yao_2024_Recent advances in the magnetic reconnection dipolarization and auroral processes at giant planets from the perspective of comparative planetology.pdf
magnetic depolarization; magnetic reconnection; magnetosphere; Auroral process; Cassini; Comparative planetology; Dipolarization; Energization; Giant planets; Jupiters; Magnetic depolarization; Magnetic reconnections; Magnetospheric dynamics; Astronomy and Astrophysics; Atmospheric Science; Space and Planetary Science
Abstract :
[en] Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics, including particle energization, mass circulation, and auroral processes, among others. Recent studies have revealed that these processes at Saturn and Jupiter are fundamentally different from the ones at Earth. The reconnection and dipolarization processes are far more important than previously expected in the dayside magnetodisc of Saturn and potentially Jupiter. Dayside magnetodisc reconnection was directly identified by using Cassini measurements (Guo RL et al., 2018b) and was found to be drizzle-like and rotating in the magnetosphere of Saturn (Delamere et al., 2015b; Yao ZH et al., 2017a; Guo RL et al., 2019). Moreover, magnetic dipolarization could also exist at Saturn’s dayside (Yao ZH et al., 2018), which is fundamentally different from the terrestrial situation. These new results significantly improve our understanding of giant planetary magnetospheric dynamics and provide key insights revealing the physics of planetary aurorae. Here, we briefly review these recent advances and their potential implications for future investigations.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Yao, ZhongHua; Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China ; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
Guo, Ruilong ; Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, China
Wei, Yong; Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China ; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Zhang, BinZheng; Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong
Dunn, William R.; Department of Physics and Astronomy, University College London, London, United Kingdom
Pu, ZuYin; School of Earth and Space Sciences, Peking University, Beijing, China
Language :
English
Title :
Recent advances in the magnetic reconnection, dipolarization, and auroral processes at giant planets from the perspective of comparative planetology
Z. Y. acknowledges the National Natural Science Foundation of China (Grant No. 42074211). The authors wish to thank the International Space Science Institute in Beijing (ISSI-BJ) for supporting and hosting the meetings of the International Team on \u201CThe Morphology of Auroras at Earth and Giant Planets: Characteristics and Their Magnetospheric Implications,\u201D during which the discussions leading or contributing to this publication were initiated or held.
Aizawa, S., Harada, Y., André, N., Saito, Y., Barabash, S., Delcourt, D., Sauvaud, J. A., Barthe, A., Fedorov, A., … Murakami, G. (2023). Direct evidence of substorm-related impulsive injections of electrons at Mercury. Nat. Commun., 14(1), 4019. https://doi.org/10.1038/s41467-023-39565-4
Akasofu, S. I. (1964). The development of the auroral substorm. Planet. Space Sci., 12(4), 273–282. https://doi.org/10.1016/0032-0633(64)90151-5
Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey, H., Phan, T., Sibeck, D. G., Glassmeier, K. H., … Kepko, L. (2008). Tail reconnection triggering substorm onset. Science, 321(5891), 931–935. https://doi.org/10.1126/science.1160495
Arridge, C. S. (2015). Magnetotails of Uranus and Neptune. In A. Keiling et al. (Eds.), Magnetotails in the Solar System (pp. 119–133). Washington, DC: American Geophysical Union. https://doi.org/10.1002/9781118842324.ch7
Arridge, C. S., Eastwood, J. P., Jackman, C. M., Poh, G. K., Slavin, J. A., Thomsen, M. F., André, N., Jia, X., Kidder, A., … Dougherty, M. K. (2016). Cassini in situ observations of long-duration magnetic reconnection in Saturn’s magnetotail. Nat. Phys., 12(3), 268–271. https://doi.org/10.1038/nphys3565
Artemyev, A. V., Clark, G., Mauk, B., Vogt, M. F., and Zhang, X. J. (2020). Juno observations of heavy ion energization during transient dipolarizations in Jupiter magnetotail. J. Geophys. Res.: Space Phys., 125(5), e2020JA027933. https://doi.org/10.1029/2020JA027933
Ashour-Abdalla, M., El-Alaoui, M., Goldstein, M. L., Zhou, M., Schriver, D., Richard, R., Walker, R., Kivelson, M. G., and Hwang, K. J. (2011). Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nat. Phys., 7(4), 360–365. https://doi.org/10. 1038/nphys1903
Bader, A., Badman, S. V., Cowley, S. W. H., Yao, Z. H., Ray, L. C., Kinrade, J., Bunce, E. J., Provan, G., Bradley, T. J., … Pryor, W. R. (2019). The dynamics of Saturn’s main aurorae. Geophys. Res. Lett., 46(17-18), 10283–10294. https://doi.org/10.1029/2019GL084620
Badman, S. V., Branduardi-Raymont, G., Galand, M., Hess, S. L. G., Krupp, N., Lamy, L., Melin, H., and Tao, C. (2015). Auroral processes at the giant planets: energy deposition, emission mechanisms, morphology and spectra. Space Sci. Rev., 187(1-4), 99–179. https://doi.org/10.1007/s11214-014-0042-x
Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., and McPherron, R. L. (1996). Neutral line model of substorms: past results and present view. J. Geophys. Res.: Space. Phys., 101(A6), 12975–13010. https://doi.org/10.1029/95JA03753
Birn, J., Runov, A., and Hesse, M. (2015). Energetic ions in dipolarization events. J. Geophys. Res.: Space Phys., 120(9), 7698–7717. https://doi.org/10.1002/ 2015JA021372
Blöcker, A., Kronberg, E. A., Grigorenko, E. E., Roussos, E., and Clark, G. (2023). Dipolarization fronts in the Jovian magnetotail: statistical survey of ion intensity variations using Juno observations. J. Geophys. Res.: Space Phys., 128(4), e2023JA031312. https://doi.org/10.1029/2023JA031312
Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., Davis, M. W., Vogt, M. F., Gérard, J. C., … Kurth, W. S. (2017). Morphology of the UV aurorae Jupiter during Juno’s first perijove observations. Geophys. Res. Lett., 44(10), 4463–4471. https://doi.org/10.1002/2017GL073114
Bonfond, B., Yao, Z. H., and Grodent, D. (2020). Six pieces of evidence against the corotation enforcement theory to explain the main aurora at Jupiter. J. Geophys. Res.: Space Phys., 125(11), e2020JA028152. https://doi.org/10.1029/2020JA028152
Bonfond, B., Yao, Z. H., Gladstone, G. R., Grodent, D., Gérard, J. C., Matar, J., Palmaerts, B., Greathouse, T. K., Hue, V., … Bolton, S. J. (2021). Are dawn storms Jupiter’s auroral substorms?. AGU Adv., 2(1), e2020AV000275. https://doi.org/10.1029/2020AV000275
Connerney, J. E. P., Adriani, A., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Cowley, S. W. H., Gerard, J. C., Gladstone, G. R., … Waite, J. (2017). Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 356(6340), 826–832. https://doi.org/10.1126/science.aam5928
Delamere, P. A., and Bagenal, F. (2010). Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res.: Space Phys., 115(A10), A10201. https://doi.org/10.1029/2010JA015347
Delamere, P. A., Bagenal, F., Paranicas, C., Masters, A., Radioti, A., Bonfond, B., Ray, L., Jia, X., Nichols, J., and Arridge, C. (2015a). Solar wind and internally driven dynamics: influences on magnetodiscs and auroral responses. Space Sci. Rev., 187(1-4), 51–97. https://doi.org/10.1007/s11214-014-0075-1
Delamere, P. A., Otto, A., Ma, X., Bagenal, F., and Wilson, R. J. (2015b). Magnetic flux circulation in the rotationally driven giant magnetospheres. J. Geophys. Res.: Space Phys., 120(6), 4229–4245. https://doi.org/10.1002/2015JA021036
DiBraccio, G. A., and Gershman, D. J. (2019). Voyager 2 constraints on plasmoid-based transport at Uranus. Geophys. Res. Lett., 46(19), 10710–10718. https://doi.org/10.1029/2019GL083909
Dougherty, M. K., Kellock, S., Southwood, D. J., Balogh, A., Smith, E. J., Tsurutani, B. T., Gerlach, B., Glassmeier, K. H., Gleim, F., … Cowley, S. W. H. (2004). The Cassini magnetic field investigation. Space Sci. Rev., 114(1-4), 331–383. https://doi.org/10.1007/s11214-004-1432-2
Dumont, M., Grodent, D., Radioti, A., Bonfond, B., Roussos, E., and Paranicas, C. (2018). Evolution of the auroral signatures of Jupiter’s magnetospheric injections. J. Geophys. Res.: Space Phys., 123(10), 8489–8501. https://doi.org/10.1029/2018JA025708
Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6(2), 47–48. https://doi.org/10.1103/PhysRevLett.6.47
Eastwood, J. P., Brain, D. A., Halekas, J. S., Drake, J. F., Phan, T. D., Øieroset, M., Mitchell, D. L., Lin, R. P., and Acuña, M. (2008). Evidence for collisionless magnetic reconnection at Mars. Geophys. Res. Lett., 35(2), L02106. https:// doi.org/10.1029/2007GL032289
Escoubet, C. P., Schmidt, R., and Goldstein, M. L. (1997). Cluster-science and mission overview. In C. P. Escoubet et al. (Eds.), The Cluster and Phoenix Missions (pp. 11–32). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-011-5666-0_1
Fu, H. S., Khotyaintsev, Y. V., André, M., and Vaivads, A. (2011). Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophys. Res. Lett., 38(16), L16104. https://doi.org/10.1029/ 2011GL048528
Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., André, M., Sergeev, V. A., Huang, S. Y., Kronberg, E. A., and Daly, P. W. (2012). Pitch angle distribution of suprathermal electrons behind dipolarization fronts: a statistical overview. J. Geophys. Res.: Space Phys., 117(A12), A12221. https://doi.org/10.1029/ 2012JA018141
Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., Retinò, A., and André, M. (2013). Energetic electron acceleration by unsteady magnetic reconnection. Nat. Phys., 9(7), 426–430. https://doi.org/10.1038/nphys2664
Fu, H. S., Vaivads, A., Khotyaintsev, Y. V., Olshevsky, V., André, M., Cao, J. B., Huang, S. Y., Retinò, A., and Lapenta, G. (2015). How to find magnetic nulls and reconstruct field topology with MMS data?. J. Geophys. Res.: Space Phys., 120(5), 3758–3782. https://doi.org/10.1002/2015JA021082
Gabrielse, C., Angelopoulos, V., Runov, A., and Turner, D. L. (2012). The effects of transient, localized electric fields on equatorial electron acceleration and transport toward the inner magnetosphere. J. Geophys. Res.: Space Phys., 117(A10), A10213. https://doi.org/10.1029/2012JA017873
Gabrielse, C., Harris, C., Angelopoulos, V., Artemyev, A., and Runov, A. (2016). The role of localized inductive electric fields in electron injections around dipolarizing flux bundles. J. Geophys. Res.: Space Phys., 121(10), 9560–9585. https://doi.org/10.1002/2016JA023061
Gershman, D. J., DiBraccio, G. A., Connerney, J. E. P., Bagenal, F., Kurth, W. S., Hospodarsky, G. B., Spalsbury, L., Clark, G., Ebert, R. W., … Bolton, S. J. (2018). Juno constraints on the formation of Jupiter’s magnetospheric cushion region. Geophys. Res. Lett., 45(18), 9427–9434. https://doi.org/10.1029/2018GL079118
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., Versteeg, M. H., Persson, K. B., Young, M. K., … Denis, F. (2017). The ultraviolet spectrograph on NASA’s Juno mission. Space Sci. Rev., 213(1-4), 447–473. https://doi.org/10.1007/s11214-014-0040-z
Grodent, D., Gérard, J. C., Clarke, J. T., Gladstone, G. R., and Waite, J. H., Jr. (2004). A possible auroral signature of a magnetotail reconnection process on Jupiter. J. Geophys. Res.: Space Phys., 109(A5), A05201. https://doi.org/10.1029/2003JA010341
Grodent, D., Bonfond, B., Yao, Z., Gérard, J. C., Radioti, A., Dumont, M., Palmaerts, B., Adriani, A., Badman, S. V., … Valek, P. (2018). Jupiter’s aurora observed with HST during Juno orbits 3 to 7. J. Geophys. Res.: Space Phys., 123(5), 3299–3319. https://doi.org/10.1002/2017JA025046
Guo, R. L., Yao, Z. H., Sergis, N., Wei, Y., Mitchell, D., Roussos, E., Palmaerts, B., Dunn, W. R., Radioti, A., … Wan, W. X. (2018a). Reconnection acceleration in Saturn’s dayside magnetodisk: a multicase study with Cassini. Astrophys. J. Lett., 868(2), L23. https://doi.org/10.3847/2041-8213/aaedab
Guo, R. L., Yao, Z. H., Wei, Y., Ray, L. C., Rae, I. J., Arridge, C. S., Coates, A. J., Delamere, P. A., Sergis, N., … Dougherty, M. K. (2018b). Rotationally driven magnetic reconnection in Saturn’s dayside. Nat. Astron., 2(8), 640–645. https://doi.org/10.1038/s41550-018-0461-9
Guo, R. L., Yao, Z. H., Sergis, N., Wei, Y., Xu, X. J., Coates, A. J., Delamere, P. A., Roussos, E., Arridge, C. S., … Wan, W. X. (2019). Long-standing small-scale reconnection processes at Saturn revealed by Cassini. Astrophys. J. Lett., 884(1), L14. https://doi.org/10.3847/2041-8213/ab4429
Guo, R. L., Yao, Z. H., Dunn, W. R., Palmaerts, B., Sergis, N., Grodent, D., Badman, S. V., Ye, S. Y., Pu, Z. Y., … Dougherty, M. K. (2021a). A rotating azimuthally distributed auroral current system on Saturn revealed by the Cassini spacecraft. Astrophys. J. Lett., 919(2), L25. https://doi.org/10.3847/2041-8213/ac26b5
Guo, R. L., Yao, Z. H., Grodent, D., Bonfond, B., Clark, G., Dunn, W. R., Palmaerts, B., Mauk, B. H., Vogt, M. F., … Bolton, S. J. (2021b). Jupiter's double-arc aurora as a signature of magnetic reconnection: simultaneous observations from HST and Juno. Geophys. Res. Lett., 48(14), e2021GL093964. https://doi. org/10.1029/2021GL093964
Halekas, J. S., Eastwood, J. P., Brain, D. A., Phan, T. D., Øieroset, M., and Lin, R. P. (2009). In situ observations of reconnection Hall magnetic fields at Mars: evidence for ion diffusion region encounters. J. Geophys. Res.: Space Phys., 114(A11), A11204. https://doi.org/10.1029/2009JA014544
Hansen, C. J., Esposito, L., Stewart, A. I. F., Colwell, J., Hendrix, A., Pryor, W., Shemansky, D., and West, R. (2006). Enceladus’ water vapor plume. Science, 311(5766), 1422–1425. https://doi.org/10.1126/science.1121254
Harada, Y., Halekas, J. S., McFadden, J. P., Mitchell, D. L., Mazelle, C., Connerney, J. E. P., Espley, J., Larson, D. E., Brain, D. A., … Jakosky, B. M. (2015). Magnetic reconnection in the near-Mars magnetotail: MAVEN observations. Geophys. Res. Lett., 42(21), 8838–8845. https://doi.org/10.1002/2015GL065004
Harada, Y., Halekas, J. S., McFadden, J. P., Espley, J., DiBraccio, G. A., Mitchell, D. L., Mazelle, C., Brain, D. A., Andersson, L., … Jakosky, B. M. (2017). Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN. J. Geophys. Res.: Space Phys., 122(5), 5114–5131. https://doi.org/10.1002/ 2017JA023952
Hesse, M., and Cassak, P. A. (2020). Magnetic reconnection in the space sciences: past, present, and future. J. Geophys. Res.: Space Phys., 125(2), e2018JA025935. https://doi.org/10.1029/2018JA025935
Hill, T. W., Thomsen, M. F., Henderson, M. G., Tokar, R. L., Coates, A. J., McAndrews, H. J., Lewis, G. R., Mitchell, D. G., Jackman, C. M., … Young, D. T. (2008). Plasmoids in Saturn’s magnetotail. J. Geophys. Res.: Space Phys., 113(A1), A01214. https://doi.org/10.1029/2007JA012626
Hoyle, F. (1949). Some Recent Researches in Solar Physics. Cambridge: The University Press.
Jackman, C. M., Russell, C. T., Southwood, D. J., Arridge, C. S., Achilleos, N., and Dougherty, M.K. (2007). Strong rapid dipolarizations in Saturn’s magnetotail: in situ evidence of reconnection. Geophys. Res. Lett., 34(11), L11203. https://doi.org/10.1029/2007GL029764
Jackman, C. M., Arridge, C. S., Krupp, N., Bunce, E. J., Mitchell, D. G., McAndrews, H. J., Dougherty, M. K., Russell, C. T., Achilleos, N., … Coates, A. J. (2008). A multi-instrument view of tail reconnection at Saturn. J. Geophys. Res.: Space Phys., 113(A11), A11213. https://doi.org/10.1029/2008JA013592
Jackman, C. M., Slavin, J. A., and Cowley, S. W. H. (2011). Cassini observations of plasmoid structure and dynamics: implications for the role of magnetic reconnection in magnetospheric circulation at Saturn. J. Geophys. Res.: Space Phys., 116(A10), A10212. https://doi.org/10.1029/2011JA016682
Jackman, C. M., Thomsen, M. F., Mitchell, D. G., Sergis, N., Arridge, C. S., Felici, M., Badman, S. V., Paranicas, C., Jia, X., … Dougherty, M. K. (2015). Field dipolarization in Saturn’s magnetotail with planetward ion flows and energetic particle flow bursts: evidence of quasi-steady reconnection. J. Geophys. Res.: Space Phys., 120(5), 3603–3617. https://doi.org/10.1002/ 2015JA020995
Kasahara, S., Kronberg, E. A., Kimura, T., Tao, C., Badman, S. V., Masters, A., Retinò, A., Krupp, N., and Fujimoto, M. (2013). Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere. J. Geophys. Res.: Space Phys., 118(1), 375–384. https://doi.org/10.1029/2012JA018130
Kivelson, M. G., and Southwood, D. J. (2005). Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res.: Space Phys., 110(A12), A12209. https://doi.org/10.1029/ 2005JA011176
Krimigis, S. M., Sergis, N., Mitchell, D. G., Hamilton, D. C., and Krupp, N. (2007). A dynamic, rotating ring current around Saturn. Nature, 450(7172), 1050–1053. https://doi.org/10.1038/nature06425
Kronberg, E. A., Kasahara, S., Krupp, N., and Woch, J. (2012). Field-aligned beams and reconnection in the jovian magnetotail. Icarus, 217(1), 55–65. https://doi.org/10.1016/j.icarus.2011.10.011
Kull, H. J. (1991). Theory of the Rayleigh-Taylor instability. Phys. Rep., 206(5), 197–325. https://doi.org/10.1016/0370-1573(91)90153-D
Liou, K., Meng, C. I., Newell, P. T., Lui, A. T. Y., Reeves, G. D., and Belian, R. D. (2001). Particle injections with auroral expansions. J. Geophys. Res.: Space Phys., 106(A4), 5873–5881. https://doi.org/10.1029/2000JA003003
Liu, J., Angelopoulos, V., Zhou, X. Z., Runov, A., and Yao, Z. H. (2013). On the role of pressure and flow perturbations around dipolarizing flux bundles. J. Geophys. Res.: Space Phys., 118(11), 7104–7118. https://doi.org/10.1002/ 2013JA019256
Liu, J., Angelopoulos, V., Yao, Z. H., Chu, X. N., Zhou, X. Z., and Runov, A. (2018). The current system of dipolarizing flux bundles and their role as wedgelets in the substorm current wedge. In A. Keiling et al. (Eds.), Electric Currents in Geospace and Beyond (pp. 323–337). Hoboken, NJ: John Wiley and Sons, Inc. https://doi.org/10.1002/9781119324522.ch19
Lui, A. T. Y. (1991). A synthesis of magnetospheric substorm models. J. Geophys. Res.: Space Phys., 96(A2), 1849–1856. https://doi.org/10.1029/90JA02430
Lui, A. T. Y., Lopez, R. E., Anderson, B. J., Takahashi, K., Zanetti, L. J., McEntire, R. W., Potemra, T. A., Klumpar, D. M., Greene, E. M., and Strangeway, R. (1992). Current disruptions in the near-earth neutral sheet region. J. Geophys. Res.: Space Phys., 97(A2), 1461–1480. https://doi.org/10.1029/91JA02401
Lui, A. T. Y. (1996). Current disruption in the Earth’s magnetosphere: observations and models. J. Geophys. Res.: Space Phys., 101(A6), 13067–13088. https://doi.org/10.1029/96JA00079
Lui, A. T. Y. (2009). Comment on “Tail Reconnection Triggering Substorm Onset”. Science, 324(5933), 1391. https://doi.org/10.1126/science.1167726
Lui, A. T. Y. (2014). Evidence for two types of dipolarization in the Earth’s magnetotail. J. Atmos. Sol. Terr. Phys., 115–116, 17–24. https://doi.org/10.1016/j.jastp.2013.10.002
Masters, A. (2014). Magnetic reconnection at Uranus’ magnetopause. J. Geophys. Res.: Space Phys., 119(7), 5520–5538. https://doi.org/10.1002/ 2014JA020077
Masters, A., Fujimoto, M., Hasegawa, H., Russell, C. T., Coates, A. J., and Dougherty, M. K. (2014). Can magnetopause reconnection drive Saturn’s magnetosphere?. Geophys. Res. Lett., 41(6), 1862–1868. https://doi.org/10.1002/2014GL059288
Masters, A. (2015). Magnetic reconnection at Neptune’s magnetopause. J. Geophys. Res.: Space Phys., 120(1), 479–493. https://doi.org/10.1002/ 2014JA020744
Mauk, B. H., and Meng, C. I. (1987). Plasma injection during substorms. Phys. Scr., 1987(T18), 128–139. https://doi.org/10.1088/0031-8949/1987/T18/014
McPherron, R. L., Russell, C. T., Kivelson, M. G., and Coleman, P. J., Jr. (1973). Substorms in space: the correlation between ground and satellite observations of the magnetic field. Radio Sci., 8(11), 1059–1076. https://doi.org/10.1029/RS008i011p01059
Mendillo, M., Baumgardner, J., Flynn, B., and Hughes, W. J. (1990). The extended sodium nebula of Jupiter. Nature, 348(6299), 312–314. https://doi.org/10.1038/348312a0
Moore, T. E., Arnoldy, R. L., Feynman, J., and Hardy, D. A. (1981). Propagating substorm injection fronts. J. Geophys. Res.: Space Phys., 86(A8), 6713–6726. https://doi.org/10.1029/JA086iA08p06713
Murphy, K. R., Mann, I. R., Rae, I. J., Walsh, A. P., and Frey, H. U. (2014). Inner magnetospheric onset preceding reconnection and tail dynamics during substorms: can substorms initiate in two different regions?. J. Geophys. Res.: Space Phys., 119(12), 9684–9701. https://doi.org/10.1002/2014JA019795
Nagai, T., and Machida, S. (1998). Magnetic reconnection in the near-Earth magnetotail. In A. Nishida, et al. (Eds.), New Perspectives on the Earth’s Magnetotail (pp. 211–224). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM105p0211
Nakamura, R., Baumjohann, W., Klecker, B., Bogdanova, Y., Balogh, A., Rème, H., Bosqued, J. M., Dandouras, I., Sauvaud, J. A., … Runov, A. (2002). Motion of the dipolarization front during a flow burst event observed by cluster. Geophys. Res. Lett., 29(20), 1942. https://doi.org/10.1029/2002GL015763
Ness, N. F., Acuña, M. H., Behannon, K. W., Burlaga, L. F., Connerney, J. E. P., Lepping, R. P., and Neubauer, F. M. (1986). Magnetic fields at Uranus. Science, 233(4759), 85–89. https://doi.org/10.1126/science.233.4759.85
Nichols, J. D., Allegrini, F., Bagenal, F., Bunce, E. J., Cowley, S. W. H., Ebert, R. W., Grodent, D., Huscher, E., Kamran, A., … Yao, Z. (2020). An enhancement of Jupiter’s main auroral emission and magnetospheric currents. J. Geophys. Res.: Space Phys., 125(8), e2020JA027904. https://doi.org/10.1029/ 2020JA027904
Nishimura, Y., Lyons, L., Zou, S., Angelopoulos, V., and Mende, S. (2010). Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations. J. Geophys. Res.: Space Phys., 115(A7), A07222. https://doi.org/10.1029/2009JA015166
Palmaerts, B., Radioti, A., Grodent, D., Yao, Z. H., Bradley, T. J., Roussos, E., Lamy, L., Bunce, E. J., Cowley, S. W. H., … Pryor, W. R. (2018). Auroral storm and polar arcs at Saturn—final Cassini/UVIS auroral observations. Geophys. Res. Lett., 45(14), 6832–6842. https://doi.org/10.1029/2018GL078094
Palmaerts, B., Yao, Z. H., Sergis, N., Guo, R. L., Grodent, D., Dialynas, K., Gérard, J. C., and Mitchell, D. G. (2020). A long-lasting auroral spiral rotating around Saturn’s pole. Geophys. Res. Lett., 47(23), e2020GL088810. https://doi.org/10.1029/2020GL088810
Paschmann, G., Sonnerup, B. U. Ö., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russell, C. T., and Elphic, R. C. (1979). Plasma acceleration at the Earth’s magnetopause: evidence for reconnection. Nature, 282(5736), 243–246. https://doi.org/10.1038/ 282243a0
Perraut, S., Le Contel, O., Roux, A., Parks, G., Chua, D., Hoshino, M., Mukai, T., and Nagai, T. (2003). Substorm expansion phase: observations from geotail, polar and IMAGE network. J. Geophys. Res.: Space Phys., 108(A4), 1159. https://doi.org/10.1029/2002JA009376
Pritchett, P. L., Coroniti, F. V., and Decyk, V. K. (1996). Three-dimensional stability of thin quasi-neutral current sheets. J. Geophys. Res.: Space Phys., 101(A12), 27413–27429. https://doi.org/10.1029/96JA02665
Pu, Z. Y., Korth, A., Chen, Z. X., Liu, Z. X., Fu, S. Y., Zong, G., Hong, M. H., and Wang, X. M. (2001). A global synthesis model of dipolarization at substorm expansion onset. J. Atmos. Sol. Terr. Phys., 63(7), 671–681. https://doi.org/10.1016/S1364-6826(00)00183-8
Radioti, A., Grodent, D., Gérard, J. C., Bonfond, B., and Clarke, J. T. (2008). Auroral polar dawn spots: signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophys. Res. Lett., 35(3), L03104. https://doi.org/10.1029/2007GL032460
Radioti, A., Grodent, D., Gérard, J. C., Vogt, M. F., Lystrup, M., and Bonfond, B. (2011). Nightside reconnection at Jupiter: auroral and magnetic field observations from 26 July 1998. J. Geophys. Res.: Space Phys., 116(A3), A03221. https://doi.org/10.1029/2010JA016200
Radioti, A., Grodent, D., Gérard, J. C., Milan, S. E., Fear, R. C., Jackman, C. M., Bonfond, B., and Pryor, W. (2014). Saturn’s elusive nightside polar arc. Geophys. Res. Lett., 41(18), 6321–6328. https://doi.org/10.1002/ 2014GL061081
Radioti, A., Grodent, D., Gérard, J. C., Roussos, E., Mitchell, D., Bonfond, B., and Pryor, W. (2015). Auroral spirals at Saturn. J. Geophys. Res.: Space Phys., 120(10), 8633–8643. https://doi.org/10.1002/2015JA021442
Radioti, A., Grodent, D., Yao, Z. H., Gérard, J. C., Badman, S.V., Pryor, W., and Bonfond, B. (2017). Dawn auroral breakup at Saturn initiated by auroral arcs: UVIS/Cassini beginning of grand finale phase. J. Geophys. Res.: Space Phys., 122(12), 12111–12119. https://doi.org/10.1002/2017JA024653
Radioti, A., Yao, Z. H., Grodent, D., Palmaerts, B., Roussos, E., Dialynas, K., Mitchell, D., Pu, Z., Badman, S. V., … Bonfond, B. (2019). Auroral beads at Saturn and the driving mechanism: Cassini proximal orbits. Astrophys. J. Lett., 885(1), L16. https://doi.org/10.3847/2041-8213/ab4e20
Richardson, J. D., Belcher, J. W., Selesnick, R. S., Zhang, M., Siscoe, G. L., and Eviatar, A. (1988). Evidence for periodic reconnection at Uranus?. Geophys. Res. Lett., 15(8), 733–736. https://doi.org/10.1029/GL015i008p00733
Russell, C. T., Khurana, K. K., Huddleston, D. E., and Kivelson, M. G. (1998). Localized reconnection in the near jovian magnetotail. Science, 280(5366), 1061–1064. https://doi.org/10.1126/science.280.5366.1061
Sato, T., and Hayashi, T. (1979). Externally driven magnetic reconnection and a powerful magnetic energy converter. Phys. Fluids, 22(6), 1189–1202. https://doi.org/10.1063/1.862721
Schneider, N. M., Trauger, J. T., Wilson, J. K., Brown, D. I., Evans, R. W., and Shemansky, D. E. (1991). Molecular origin of Io’s fast sodium. Science, 253(5026), 1394–1397. https://doi.org/10.1126/science.253.5026.1394
Sergeev, V., Angelopoulos, V., Apatenkov, S., Bonnell, J., Ergun, R., Nakamura, R., McFadden, J., Larson, D., and Runov, A. (2009). Kinetic structure of the sharp injection/dipolarization front in the flow-braking region. Geophys. Res. Lett., 36(21), L21105. https://doi.org/10.1029/2009GL040658
Shi, Q. Q., Shen, C., Pu, Z. Y., Dunlop, M. W., Zong, Q. G., Zhang, H., Xiao, C. J., Liu, Z. X., and Balogh, A. (2005). Dimensional analysis of observed structures using multipoint magnetic field measurements: application to Cluster. Geophys. Res. Lett., 32(12), L12105. https://doi.org/10.1029/2005GL022454
Shi, Q. Q., Shen, C., Dunlop, M. W., Pu, Z. Y., Zong, Q. G., Liu, Z. X., Lucek, E., and Balogh, A. (2006). Motion of observed structures calculated from multipoint magnetic field measurements: application to Cluster. Geophys. Res. Lett., 33(8), L08109. https://doi.org/10.1029/2005GL025073
Shiokawa, K., Baumjohann, W., and Haerendel, G. (1997). Braking of high-speed flows in the near-Earth tail. Geophys. Res. Lett., 24(10), 1179–1182. https://doi.org/10.1029/97GL01062
Sitnov, M. I., Swisdak, M., and Divin, A. V. (2009). Dipolarization fronts as a signature of transient reconnection in the magnetotail. J. Geophys. Res.: Space Phys., 114(A4), A04202. https://doi.org/10.1029/2008JA013980
Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., … Zurbuchen, T. H. (2009). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324(5927), 606–610. https://doi.org/10.1126/science.1172011
Slavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., … Zurbuchen, T. H. (2010). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329(5992), 665–668. https://doi.org/10.1126/science.1188067
Slavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Ho, G. C., Imber, S. M., Korth, H., … Zurbuchen, T. H. (2012). MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res.: Space Phys., 117(A1), A01215. https://doi.org/10.1029/2011JA016900
Smith, A. W., Jackman, C. M., and Thomsen, M. F. (2016). Magnetic reconnection in Saturn’s magnetotail: a comprehensive magnetic field survey. J. Geophys. Res.: Space Phys., 121(4), 2984–3005. https://doi.org/10.1002/2015JA022005
Smith, A.W., Jackman, C. M., Thomsen, M. F., Lamy, L., and Sergis, N. (2018). Multi-instrument investigation of the location of Saturn’s magnetotail X-line. J. Geophys. Res.: Space Phys., 123(7), 5494–5505. https://doi.org/10.1029/2018JA025532
Sonnerup, B. U. Ö., Hasegawa, H., Teh, W. L., and Hau, L. N. (2006). Grad-Shafranov reconstruction: an overview. J. Geophys. Res.: Space Phys., 111(A9), A09204. https://doi.org/10.1029/2006JA011717
Sun, W. J., Fu, S. Y., Parks, G. K., Liu, J., Yao, Z. H., Shi, Q. Q., Zong, Q. G., Huang, S. Y., Pu, Z. Y., and Xiao, T. (2013). Field-aligned currents associated with dipolarization fronts. Geophys. Res. Lett., 40(17), 4503–4508. https://doi.org/10.1002/grl.50902
Sun, W. J., Slavin, J. A., Fu, S. Y., Raines, J. M., Zong, Q. G., Imber, S. M., Shi, Q. Q., Yao, Z. H., Poh, G., … Baker, D. N. (2015). MESSENGER observations of magnetospheric substorm activity in Mercury’s near magnetotail. Geophys. Res. Lett., 42(10), 3692–3699. https://doi.org/10.1002/2015GL064052
Swithenbank-Harris, B. G., Nichols, J. D., Allegrini, F., Bagenal, F., Bonfond, B., Bunce, E. J., Clark, G., Kurth, W. S., Mauk, B. H., and Wilson, R. J. (2021). Simultaneous observation of an auroral dawn storm with the Hubble Space Telescope and Juno. J. Geophys. Res.: Space Phys., 126(4), e2020JA028717. https://doi.org/10.1029/2020JA028717
Tang, C. L., Li, Z. Y., Angelopoulos, V., Mende, S. B., Glassmeier, K. H., Donovan, E., Russell, C. T., and Lu, L. (2009). THEMIS observations of the near-Earth plasma sheet during a substorm. J. Geophys. Res.: Space Phys., 114(A9), A09211. https://doi.org/10.1029/2008JA013729
Tang, C. L., Lu, L., Zhou, M., and Yao, Z. H. (2013). THEMIS observations of electron acceleration associated with the evolution of substorm dipolarization in the near-Earth tail. J. Geophys. Res.: Space Phys., 118(7), 4237–4247. https://doi.org/10.1002/jgra.50418
Tang, C. L., Zhou, M., Yao, Z. H., and Shi, F. (2016). Electron acceleration associated with the magnetic flux pileup regions in the near-Earth plasma sheet: a multicase study. J. Geophys. Res.: Space Phys., 121(5), 4331–4342. https://doi.org/10.1002/2016JA022406
Thomsen, M. F. (2013). Saturn’s magnetospheric dynamics. Geophys. Res. Lett., 40(20), 5337–5344. https://doi.org/10.1002/2013GL057967
Upadhyay, M. K., Uma, R., and Sharma, R. P. (2023). Turbulence, particle acceleration, and heating due to the lower hybrid mode near magnetic reconnection regions in magnetopause. J. Geophys. Res.: Space Phys., 128(8), e2023JA031610. https://doi.org/10.1029/2023JA031610
Vasyliunas, V. M. (1983). Plasma distribution and flow. In A. J. Dessler (Ed.), Physics of the Jovian Magnetosphere (pp. 395–453). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511564574.013
Vogt, M. F., Kivelson, M. G., Khurana, K. K., Joy, S. P., and Walker, R. J. (2010). Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res.: Space Phys., 115(A6), A06219. https://doi.org/10.1029/2009JA015098
Vogt, M. F., Connerney, J. E. P., DiBraccio, G. A., Wilson, R. J., Thomsen, M. F., Ebert, R. W., Clark, G. B., Paranicas, C., Kurth, W. S., … Bolton, S. J. (2020). Magnetotail reconnection at Jupiter: a survey of Juno magnetic field observations. J. Geophys. Res.: Space Phys., 125(3), e2019JA027486. https://doi.org/10.1029/2019JA027486
Waite, J. H., Jr., Combi, M. R., Ip, W. H., Cravens, T. E., McNutt, R. L., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H., … Tseng, W. L. (2006). Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science, 311(5766), 1419–1422. https://doi.org/10.1126/science.1121290
Wang, Z., Fu, H. S., Vaivads, A., Burch, J. L., Yu, Y., and Cao, J. B. (2020). Monitoring the spatio-temporal evolution of a reconnection X-line in space. Astrophys. J. Lett., 899(2), L34. https://doi.org/10.3847/2041-8213/abad2c
Wang, Z., Vaivads, A., Fu, H. S., Cao, J. B., Lindberg, M., Turner, D. L., Ergun, R. E., and Liu, Y. Y. (2023). Two-step acceleration of energetic electrons at magnetic flux ropes during turbulent reconnection. Astrophys. J., 946(2), 67. https://doi.org/10.3847/1538-4357/acc026
Yao, Z. H., Sun, W. J., Fu, S. Y., Pu, Z. Y., Liu, J., Angelopoulos, V., Zhang, X. J., Chu, X. N., Shi, Q. Q., … Zong, Q. G. (2013). Current structures associated with dipolarization fronts. J. Geophys. Res.: Space Phys., 118(11), 6980–6985. https://doi.org/10.1002/2013JA019290
Yao, Z. H. (2017). Observations of loading–unloading process at Saturn’s distant magnetotail. Earth Planet. Phys., 1(1), 53–57. https://doi.org/10.26464/ epp2017007
Yao, Z. H., Coates, A. J., Ray, L. C., Rae, I. J., Grodent, D., Jones, G. H., Dougherty, M. K., Owen, C. J., Guo, R. L., … Gérard, J. C. (2017a). Corotating magnetic reconnection site in Saturn’s magnetosphere. Astrophys. J. Lett., 846(2), L25. https://doi.org/10.3847/2041-8213/aa88af
Yao, Z. H., Grodent, D., Ray, L. C., Rae, I. J., Coates, A. J., Pu, Z. Y., Lui, A. T., Radioti, A., Waite, J. H., … Dunn, W. R. (2017b). Two fundamentally different drivers of dipolarizations at Saturn. J. Geophys. Res.: Space Phys., 122(4), 4348–4356. https://doi.org/10.1002/2017JA024060
Yao, Z. H., Pu, Z. Y., Rae, I. J., Radioti, A., and Kubyshkina, M. V. (2017c). Auroral streamer and its role in driving wave-like pre-onset aurora. Geosci. Lett., 4(1), 8. https://doi.org/10.1186/s40562-017-0075-6
Yao, Z. H., Radioti, A., Grodent, D., Ray, L. C., Palmaerts, B., Sergis, N., Dialynas, K., Coates, A. J., Arridge, C. S., … Dougherty, M. K. (2018). Recurrent magnetic dipolarization at Saturn: revealed by Cassini. J. Geophys. Res.: Space Phys., 123(10), 8502–8517. https://doi.org/10.1029/2018JA025837
Yao, Z. H., Grodent, D., Kurth, W. S., Clark, G., Mauk, B. H., Kimura, T., Bonfond, B., Ye, S. Y., Lui, A. T., … Levin, S. M. (2019). On the relation between Jovian aurorae and the loading/unloading of the magnetic flux: simultaneous measurements from Juno, HST and Hisaki. Geophys. Res. Lett., 46(21), 11632–11641. https://doi.org/10.1029/2019GL084201
Yao, Z. H., Bonfond, B., Clark, G., Grodent, D., Dunn, W. R., Vogt, M. F., Guo, R. L., Mauk, B. H., Connerney, J. E. P., and Levin, S. J. (2020). Reconnection- and dipolarization-driven auroral dawn storms and injections. J. Geophys. Res.: Space Phys., 125(8), e2019JA027663. https://doi.org/10.1029/2019JA027663
Yao, Z. H., Dunn, W. R., Woodfield, E. E., Clark, G., Mauk, B. H., Ebert, R. W., Grodent, D., Bonfond, B., Pan, D. X., … Bolton, S. J. (2021). Revealing the source of Jupiter’s X-ray auroral flares. Sci. Adv., 7(28), eabf0851. https://doi.org/10.1126/sciadv.abf0851
Yao, Z. H., Bonfond, B., Grodent, D., Chané, E., Dunn, W. R., Kurth, W. S., Connerney, J. E. P., Nichols, J. D., Palmaerts, B., … Bolton, S. J. (2022). On the relation between auroral morphologies and compression conditions of Jupiter’s magnetopause: observations from Juno and the Hubble Space Telescope. J. Geophys. Res.: Space Phys., 127(10), e2021JA029894. https://doi.org/10.1029/2021JA029894
Zhang, J. C., Wolf, R. A., Sazykin, S., and Toffoletto, F. R. (2008). Injection of a bubble into the inner magnetosphere. Geophys. Res. Lett., 35(2), L02110. https://doi.org/10.1029/2007GL032048
Zhang, T. L., Lu, Q. M., Baumjohann, W., Russell, C. T., Fedorov, A., Barabash, S., Coates, A. J., Du, A. M., Cao, J. B., … Balikhin, M. (2012). Magnetic reconnection in the near Venusian magnetotail. Science, 336(6081), 567–570. https://doi.org/10.1126/science.1217013
Zhou, M., Ashour-Abdalla, M., Deng, X. H., Schriver, D., El-Alaoui, M., and Pang, Y. (2009). THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-Earth magnetotail. Geophys. Res. Lett., 36(20), L20107. https://doi.org/10.1029/2009GL040663
Zhou, X. Z., Angelopoulos, V., Sergeev, V. A., and Runov, A. (2011). On the nature of precursor flows upstream of advancing dipolarization fronts. J. Geophys. Res.: Space Phys., 116(A3), A03222. https://doi.org/10.1029/ 2010JA016165
Zhou, X. Z., Angelopoulos, V., Liu, J., Runov, A., and Li, S. S. (2014). On the origin of pressure and magnetic perturbations ahead of dipolarization fronts. J. Geophys. Res.: Space Phys., 119(1), 211–220. https://doi.org/10.1002/ 2013JA019394
Zweibel, E. G., and Yamada, M. (2009). Magnetic reconnection in astrophysical and laboratory plasmas. Ann. Rev. Astron. Astrophys., 47, 291–332. https://doi.org/10.1146/annurev-astro-082708-101726