Y-junctions; catalytic chemical vapor deposition; transmission electron microscopy; carbon nanotubes
Abstract :
[en] Transmission electron microscopy of arrays of multi-walled carbon nanotubes reveals the presence of numerous Y-junctions. The diameter distributions of the samples are found to be bimodal, with one mode corresponding to the branches and the other mode to the trunk of the Y-junctions. The analysis of the micrographs shows that the junctions form via the merger of metal particles during the tip-growth of the tubes. (C) 2008 Elsevier B.V. All rights reserved.
Disciplines :
Chemistry Materials science & engineering Chemical engineering
Author, co-author :
Zilli, Dario
Blacher, Silvia ; Université de Liège - ULiège > Département de Chimie appliquée > Génie chimique - Chimie physique appliquée
Cukierman, Ana Lea
Pirard, Jean-Paul ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Chimie physique appliquée
Gommes, Cédric ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Chimie physique appliquée
Language :
English
Title :
Formation mechanism of Y-junctions in arrays of multi-walled carbon nanotubes
Publication date :
2008
Journal title :
Colloids and Surfaces A: Physicochemical and Engineering Aspects
ISSN :
0927-7757
eISSN :
1873-4359
Publisher :
Elsevier Science
Volume :
327
Issue :
1-3
Pages :
140-143
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
Monthioux M., and Kuznetsov V.L. Who should be given the credit for the discovery of carbon nanotubes?. Carbon 44 (2006) 1621-1623
Ebbesen T.W., Lezec H.J., Hiura H., Bennett J.W., Ghaemi H.F., and Thio T. Electrical conductivity of individual carbon nanotubes. Nature 382 (1996) 54-56
Bandaru P.R. Electrical characterization of carbon nanotube Y-junctions: a foundation for new nanoelectronics. J. Mater. Sci. 42 (2007) 1809-1818
Satishkumar B.C., Thomas P.J., Govindarai A., and Rao C.N.R. Y-junction carbon nanotubes. Appl. Phys. Lett. 77 (2000) 2530-2532
Li W.Z., Pandey B., and Liu Y.Q. Growth and structure of carbon nanotube Y-junctions. J. Phys. Chem. B 110 (2006) 23694-23700
Zhu H., Ci L., Xu C., Liang J., and Wu D. Growth mechanism of Y-junction carbon nanotubes. Diamond Relat. Mater. 11 (2002) 1349-1352
Li W.Z., Wen J.G., and Ren Z.F.S. Straight carbon nanotube Y junctions. Appl. Phys. Lett. 79 (2001) 1879-1881
Andriotis A.N., Menon M., Srivastava D., and Chernozatonskii L. Rectification properties of carbon nanotube "Y-Junctions". Phys. Rev. Lett. 87 (2001) 066802-1-4
Ting J.-M., and Chang C.-C. Multijunction carbon nanotube network. Appl. Phys. Lett. 80 (2002) 324-325
Huang S., Dai L., and Mau A.W.H. Patterned growth and contact transfer of well-aligned carbon nanotube films. J. Phys. Chem. B 103 (1999) 4223-4227
Zilli D.A., Bonelli P.R., and Cukierman A.L. In: Huang X. (Ed). Nanotechnology Research: New nanostructures, nanotubes and nanofibers, Nova Science Publishers. New York (2008)
Zilli D.A., Bonelli P.R., and Cukierman A.L. Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays. Nanotechnology 17 (2006) 5136-5141
Gommes C., Blacher S., Masenelli-Varlot K., Bossuot C., McRae E., Fonseca A., B'Nagy J., and Pirard J.-P. Image analysis characterization of multi-walled carbon nanotubes. Carbon 41 (2003) 2561-2572
Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962) 1065-1076
Liu W., Clark N.N., and Karamavruc A.I. General method for the transformation of chord-length data to a local bubble-size distribution. AIChE J. 42 (1996) 2713-2720
Chuang C.-C., Liu W.-L., Chen W.-J., and Huang J.-H. Temperature and substrate dependence of structure and growth mechanism of carbon nanofiber. Appl. Surf. Sci. 254 (2008) 4681-4687