932-7447 10.1021/jp512489m.
M. Barhoumi, K. Lazaar, and M. Said, DFT study of the electronic and vibrational properties of silicene/stanene heterobilayer, Physica E 111, 127 (2019) 1386-9477 10.1016/j.physe.2019.03.009.
C. Qian and Z. Li, Multilayer silicene: Structure, electronics, and mechanical property, Comput. Mater. Sci. 172, 109354 (2020) 0927-0256 10.1016/j.commatsci.2019.109354.
H. Xie, M. Hu, and H. Bao, Thermal conductivity of silicene from first-principles, Appl. Phys. Lett. 104, 131906 (2014) 0003-6951 10.1063/1.4870586.
T. Feng and X. Ruan, Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids, Phys. Rev. B 93, 045202 (2016) 2469-9950 10.1103/PhysRevB.93.045202.
T. Feng and X. Ruan, Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons, Phys. Rev. B 97, 045202 (2018) 2469-9950 10.1103/PhysRevB.97.045202.
A. G. Gokhale, D. Visaria, and A. Jain, Cross-plane thermal transport in (Equation presented), Phys. Rev. B 104, 115403 (2021) 2469-9950 10.1103/PhysRevB.104.115403.
S. Chaudhuri, A. Bhattacharya, A. K. Das, G. P. Das, and B. N. Dev, Strain driven anomalous anisotropic enhancement in the thermoelectric performance of monolayer (Equation presented), Appl. Surf. Sci. 626, 157139 (2023) 10.1016/j.apsusc.2023.157139.
A. Sood, F. Xiong, S. Chen, R. Cheaito, F. Lian, M. Asheghi, Y. Cui, D. Donadio, K. E. Goodson, and E. Pop, Quasi-ballistic thermal transport across (Equation presented) thin films, Nano Lett. 19, 2434 (2019) 1530-6984 10.1021/acs.nanolett.8b05174.