Y-junctions; catalytic chemical vapor deposition; transmission electron microscopy; carbon nanotubes
Abstract :
[en] Transmission electron microscopy of arrays of multi-walled carbon nanotubes reveals the presence of numerous Y-junctions. The diameter distributions of the samples are found to be bimodal, with one mode corresponding to the branches and the other mode to the trunk of the Y-junctions. The analysis of the micrographs shows that the junctions form via the merger of metal particles during the tip-growth of the tubes. (C) 2008 Elsevier B.V. All rights reserved.
Disciplines :
Chemistry Materials science & engineering Chemical engineering
Author, co-author :
Zilli, Dario
Blacher, Silvia ; Université de Liège - ULiège > Département de Chimie appliquée > Génie chimique - Chimie physique appliquée
Cukierman, Ana Lea
Pirard, Jean-Paul ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Chimie physique appliquée
Gommes, Cédric ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Chimie physique appliquée
Language :
English
Title :
Formation mechanism of Y-junctions in arrays of multi-walled carbon nanotubes
Publication date :
2008
Journal title :
Colloids and Surfaces A: Physicochemical and Engineering Aspects
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Monthioux M., and Kuznetsov V.L. Who should be given the credit for the discovery of carbon nanotubes?. Carbon 44 (2006) 1621-1623
Ebbesen T.W., Lezec H.J., Hiura H., Bennett J.W., Ghaemi H.F., and Thio T. Electrical conductivity of individual carbon nanotubes. Nature 382 (1996) 54-56
Bandaru P.R. Electrical characterization of carbon nanotube Y-junctions: a foundation for new nanoelectronics. J. Mater. Sci. 42 (2007) 1809-1818
Satishkumar B.C., Thomas P.J., Govindarai A., and Rao C.N.R. Y-junction carbon nanotubes. Appl. Phys. Lett. 77 (2000) 2530-2532
Li W.Z., Pandey B., and Liu Y.Q. Growth and structure of carbon nanotube Y-junctions. J. Phys. Chem. B 110 (2006) 23694-23700
Zhu H., Ci L., Xu C., Liang J., and Wu D. Growth mechanism of Y-junction carbon nanotubes. Diamond Relat. Mater. 11 (2002) 1349-1352
Li W.Z., Wen J.G., and Ren Z.F.S. Straight carbon nanotube Y junctions. Appl. Phys. Lett. 79 (2001) 1879-1881
Andriotis A.N., Menon M., Srivastava D., and Chernozatonskii L. Rectification properties of carbon nanotube "Y-Junctions". Phys. Rev. Lett. 87 (2001) 066802-1-4
Ting J.-M., and Chang C.-C. Multijunction carbon nanotube network. Appl. Phys. Lett. 80 (2002) 324-325
Huang S., Dai L., and Mau A.W.H. Patterned growth and contact transfer of well-aligned carbon nanotube films. J. Phys. Chem. B 103 (1999) 4223-4227
Zilli D.A., Bonelli P.R., and Cukierman A.L. In: Huang X. (Ed). Nanotechnology Research: New nanostructures, nanotubes and nanofibers, Nova Science Publishers. New York (2008)
Zilli D.A., Bonelli P.R., and Cukierman A.L. Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays. Nanotechnology 17 (2006) 5136-5141
Gommes C., Blacher S., Masenelli-Varlot K., Bossuot C., McRae E., Fonseca A., B'Nagy J., and Pirard J.-P. Image analysis characterization of multi-walled carbon nanotubes. Carbon 41 (2003) 2561-2572
Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962) 1065-1076
Liu W., Clark N.N., and Karamavruc A.I. General method for the transformation of chord-length data to a local bubble-size distribution. AIChE J. 42 (1996) 2713-2720
Chuang C.-C., Liu W.-L., Chen W.-J., and Huang J.-H. Temperature and substrate dependence of structure and growth mechanism of carbon nanofiber. Appl. Surf. Sci. 254 (2008) 4681-4687
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.