Paper published in a book (Scientific congresses and symposiums)
Estimation of the periodic solutions of geometrically nonlinear structures by broadband excitation
Anastasio, D.; Marchesiello, S.; Kerschen, Gaëtan
2024 • In Desmet, W. (Ed.) Proceedings of ISMA 2024 - International Conference on Noise and Vibration Engineering and USD 2024 - International Conference on Uncertainty in Structural Dynamics
Broadband excitation; Excitation state; Geometrically nonlinear structures; Harmonic Balance method; Large amplitude oscillation; Nonlinear state space models; Periodic solution; Reduced order; Subspace identification methods; Thin-walled structures; Mechanical Engineering; Mechanics of Materials; Acoustics and Ultrasonics
Abstract :
[en] This paper proposes a methodology for indirectly estimating the periodic solutions of geometrically nonlinear structures using broadband excitation and nonlinear state-space modeling. The methodology is well-suited for thin-walled structures under large amplitude oscillations, and offers a valuable alternative to traditional harmonic-based methods, particularly in situations where such measurements are impractical or difficult to obtain. It relies first on the identification of the reduced-order nonlinear state-space model of the structure under broadband excitation, using the Modal-NSI (Nonlinear Subspace Identification) method. Then, the periodic solutions are studied by merging the Modal-NSI framework with the Harmonic Balance Method (HBM). A continuation technique is adopted to construct the Nonlinear Frequency Response Curves (NFRCs) of the structure, and a monodromy-based stability analysis is developed. The proposed methodology is validated on an experimental thin beam exhibiting a distributed geometrical nonlinearity.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Anastasio, D.; Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino, Italy
Marchesiello, S.; Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino, Italy
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Language :
English
Title :
Estimation of the periodic solutions of geometrically nonlinear structures by broadband excitation
Publication date :
2024
Event name :
ISMA 2024 - International Conference on Noise and Vibration Engineering
Event place :
Leuven, Bel
Event date :
09-09-2024 => 11-09-2024
Main work title :
Proceedings of ISMA 2024 - International Conference on Noise and Vibration Engineering and USD 2024 - International Conference on Uncertainty in Structural Dynamics
A. H. Nayfeh and P. F. Pai, Linear and nonlinear structural mechanics, vol. 40, no. 2. 2004. doi: 10.1007/s11012-005-0327-y.
C. Touzé, O. Thomas, and A. Huberdeau, “Asymptotic non-linear normal modes for large-amplitude vibrations of continuous structures,” Comput. Struct., vol. 82, no. 31-32, pp. 2671-2682, 2004, doi: 10.1016/j.compstruc.2004.09.003.
M. Claeys, J. J. Sinou, J. P. Lambelin, and B. Alcoverro, “Multi-harmonic measurements and numerical simulations of nonlinear vibrations of a beam with non-ideal boundary conditions,” Commun. Nonlinear Sci. Numer. Simul., vol. 19, no. 12, pp. 4196-4212, 2014, doi: 10.1016/j.cnsns.2014.04.008.
X. Wang, T. L. Hill, and S. A. Neild, “Frequency response expansion strategy for nonlinear structures,” Mech. Syst. Signal Process., vol. 116, pp. 505-529, 2019, doi: 10.1016/j.ymssp.2018.06.027.
L. Renson, A. Gonzalez-Buelga, D. A. W. Barton, and S. A. Neild, “Robust identification of backbone curves using control-based continuation,” J. Sound Vib., vol. 367, pp. 145-158, 2016, doi: 10.1016/j.jsv.2015.12.035.
S. Peter and R. I. Leine, “Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation,” Mech. Syst. Signal Process., vol. 96, pp. 139-158, 2017, doi: 10.1016/j.ymssp.2017.04.011.
T. Karaağaçlı and H. N. Özgüven, “Experimental modal analysis of nonlinear systems by using response-controlled stepped-sine testing,” Mech. Syst. Signal Process., vol. 146, 2021, doi: 10.1016/j.ymssp.2020.107023.
J. Taghipour et al., “Harmonic-Balance-Based parameter estimation of nonlinear structures in the presence of Multi-Harmonic response and force,” Mech. Syst. Signal Process., vol. 162, 2022, doi: 10.1016/j.ymssp.2021.108057.
J. P. Noël, L. Renson, C. Grappasonni, and G. Kerschen, “Identification of nonlinear normal modes of engineering structures under broadband forcing,” Mech. Syst. Signal Process., vol. 74, pp. 95-110, 2016, doi: 10.1016/j.ymssp.2015.04.016.
D. Anastasio and S. Marchesiello, “Nonlinear frequency response curves estimation and stability analysis of randomly excited systems in the subspace framework,” Nonlinear Dyn., 2023, doi: 10.1007/s11071-023-08280-6.
L. Xie, S. Baguet, B. Prabel, and R. Dufour, “Bifurcation tracking by Harmonic Balance Method for performance tuning of nonlinear dynamical systems,” Mech. Syst. Signal Process., vol. 88, pp. 445-461, 2017, doi: 10.1016/j.ymssp.2016.09.037.
D. Anastasio, S. Marchesiello, G. Kerschen, and J. P. Noël, “Experimental identification of distributed nonlinearities in the modal domain,” J. Sound Vib., vol. 458, pp. 426-444, 2019, doi: 10.1016/j.jsv.2019.07.005.
L. Meirovitch, Principles and techniques of vibrations. Upper Saddle River, N.J: Prentice Hall, 1997.
E. Reynders and G. De Roeck, “Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis,” Mech. Syst. Signal Process., vol. 22, pp. 617-637, 2008, doi: 10.1016/j.ymssp.2007.09.004.
T. M. Cameron and J. H. Griffin, “An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems,” J. Appl. Mech., vol. 56, no. 1, pp. 149-154, 1989, doi: 10.1115/1.3176036.
L. Peletan et al., “A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics,” Nonlinear Dyn., vol. 72, pp. 671-682, 2013, doi: 10.1007/s11071-012-0744-0.
G. R. Itovich and J. L. Moiola, “On period doubling bifurcations of cycles and the harmonic balance method,” Chaos Solitons Fractals, vol. 27, no. 3, pp. 647-665, 2006, doi: 10.1016/J.CHAOS.2005.04.061.
M. Schussler and O. Nelles, “Extrapolation behavior comparison of nonlinear state space models,” IFAC-PapersOnLine, vol. 54, pp. 487-492, 2021, doi: 10.1016/j.ifacol.2021.08.407.