gravitational lensing; multiply imaged quasars; Quasar; spectroscopy; Extraction techniques; Gravitational lensing; High signals; Masking technique; Multiple source; Multiply imaged quasar; Signal to noise; Source spectrum; Spectroscopic identification; Multidisciplinary
Abstract :
[en] Gravitational lensing is one of the most efficient tools for studying the Universe. However, spectral confirmation of such sources necessitates thorough calibration. This paper discusses the spectral extraction technique for the case where multiple source spectra are close to each other. Using the masking technique, we first identify high signal-to-noise (S/N) peaks in the CCD spectral image corresponding to the location of the source spectra. This technique calculates the cumulative signal via a weighted sum, providing a reliable approximation for the total counts contributed by each source spectrum. Subsequently, we proceed with the removal of the contaminating spectra. Through the application of this method, we confirm the nature of 11 candidate lensed quasars.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Jalan, Priyanka ; Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland
Negi, Vibhore ; Aryabhatta Research Institute of Observational Sciences, Nainital, India
Surdej, Jean ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Boehm, Céline ; School of Physics, The University of Sydney, Australia
Delchambre, Ludovic ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Den Brok, Jakob Sebastian ; Sydney Institute for Astronomy, School of Physics, University of Sydney, Australia
Dobie, Dougal ; Argelander-Institut für Astronomie, Universität Bonn, Bonn, Germany
Drake, Andrew ; Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, United States
Ducourant, Christine ; Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, Pessac, France
Djorgovski, S. George ; Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, United States
Galluccio, Laurent ; Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France
Graham, Matthew J. ; Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, United States
Klüter, Jonas ; Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Heidelberg, Germany ; Department of Physics & Astronomy, Louisiana State University, Baton Rouge, United States
Krone-Martins, Alberto ; Donald Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, United States ; CENTRA, Faculdade de Cincias, Universidade de Lisboa, Lisbon, Portugal
Lecampion, Jean-François; Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, Pessac, France
Mahabal, Ashish A. ; Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, United States
Mignard, François; Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France
Murphy, Tara ; Argelander-Institut für Astronomie, Universität Bonn, Bonn, Germany
Nierenberg, Anna ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Scarano, Sergio ; Departamento de Física – CCET, Universidade Federal de Sergipe, São Cristóvão, Brazil
Simon, Joseph ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Slezak, Eric ; Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France
Sluse, Dominique ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Spíndola-Duarte, Carolina ; Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Cidade Universitária, São Paulo, Brazil
Stern, Daniel ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
Teixera, Ramachrisna ; Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Cidade Universitária, São Paulo, Brazil
Wambsganss, Joachim ; Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Heidelberg, Germany ; International Space Science Institute (ISSI), Bern, Switzerland
GraL Spectroscopic Identification of Multiply Imaged Quasars
Publication date :
2024
Event name :
3rd BINA Workshop on the Scientific Potential of the Indo-Belgian Cooperation
Event date :
22-24 March 2023
Audience :
International
Journal title :
Bulletin de la Société Royale des Sciences de Liège
ISSN :
0037-9565
eISSN :
1783-5720
Publisher :
Societe Royale des Sciences de Liege
Volume :
93
Issue :
2
Pages :
752 - 765
Peer review/Selection committee :
Peer reviewed
Funding text :
This work is partially based on the observations obtained at the 3.6 m Devasthal Optical Telescope (DOT) under programme ID DOT-2020-C2-P49, DOT-2020-C2-P50, DOT-2020-C2-P54, DOT-2020-C2-P59, DOT-2021-C1-P11, DOT-2021-C1-P12, DOT-2021-C1-P17, DOT-2021-C1-P33, which is a National Facility run and managed by Aryabhatta Research Institute of observational sciencES (ARIES), an autonomous Institute under the Department of Science and Technology, Government of India. The observations are also based on the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme(s) P103.A-0077, P104.A-575, P105.A-205, P106.A.215V, P108.223G, P111.24HD. PJ was supported by the Polish National Science Center through grant no. 2020/38/E/ST9/00395. This work is supported by the Belgo-Indian Network for Astronomy and astrophysics (BINA), approved by the International Division, Department of Science and Technology (DST, Govt. of India; DST/INT/BELG/P-09/2017) and the Belgian Federal Science Policy Office (BELSPO, Govt. of Belgium; BL/33/IN12).
Agnello, A., Lin, H., Kuropatkin, N., Buckley-Geer, E., Anguita, T., Schechter, P. L., Morishita, T., Motta, V., Rojas, K., Treu, T., Amara, A., Auger, M. W., Courbin, F., Fassnacht, C. D., Frieman, J., More, A., Marshall, P. J., McMahon, R. G., Meylan, G., Suyu, S. H., Glazebrook, K., Morgan, N., Nord, B., Abbott, T. M. C., Abdalla, F. B., Annis, J., Bechtol, K., Benoit-Lévy, A., Bertin, E., Bernstein, R. A., Brooks, D., Burke, D. L., Rosell, A. C., Carretero, J., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., Desai, S., Drlica-Wagner, A., Eifler, T. F., Flaugher, B., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Lima, M., Maia, M. A. G., March, M., Menanteau, F., Miquel, R., Ogando, R. L. C., Plazas, A. A., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. and Wechsler, R. (2018) DES meets Gaia: discovery of strongly lensed quasars from a multiplet search. MNRAS, 479(4), 4345–4354. https://doi.org/10.1093/mnras/sty1419.
Bailer-Jones, C. A. L., Fouesneau, M. and Andrae, R. (2019) Quasar and galaxy classification in Gaia Data Release 2. MNRAS, 490(4), 5615–5633. https://doi.org/10.1093/mnras/stz2947.
Bechtold, J. and Yee, H. K. C. (1995) High spatial resolution spectroscopy of the Lyman-alpha absorption towards the gravitational lens system B1422+2309. AJ, 110, 1984–1992. https://doi.org/10.1086/117664.
Blandford, R. D. and Narayan, R. (1992) Cosmological applications of gravitational lensing. ARA&A, 30, 311–358. https://doi.org/10.1146/annurev.astro.30.1.311.
Cao, S., Biesiada, M., Gavazzi, R., Piórkowska, A. and Zhu, Z.-H. (2015) Cosmology with strong-lensing systems. ApJ, 806(2), 185. https://doi.org/10.1088/0004-637X/806/2/185.
Creevey, O. L., Sordo, R., Pailler, F., Frémat, Y., Heiter, U., Thévenin, F., Andrae, R., Fouesneau, M., Lobel, A., Bailer-Jones, C. A. L., Garabato, D., Bellas-Velidis, I., Brugaletta, E., Lorca, A., Ordenovic, C., Palicio, P. A., Sarro, L. M., Delchambre, L., Drimmel, R., Rybizki, J., Torralba Elipe, G., Korn, A. J., Recio-Blanco, A., Schultheis, M. S., De Angeli, F., Montegriffo, P., Abreu Aramburu, A., Accart, S., Álvarez, M. A., Bakker, J., Brouillet, N., Burlacu, A., Carballo, R., Casamiquela, L., Chiavassa, A., Contursi, G., Cooper, W. J., Dafonte, C., Dapergolas, A., de Laverny, P., Dharmawardena, T. E., Edvardsson, B., Le Fustec, Y., García-Lario, P., García-Torres, M., Gomez, A., González-Santamaría, I., Hatzidimitriou, D., Jean-Antoine Piccolo, A., Kontiza, M., Kordopatis, G., Lanzafame, A. C., Lebreton, Y., Licata, E. L., Lindstrøm, H. E. P., Livanou, E., Magdaleno Romeo, A., Manteiga, M., Marocco, F., Marshall, D. J., Mary, N., Nicolas, C., Pallas-Quintela, L., Panem, C., Pichon, B., Poggio, E., Riclet, F., Robin, C., Santoveña, R., Silvelo, A., Slezak, I., Smart, R. L., Soubiran, C., Süveges, M., Ulla, A., Utrilla, E., Vallenari, A., Zhao, H., Zorec, J., Barrado, D., Bijaoui, A., Bouret, J.-C., Blomme, R., Brott, I., Cassisi, S., Kochukhov, O., Martayan, C., Shulyak, D. and Silvester, J. (2023) Gaia Data Release 3. Astrophysical parameters inference system (Apsis). I. Methods and content overview. A&A, 674, A26. https://doi.org/10.1051/0004-6361/202243688.
de Souza, R. E., Krone-Martins, A., dos Anjos, S., Ducourant, C. and Teixeira, R. (2014) Detection of galaxies with Gaia. A&A, 568, A124. https://doi.org/10.1051/0004-6361/201423514.
Delchambre, L. (2018) Determination of astrophysical parameters of quasars within the Gaia mission. MNRAS, 473(2), 1785–1800. https://doi.org/10.1093/mnras/stx2417.
Delchambre, L., Krone-Martins, A., Wertz, O., Ducourant, C., Galluccio, L., Klüter, J., Mignard, F., Teixeira, R., Djorgovski, S. G., Stern, D., Graham, M. J., Surdej, J., Bastian, U., Wambsganss, J., Le Campion, J.-F. and Slezak, E. (2019) Gaia GraL: Gaia DR2 gravitational lens systems. III. A systematic blind search for new lensed systems. A&A, 622, A165. https://doi.org/10.1051/0004-6361/201833802.
Dolan, J. F., Michalitsianos, A. G., Nguyen, Q. T. and Hill, R. J. (2000) Ultraviolet spectral variability and the Lyα forest in the lensed quasar Q0957+561. ApJ, 539(1), 111–123. https://doi.org/10.1086/309206.
Ducourant, C., Wertz, O., Krone-Martins, A., Teixeira, R., Le Campion, J.-F., Galluccio, L., Klüter, J., Delchambre, L., Surdej, J., Mignard, F., Wambsganss, J., Bastian, U., Graham, M. J., Djorgovski, S. G. and Slezak, E. (2018) Gaia GraL: Gaia DR2 gravitational lens systems. II. The known multiply imaged quasars. A&A, 618, A56. https://doi.org/10.1051/0004-6361/201833480.
Efstathiou, G., Sutherland, W. J. and Maddox, S. J. (1990) The cosmological constant and cold dark matter. Natur, 348, 705–707. https://doi.org/10.1038/348705a0.
Finet, F. and Surdej, J. (2016) Multiply imaged quasi-stellar objects in the Gaia survey. A&A, 590, A42. https://doi.org/10.1051/0004-6361/201425411.
Hubble, E. (1929) A relation between distance and radial velocity among extra-galactic nebula. PNAS, 15(3), 168–173. https://doi.org/10.1073/pnas.15.3.168.
Jimenez, R., Verde, L., Treu, T. and Stern, D. (2003) Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the cosmic microwave background. ApJ, 593(2), 622–629. https://doi.org/10.1086/376595.
Kelly, P. L., Rodney, S., Treu, T., Oguri, M., Chen, W., Zitrin, A., Birrer, S., Bonvin, V., Dessart, L., Diego, J. M., Filippenko, A. V., Foley, R. J., Gilman, D., Hjorth, J., Jauzac, M., Mandel, K., Millon, M., Pierel, J., Sharon, K., Thorp, S., Williams, L., Broadhurst, T., Dressler, A., Graur, O., Jha, S., McCully, C., Postman, M., Schmidt, K. B., Tucker, B. E. and von der Linden, A. (2023) Constraints on the Hubble constant from supernova Refsdal’s reappearance. Sci, 380, abh1322. https://doi.org/10.1126/science.abh1322.
Krone-Martins, A., Delchambre, L., Wertz, O., Ducourant, C., Mignard, F., Teixeira, R., Klüter, J., Le Campion, J.-F., Galluccio, L., Surdej, J., Bastian, U., Wambsganss, J., Graham, M. J., Djorgovski, S. G. and Slezak, E. (2018) Gaia GraL: Gaia DR2 gravitational lens systems. I. New quadruply imaged quasar candidates around known quasars. A&A, 616, L11. https://doi.org/10.1051/0004-6361/201833337.
Krone-Martins, A., Ducourant, C., Teixeira, R., Galluccio, L., Gavras, P., dos Anjos, S., de Souza, R. E., Machado, R. E. G. and Le Campion, J.-F. (2013) Pushing the limits of the Gaia space mission by analyzing galaxy morphology. A&A, 556, A102. https: //doi.org/10.1051/0004-6361/201219697.
Krone-Martins, A., Graham, M. J., Stern, D., Djorgovski, S. G., Delchambre, L., Ducourant, C., Teixeira, R., Drake, A. J., Scarano, S., Surdej, J., Galluccio, L., Jalan, P., Wertz, O., Klüter, J., Mignard, F., Spindola-Duarte, C., Dobie, D., Slezak, E., Sluse, D., Murphy, T., Boehm, C., Nierenberg, A. M., Bastian, U., Wambsganss, J. and LeCampion, J. F. (2019) Gaia GraL: Gaia DR2 gravitational lens systems. V. Doubly-imaged QSOs discovered from entropy and wavelets. arXiv e-prints: 1912.08977. https://doi.org/10.48550/arXiv.1912.08977.
Lemaître, G. (1927) Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. ASSB, 47, 49–59.
Lemon, C. A., Auger, M. W. and McMahon, R. G. (2019) Gravitationally lensed quasars in Gaia – III. 22 new lensed quasars from Gaia data release 2. MNRAS, 483(3), 4242–4258. https://doi.org/10.1093/mnras/sty3366.
Lemon, C. A., Auger, M. W., McMahon, R. G. and Ostrovski, F. (2018) Gravitationally lensed quasars in Gaia – II. Discovery of 24 lensed quasars. MNRAS, 479(4), 5060–5074. https://doi.org/10.1093/mnras/sty911.
Lotze, K.-H. and Simionato, S. (2022) Henry Cavendish on gravitational deflection of light. AnP, 534(7), 2200102. https://doi.org/10.1002/andp.202200102.
Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G., Deustua, S., Fabbro, S., Goobar, A., Groom, D. E., Hook, I. M., Kim, A. G., Kim, M. Y., Lee, J. C., Nunes, N. J., Pain, R., Pennypacker, C. R., Quimby, R., Lidman, C., Ellis, R. S., Irwin, M., McMahon, R. G., Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B. J., Filippenko, A. V., Matheson, T., Fruchter, A. S., Panagia, N., Newberg, H. J. M., Couch, W. J. and The Supernova Cosmology Project (1999) Measurements of Ω and Λ from 42 high-redshift supernovae. ApJ, 517(2), 565–586. https://doi.org/10.1086/307221.
Rauch, M., Sargent, W. L. W., Barlow, T. A. and Carswell, R. F. (2001) Small-scale structure at high redshift. III. The clumpiness of the intergalactic medium on subkiloparsec scales. ApJ, 562(1), 76–87. https://doi.org/10.1086/323523.
Refsdal, S. (1964) On the possibility of determining hubble’s parameter and the masses of galaxies from the gravitational lens effect. MNRAS, 128, 307–310. https://doi.org/10.1093/mnras/128.4.307.
Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B. and Tonry, J. (1998) Observational evidence from supernovae for an accelerating universe and a cosmological constant. AJ, 116(3), 1009–1038. https://doi.org/10.1086/300499.
Stern, D., Djorgovski, S. G., Krone-Martins, A., Sluse, D., Delchambre, L., Ducourant, C., Teixeira, R., Surdej, J., Boehm, C., den Brok, J., Dobie, D., Drake, A., Galluccio, L., Graham, M. J., Jalan, P., Klüter, J., Le Campion, J. F., Mahabal, A., Mignard, F., Murphy, T., Nierenberg, A., Scarano, J., S., Simon, J., Slezak, E., Spindola-Duarte, C. and Wambsganss, J. (2021) Gaia GraL: Gaia DR2 gravitational lens systems. VI. Spectroscopic confirmation and modeling of quadruply imaged lensed quasars. ApJ, 921(1), 42. https://doi.org/10.3847/1538-4357/ac0f04.
Surdej, J. and Refsdal, S. (1994) Gravitational Lensing as a Tool: Future Observational Prospects, pp. 409–419. Springer Netherlands, Dordrecht. https://doi.org/10.1007/ 978-94-011-0794-5_40.
Tsalmantza, P., Karampelas, A., Kontizas, M., Bailer-Jones, C. A. L., Rocca-Volmerange, B., Livanou, E., Bellas-Velidis, I., Kontizas, E. and Vallenari, A. (2012) A semi-empirical library of galaxy spectra for gaia classification based on SDSS data and PÉGASE models. A&A, 537, A42. https://doi.org/10.1051/0004-6361/201117125.
Tzanavaris, P. and Carswell, R. F. (2003) Size estimates for intervening CIV absorbers from high-resolution spectroscopy of APM 0827+5255. MNRAS, 340(3), 937–948. https://doi.org/10.1046/j.1365-8711.2003.06355.x.
Walsh, D., Carswell, R. F. and Weymann, R. J. (1979) 0957+561 A, B: twin quasistellar objects or gravitational lens? Natur, 279, 381–384. https://doi.org/10.1038/279381a0.
Wertz, O., Stern, D., Krone-Martins, A., Delchambre, L., Ducourant, C., Gråe Jørgensen, U., Dominik, M., Burgdorf, M., Surdej, J., Mignard, F., Teixeira, R., Galluccio, L., Klüter, J., Djorgovski, S. G., Graham, M. J., Bastian, U., Wambsganss, J., Boehm, C., LeCampion, J.-F. and Slezak, E. (2019) Gaia GraL: Gaia DR2 gravitational lens systems. IV. Keck/LRIS spectroscopic confirmation of GRAL 113100-441959 and model prediction of time delays. A&A, 628, A17. https://doi.org/10.1051/0004-6361/201834573.
Zwicky, F. (1937) Nebulae as gravitational lenses. PhRv, 51(4), 290–290. https://doi.org/10.1103/PhysRev.51.290.