[en] The study investigates the rheological properties and protein release capacity of a uniform hydrogel composed of sodium alginate (SA) and poloxamer (P407). The hydrogel is prepared through the sustained release of calcium ions, resulting in a reinforced and homogeneous interpenetrating networks (IPNs) of SA and P407 polymeric chains. By adjusting the amount of crosslink agent, the hydrogel exhibites an adjustable dissolution ratio and adaptable gelling time. Moreover, the composite showed a well-structured network and superior mechanical strength, enabling the sustained release of both calcium ions and Soybean Trypsin Inhibitor (STI) protein, a model of Bone Morphogenic Protein (BMP). Importantly, the protein release kinetic can be tuned based on the SA content in the polymeric blend, highlighting the versatile nature of this hydrogel for drug delivery purposes.
Disciplines :
Pharmacy, pharmacology & toxicology Chemical engineering Materials science & engineering
Author, co-author :
Monteiro, Ana P F ; Interfaculty Research Center of Biomaterials (CEIB), University of Liège, Liège, Belgium ; Department of Chemical Engineering - Nanomaterials, Catalysis and Electrochemistry (NCE), University of Liège, Liège, Belgium
Pérez-Jiménez, Aurora; Interfaculty Research Center of Biomaterials (CEIB), University of Liège, Liège, Belgium
Spitzlei, Claire; Interfaculty Research Center of Biomaterials (CEIB), University of Liège, Liège, Belgium
Alves, Vitor Delgado; LEAF-Linking Landscape Environment Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
Lambert, Stéphanie ; Université de Liège - ULiège > Department of Chemical Engineering
Grandfils, Christian ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Language :
English
Title :
Interpenetrating alginate network as drug delivery matrix: Effects on protein stability and release.
Publication date :
January 2024
Journal title :
Journal of Biomedical Materials Research. Part B, Applied Biomaterials
Ana P. F. Monteiro and Stéphanie D. Lambert thank the Belgian National Funds for Scientific Research (F.R.S.-FNRS) for their post-doctoral fellow grant and Senior Associate Researcher position, respectively. The authors acknowledge the Ministère de la Région Wallonne Direction Générale des Technologies, de la Recherche et de l'Energie and the Fonds de Bay, and the financial support from Fundação para a Ciência e a Tecnologia (FCT) through the strategic project UIDB/04129/2020 granted to LEAF-Linking Landscape, Environment, Agriculture and Food Research Unit.
Sharma S, Tiwari S. A review on biomacromolecular hydrogel classification and its applications. Int J Biol Macromol. 2020;162:737-747. doi:10.1016/J.IJBIOMAC.2020.06.110
Caló E, Khutoryanskiy V. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252-267. doi:10.1016/J.EURPOLYMJ.2014.11.024
Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106-126. doi:10.1016/j.progpolymsci.2011.06.003
Cattelan G, Guerrero Gerbolés A, Foresti R, et al. Alginate formulations: current developments in the race for hydrogel-based cardiac regeneration. Front Bioeng Biotechnol. 2020;8.
Puscaselu RG, Lobiuc A, Dimian M, Covasa M. Alginate: From food industry to biomedical applications and management of metabolic disorders. Polymers. 2020;12. doi:10.3390/polym12102417
Kong HJ, Smith MK, Mooney DJ. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials. 2003;24:4023-4029. doi:10.1016/S0142-9612(03)00295-3
Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;22:511-521. doi:10.1016/S0142-9612(00)00201-5
Bruchet M, Melman A. Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange. Carbohydr Polym. 2015;131:57-64. doi:10.1016/J.CARBPOL.2015.05.021
Zhang X, Wang K, Hu J, Zhang Y, Dai Y, Xia F. Role of a High Calcium Ion Content in Extending the Properties of Alginate Dual-Crosslinked Hydrogels †. 2020. doi:10.1039/d0ta09315g
Hong S, Sycks D, Fai Chan H, et al. 3D printing of highly stretchable and tough hydrogels into complex, Cellularized structures. Adv Mater. 2015;27:4035-4040. doi:10.1002/adma.201501099
Li J, Illeperuma WRK, Suo Z, Vlassak JJ. Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett. 2014;3:25-523. doi:10.1021/mz5002355
Dragan ES. Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J. 2014;243:572-590. doi:10.1016/J.CEJ.2014.01.065
Russo E, Villa C. Poloxamer hydrogels for biomedical applications. Pharmaceutics. 2019;11:671. doi:10.3390/pharmaceutics11120671
Quah SP, Nykypanchuk D, Bhatia SR. Temperature-dependent structure and compressive mechanical behavior of alginate/polyethylene oxide–poly(propylene oxide)–poly(ethylene oxide) hydrogels. J Biomed Mater Res B Appl Biomater. 2020;108:834-844. doi:10.1002/jbm.b.34437
Hom WL, Bhatia SR. Significant enhancement of elasticity in alginate-clay nanocomposite hydrogels with PEO-PPO-PEO copolymers. Polymer (Guildf). 2017;109:170-175. doi:10.1016/J.POLYMER.2016.12.058
Grassi G, Crevatin A, Farra R, et al. Rheological properties of aqueous Pluronic–alginate systems containing liposomes. J Colloid Interface Sci. 2006;301:282-290. doi:10.1016/J.JCIS.2006.04.068
Monteiro APF, Idczak G, Tilkin RG, et al. Evaluation of hydroxyapatite texture using CTAB template and effects on protein adsorption. Surf Interfaces. 2021;27:101565. doi:10.1016/J.SURFIN.2021.101565
Tilkin RG, Colle X, Argento Finol A, et al. Protein encapsulation in functionalized sol-gel silica: effect of the encapsulation method on the release kinetics and the activity. Microporous Mesoporous Mater. 2020;308:110502. doi:10.1016/j.micromeso.2020.110502
Imeson A. In: Imeson A, ed. Food Stabilisers, Thickeners and Gelling Agents. Wiley-Blackwell; 2010.
Khlibsuwan R, Khunkitti W, Pongjanyakul T. Alginate-poloxamer beads for clotrimazole delivery: molecular interactions, mechanical properties, and anticandidal activity. Int J Biol Macromol. 2020;148:1061-1071. doi:10.1016/j.ijbiomac.2020.01.217
Dang LH, Doan P, Nhi TTY, et al. Multifunctional injectable Pluronic-Cystamine-alginate-based hydrogel as a novel cellular delivery system towards tissue regeneration. Int J Biol Macromol. 2021;185:592-603. doi:10.1016/j.ijbiomac.2021.06.183
Giridhar Reddy S. Kinetic studies for the release of hydroxychloroquine sulphate drug (HCQ) in-vitro in simulated gastric and intestinal medium from sodium alginate and Lignosulphonic acid blends. Trends Sci. 2023;20. doi:10.48048/tis.2023.5318
Aashli, Reddy SG, Siva Kumar B, Prashanthi K, Murthy HCA. Fabricating transdermal film formulations of montelukast sodium with improved chemical stability and extended drug release. Heliyon. 2023;9:14469. doi:10.1016/j.heliyon.2023.e14469
Buyana B, Aderibigbe BA, Ndinteh DT, Fonkui YT, Kumar P. Alginate-Pluronic topical gels loaded with thymol, norfloxacin and ZnO nanoparticles as potential wound dressings. J Drug Deliv Sci Technol. 2020;60:101960. doi:10.1016/j.jddst.2020.101960
Chou HY, Weng CC, Lai JY, Lin SY, Tsai HC. Design of an Interpenetrating Polymeric Network Hydrogel Made of calcium-alginate from a thermos-sensitive Pluronic template as a thermal-ionic reversible wound dressing. Polymers (Basel). 2020;12:2138. doi:10.3390/POLYM12092138
Chen CC, Fang CL, Al-Suwayeh SA, Leu YL, Fang JY. Transdermal delivery of selegiline from alginate-Pluronic composite Thermogels. Int J Pharm. 2011;415:119-128. doi:10.1016/j.ijpharm.2011.05.060
Bioinspired Sodium Alginate Based Thermosensitive Hydrogel Membranes for Accelerated Wound Healing _ Elsevier Enhanced Reader.
Valerón Bergh VJ, Johannessen E, Andersen T, Tønnesen HH. Evaluation of porphyrin loaded dry alginate foams containing poloxamer 407 and β-cyclodextrin-derivatives intended for wound treatment. Pharm Dev Technol. 2018;23:761-770. doi:10.1080/10837450.2017.1314492
Liparoti S, Speranza V, Marra F. Alginate hydrogel: the influence of the hardening on the rheological behaviour. J Mech Behav Biomed Mater. 2021;116:104341. doi:10.1016/j.jmbbm.2021.104341