[en] This chapter presents a synthesis of the concepts and potential of ecostacking, as well as outlining future strategies to implement the ecostacking techniques. The key methods covered in the book include well established techniques such as management of botanical diversity (e.g. cover crops, intercrops, trap crops, crop plant genetic diversity), judicious use of crop management tools (e.g. pesticides, fertilizers, ploughing), and soil management to enhance benefcial soil processes (e.g. microbial fauna and fora, earthworms). Emerging new approaches and their potential to promote ecostacking, presented in the book and discussed here, include the utilization of RNAi and autodissemination techniques, the manipulation of insect behaviour using infochemicals, and unravelling the mechanisms of olfactory pathways for facilitating improved insect control. The societal context of ecostacking and its economic benefts to the growers, communities and the society at large are treated along with obstacles to the uptake of the ecostacking techniques. Overall, existing knowledge and available techniques already allow for a much-improved exploitation of benefcial ecosystem services and of stacking them to increase the resilience, sustainability and yields in our cropping systems. Engaging exciting new and emerging techniques will further enhance the possibilities to fully beneft from the stacking of ecosystem services for crop production and biological resource management (e.g. in amenity areas and in forestry).
Menzler-Hokkanen, Ingeborg; Stockbridge School of Agriculture, University of Massachusetts, Amherst, United States ; Society for Protection of Endangered Insects, Espoo, Finland
Hokkanen, Heikki M.T.; Stockbridge School of Agriculture, University of Massachusetts, Amherst, United States ; College of Plant Protection, Southwest University, Chongqing, China ; Foundation for Entomological Research, Espoo, Finland
Wang, Jinjun; College of Plant Protection, Southwest University, Chongqing, China ; Academy of Agriculture Sciences, Southwest University, Chongqing, China
Liu, Huai; College of Plant Protection, Southwest University, Chongqing, China ; Academy of Agriculture Sciences, Southwest University, Chongqing, China
Jiang, Hongbo; College of Plant Protection, Southwest University, Chongqing, China ; Academy of Agriculture Sciences, Southwest University, Chongqing, China
Boeraeve, Fanny ; Université de Liège - ULiège > TERRA Research Centre > Biodiversité, Ecosystème et Paysage (BEP)
Carrillo, Daniel; University of Florida, Tropical Research and Education Center, Homestead, United States
Chen, Xiaoyulong; College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China ; School of Ecology and Environment, Tibet University, Lhasa, Tibet, China
Hatt, Séverin ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs ; University of Bonn, Institute of Crop Science and Resource Conservation, Agroecology and Organic Farming, Bonn, Germany
Holopainen, Jarmo K.; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
Kvello, Pål; Norwegian University of Science and Technology, Trondheim, Norway
Li, Guang-Yun; College of Plant Protection, Southwest University, Chongqing, China
Li, Yaying; College of Plant Protection, Southwest University, Chongqing, China
Murithi, Beatrice; International Centre of Insect Physiology and Ecology, Nairobi, Kenya
Niu, Jinzhi; College of Plant Protection, Southwest University, Chongqing, China
Wang, Ziying; College of Plant Protection, Southwest University, Chongqing, China
Zhang, Kaijun; College of Plant Protection, Southwest University, Chongqing, China
Alipour, Z., Fathipour, Y. and Farazmand, A. (2016) Age-stage predation capacity of Phytoseiulus persimilis and Amblyseius swirskii (Acari: Phytoseiidae) on susceptible and resistant rose cultivars. International Journal of Acarology 42, 224-228. doi:10.1080/01647954.2016.1171797
Alyokhin, A., Nault, B. and Brown, B. (2020) Soil conservation practices for insect pest management in highly disturbed agroecosystems-a review. Entomologia Experimentalis et Applicata 168, 7-27. doi:10.1111/eea.12863
Andrén, O. and Balandreau, J. (1999) Biodiversity and soil functioning-from black box to can of worms? Applied Soil Ecology 13, 105-108. doi:10.1016/S0929-1393(99)00025-6
Bellon, S. and Penvern, S. (2014) Organic Food and Farming as a Prototype for Sustainable Agricultures. In: Bellon, S. and Penvern, S. (eds) Organic Farming, Prototype for Sustainable Agricultures. Springer, Dordrecht. doi:10.1007/978-94-007-7927-3_1.
Ben Issa, R., Gautier, H. and Gomez, L. (2017) Influence of neighbouring companion plants on the performance of aphid populations on sweet pepper plants under greenhouse conditions. Agricultural and Forest Entomology 19, 181-191. doi:10.1111/afe.12199
Boeraeve, F., Dendoncker, N., Degrune, F., Cornelis, J.-T. and Dufrêne, M. (2020) Contribution of agroecological farming systems to the delivery of ecosystem services. Journal of Environmental Management 260, 109576. doi:10.1016/j.jenvman.2019.109576
Briones, M.J.I. (2014) Soil fauna and soil functions: a jigsaw puzzle. Frontiers in Environmental Science 2, 7. doi:10.3389/fenvs.2014.00007
Carlisle, L., Esquivel, K., Baur, P., Ichikawa, N.F., Olimpi, E.M. et al. (2022) Organic farmers face persistent barriers to adopting diversification practices in California's Central Coast. Agroecology and Sustainable Food Systems 46, 1145-1172. doi:10.1080/21683565.2022.2104420
Custer, G.F., van Diepen, L.T.A. and Stump, W.L. (2020) Structural and Functional Dynamics of Soil Microbes following Spruce Beetle Infestation. Applied and Environmental Microbiology 86: e01984-19. doi:10.1128/AEM.01984-19
Ditzler, L., van Apeldoorn, D.F., Schulte, R.P.O., Tittonell, P. and Rossing W.A.H. (2021) Redefining the field to mobilize three-dimensional diversity and ecosystem services on the arable farm. European Journal of Agronomy 122, 126197. doi:10.1016/j.eja.2020.126197
Doorenweerd, C., Leblanc, L., Norrbom, A.L., Jose, M.S. and Rubinoff, D. (2018) A global checklist of the 932 fruit fly species in the tribe Dacini (Diptera, Tephritidae). Zookeys 730, 19-56. doi:10.3897/zookeys.730.21786
Erasmus, R., van den Berg, J. and du Plessis, H. (2021) Susceptibility of Tuta absoluta (Lepidoptera: Gel-echiidae) pupae to soil applied entomopathogenic fungal biopesticides. Insects 12, 515. doi:10.3390/insects12060515
Fathipour, Y., Maleknia, B., Bagheri, A., Soufbaf, M. and Zalucki, M.P. (2019) Spider mite host plant resistance traits improve the predatory performance of Phytoseiulus persimilis on cucumber, despite negative life history impacts. Biological Control 138: 104064. doi:10.1016/j.biocontrol.2019.104064
Fishilevich, E., Vélez, A.M., Storer, N.P., Li, H., Bowling, A.J., Rangasamy, M. et al. (2016) RNAi as a management tool for the western corn rootworm, Diabrotica virgifera virgifera. Pest Management Science 72, 1652-1663. doi:10.1002/ps.4324
French, A. and Roth, E. (2022) Soilless Agriculture: An In-depth Overview-AGRITECTURE. Available at: https://www.agritecture.com/blog/2019/3/7/soilless-agriculture-an-in-depth-overview (accessed 5 August 2022).
Gagic, V., Holding, M., Venables, W.N., Hulthen, A.D. and Schellhorn, N.A. (2021) Better outcomes for pest pressure, insecticide use, and yield in less intensive agricultural landscapes. Proceedings of the National Academy of Sciences 118: e2018100118. doi:10.1073/pnas.2018100118
Guan, R., Chu, D., Han, X., Miao. X. and Li, H. (2021) Advances in the development of microbial doublestranded RNA production systems for application of RNA interference in agricultural pest control. Frontiers in Bioengineering and Biotechnology 9: 753790. doi:10.3389/fbioe.2021.753790
Hatt, S., Boeraeve, F., Artru, S. Dufrêne, M. and Francis F. (2018) Spatial diversification of agroecosystems to enhance biological control and other regulating services: an agroecological perspective. Science of the Total Environment 621, 600-611. doi:10.1016/j.scitotenv.201711.296
Hokkanen, H.M.T. (2017) Ecostacking: maximising the benefits of ecosystem services. Arthropod-Plant Interactions 11: 471-472. doi:10.1007/s11829-017-9575-8
Hokkanen, H.M.T. and Menzler-Hokkanen, I. (2017) The use of entomopathogenic fungi in the insect pest management of Brassica oilseed crops. In: Reddy, G.V.P. (ed.) Integrated Management of Insect Pests on Canola and Other Brassica Oilseed Crops. CABI, Wallingford, UK. pp 373-382. doi:10.1079/9781780648200.0373
Hokkanen, H.M.T., Menzler-Hokkanen, I. and Keva, M. (2017) Long-term yield trends of insect pollinated crops vary regionally, and are linked to neonicotinoid use, landscape complexity and availability of pollinators. Arthropod-Plant Interactions 11, 449-461. doi:10.1007/s11829-017-9527-3
Hooks, C., Wang, K., Ploeg, A. and McSorley, R. (2010) Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Applied Soil Ecology 46, 307-320. doi:10.1016/j.apsoil.2010.09.005
Huong, N., Tho, K.E., Nget, R. and Sreyboth, S. (2020) Effects of using Ocimum spp. as pest Repellent Plants on Chinese kale (Brassica oleracea l. cv. alboglabra) in Dry Season Condition. Journal of Agricultural Science and Food Research 11, 275. doi:10.35248/2593-9173.20.11.275
Juventia, S.D., Rossing, W.A., Ditzler, L. and van Apeldoorn, D.F. (2021) Spatial and genetic crop diversity support ecosystem service delivery: A case of yield and biocontrol in Dutch organic cabbage production. Field Crops Research 261: 108015. doi:10.1016/j.fcr.2020.108015
Khanamani, M., Fathipour, Y., Hajiqanbar, H. (2013) Population growth response of Tetranychus urticae to eggplant quality: application of female age-specific and age-stage, two-sex life tables. International Journal of Acarology 39, 638-648. doi:10.1080/01647954.2013.861867
Khanamani, M., Fathipour, Y., Hajiqanbar, H. and Sedaratian, A. (2014) Two-spotted spider mite reared on resistant eggplant affects consumption rate and life table parameters of its predator, Typhlodromus bagdasarjani (Acari: Phytoseiidae). Experimental and Applied Acarology 63, 241-252. doi:10.1007/s10493-014-9785-z
Khanamani, M., Fathipour Y. and Hajiqanbar, H. (2015) Assessing compatibility of the predatory mite Typhlodromus bagdasarjani (Acari: Phytoseiidae) and resistant Eggplant cultivar in a tritrophic system. Annals of the Entomological Society of America 108, 501-512. doi:10.1093/aesa/sav032
Kleijn, D., Bommarco, R. and Fijen, T.P.M., Garabaldi, L.A. and Potts, S.G. (2019) Ecological intensification: bridging the gap between science and practice. Trends in Ecology and Evolution 34, 154-166. doi:10.1016/j.tree.2018.11.002
Kleiman, B.M., Koptur, S. and Jayachandran, K. (2021) Weeds enhance pollinator diversity and fruit yield in mango. Insects 12: 1114. doi:10.3390/insects12121114
Kleiman, B. and Koptur, S. (2023) Weeds enhance insect diversity and abundance and may improve soil conditions in mango cultivation of South Florida. Insects 14, 65. doi:10.3390/insects14010065
Lastra-Bravo, X.B., Hubbard, C., Garrod, G. and Tolón-Becerra, A. (2015) What drives farmers' participation in EU agri-environmental schemes?: Results from a qualitative meta-analysis. Environmental Science & Policy 54, 1-9. doi:10.1016/j.envsci.2015.06.002
Ledford, H. (2015) How to solve the world's biggest problems. Nature 525, 308-311. doi:10.1038/525308a
Li, W., Wang, D., Li, M., Gao, Y. Wu, J. and Yang, X. (2021) Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse. Computers and Electronics in Agriculture 183: 106048. doi:10.1016/j.compag.2021.106048
Li, C., Hoffland, E., Kuyper, T.W., Zhang, C., Li, H. et al. (2020) Syndromes of production in intercropping impact yield gains. Nature Plants 6, 653-660. doi:10.1038/s41477-020-0680-9
Malacrida, A.R., Gomulski, L.M., Bonizzoni, M., Bertin, S., Gasperi, G. and Guglielmino, C.R. (2007) Globalization and fruitfly invasion and expansion: the medfly paradigm. Genetica 131, 1-9. doi:10.1007/s10709-006-9117-2
Meehan, T.D., Werling, B.P., Landis, D.A. and Gratton, C. (2011) Agricultural landscape simplification and insecticide use in the Midwestern United States. Proceedings of the National Academy of Sciences 108, 11500-11505. doi:10.1073/pnas.1100751108
Meynard, J.-M., Charrier, F., Fares, M., LeBail, M., Magrini, M.B. et al. (2018) Socio-technical lock-in hinders crop diversification in France. Agronomy for Sustainable Development 38, 54. doi:10.1007/s13593-018-0535-1
Mottet, A., Bicksler, A., Lucantoni, D., De Rosa, F., Scherf, B. et al (2020) Assessing transitions to sustainable agricultural and food systems: a tool for agroecology performance evaluation (TAPE). Frontiers in Sustainable Food Systems 4: 579154. doi:10.3389/fsufs.2020.579154
Niu, J., Taning, C.N.T., Christiaens, O., Smagghe, G. and Wang, J.J. (2018) Rethink RNAi in insect pest control: challenges and perspectives. Advances in Insect Physiology 55, 1-17. doi:10.1016/bs.aiip.2018.07.003
Pisa, L., Goulson, D., Yang, E.C., Gibbons, D., Sanchez-Bayo, F. et al. (2021) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science and Pollution Research 28, 11749-11797. doi:10.1007/s11356-017-0341-3
Razinger, J., Lutz, M., Schroers, H.-J., Urek, G. and Grunder, J. (2014) Evaluation of insect associated and plant growth promoting fungi in the control of cabbage root flies. Journal of Economic Entomology 107, 1348-1354. doi:10.1603/EC14004
Scolari, F., Valerio, F., Benelli, G., Papadopoulos, N.T. and Vanickova, L. (2021) Tephritid fruit fly semiochemicals: current knowledge and future perspectives. Insects 12, 408. doi:10.3390/insects12050408
Stavi, I., Bel, G. and Zaady, E. (2016) Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review. Agronomy for Sustainable Development 36, 1-12. doi:10.1007/s13593-016-0368-8
Sukegawa, S., Shiojiri, K., Higami, T., Suzuki, S. and Arimura, G. (2018) Pest management using mint volatiles to elicit resistance in soy: mechanism and application potential. Plant Journal 96, 910-920. doi:10.1111/tpj.14077
Tay, A., Lafont, F. and Balmat. JF. (2021) Forecasting pest risk level in roses greenhouse: Adaptive neuro-fuzzy inference system vs artificial neural networks. Information Processing in Agriculture 8, 386-397. doi:10.1016/j.inpa.2020.10.005
Thomine, E., Mumford, J., Rusch, A. and Desneux, N. (2022) Using crop diversity to lower pesticide use: Socio-ecological approaches. Science of the Total Environment 804:150156. doi:10.1016/j.scitotenv.2021.150156
Tzortzakis, N., Saridakis, C. and Chrysargyris, A. (2020) Treated wastewater and fertigation applied for greenhouse tomato cultivation grown in municipal solid waste compost and soil mixtures. Sustainability 12: 4287. doi:10.3390/su12104287
Wan, N.-F., Zheng, X.-R., Fu, L.-W., Kiaer, L.P., Zhang, Z. et al. (2020) Global synthesis of effects of plant species diversity on trophic groups and interactions. Nature Plants 6, 503-510. doi:10.1038/s41477-020-0654-y
Xia, C., Chon, T.S., Ren, Z. and Lee, J.M. (2015) Automatic identification and counting of small size pests in greenhouse conditions with low computational cost. Ecological informatics 29, 139-146. doi:10.1016/j.ecoinf.2014.09.006
Zec-Vojinovic, M., Hokkanen, H.M.T., Büchs, W., Klukowski, K., Luik, A. et al. (2006) Natural occurrence of pathogens of oilseed rape pests in agricultural fields in Europe. In: Proceedings of the International Symposium 'Integrated Pest Management of Oilseed Rape Pests,' 3-5 April 2006, Göttingen, Germany.