A Lake at the Mt. Fuji (Lake Motosu) Recording Prolonged Negative Arctic Oscillation as Reduction of Aeolian Dust Due To Westerly Pathways During the Holocene - 2024
A Lake at the Mt. Fuji (Lake Motosu) Recording Prolonged Negative Arctic Oscillation as Reduction of Aeolian Dust Due To Westerly Pathways During the Holocene
Nemoto, Karin; Yokoyama, Yusuke; Obrochta, Stephen P.et al.
2024 • In Paleoceanography and Paleoclimatology, 39 (9)
Arctic Oscillation; dust; Holocene; paleoclimate; the westerlies; % reductions; Aeolian dusts; Dust emission; Dust transport; East Asia; Holocenes; Mt. Fuji; Paleoclimates; The westerly; Oceanography; Atmospheric Science; Paleontology
Abstract :
[en] East Asia is a major source of dust accounting for 20% of the global dust emission. Work on reconstructing past changes in dust transport in East Asia is complicated by difficulties in distinguishing local sedimentation from aerial material and lack of suitable material for age determination. Here, we address these issues and present a new dust proxy record from Lake Motosu, located on the Pacific side of Japan. The record is anchored by a high-quality tephra and radiocarbon chronology. Because Lake Motosu is situated in a quartz-free basaltic volcanic province, all quartz deposited in the lake is likely to be aerially sourced, and variations in quartz content should reflect past changes in dust transport. Our new record detects a low dust deposition event from 3.0 to 2.0 ka. This event corresponds to elevated sea surface temperature in the Sea of Japan and climate conditions similar to a negative phase of the Arctic Oscillation, indicating an association with the weakened Westerlies and with less frequent dust storms in the source region. The increase in spatial resolution of past dust transport reconstructions will further improve our understanding of the mechanism related to dust emission from East Asia.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Nemoto, Karin ; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Tokyo, Japan ; Department of Earth and Planetary Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo, Japan
Yokoyama, Yusuke ; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Tokyo, Japan ; Department of Earth and Planetary Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo, Japan ; Graduate Program on Environmental Sciences, The University of Tokyo, Komaba, Tokyo, Japan ; Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan ; Research School of Physics, The Australian National University, Canberra, Australia
Obrochta, Stephen P. ; Graduate School of International Resource Science, Akita University, Akita, Japan
Miyairi, Yosuke; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Tokyo, Japan
Fujiwara, Osamu ; Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Yamamoto, Shinya ; Mount Fuji Research Institute, Yamanashi Prefectural Government, Fujiyoshida, Japan
Nakamura, Atsunori ; Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Hubert, Aurelia ; Université de Liège - ULiège > Département de géographie > Géomorphologie et Géologie du Quaternaire
Heyvaert, Vanessa; OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Geological Survey of Belgium, Brussels, Belgium
De Batist, Marc ; Ghent University Department of Geology, Ghent, Belgium
Language :
English
Title :
A Lake at the Mt. Fuji (Lake Motosu) Recording Prolonged Negative Arctic Oscillation as Reduction of Aeolian Dust Due To Westerly Pathways During the Holocene
JSPS - Japan Society for the Promotion of Science BELSPO - Belgian Federal Science Policy Office
Funding text :
This work is part of the \u201CQuakeRecNankai\u201D project, funded by the Belgian Science Policy Office. Additional funding by JSPS Kakenhi 16K05571, 17H01168, 23KK0013, and 15KK0151, as well as the University of Tokyo Atmosphere and Ocean Research Institute program for visiting researchers. We also express our gratitude to two anonymous reviewers for their constructive comments that improved the quality of this manuscript.
Buehler, T., Raible, C. C., & Stocker, T. F. (2011). The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus A: Dynamic Meteorology and Oceanography, 63(2), 174–187. https://doi.org/10.1111/j.1600-0870.2010.00492.x
Chiba, S., Sugisaki, H., Nonaka, M., & Saino, T. (2009). Geographical shift of zooplankton communities and decadal dynamics of the Kuroshio–Oyashio currents in the western North Pacific. Global Change Biology, 15(7), 1846–1858. https://doi.org/10.1111/j.1365-2486.2009.01890.x
Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M., & Steinitz-Kannan, M. (2008). Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quaternary Science Reviews, 27(11–12), 1166–1180. https://doi.org/10.1016/j.quascirev.2008.02.015
Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., et al. (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, 233(1–2), 71–86. https://doi.org/10.1016/j.epsl.2005.01.036
Geospatial Information Authority of Japan. (2021). Ministry of land, infrastructure, transport and tourism. [Japanese] Retrieved from http://www.gsi.go.jp/kankyochiri/koshouchousa-list.html
Gong, D.-Y., Yang, J., Kim, S.-J., Gao, Y., Guo, D., Zhou, T., & Hu, M. (2011). Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Climate Dynamics, 37(11–12), 2199–2216. https://doi.org/10.1007/s00382-011-1041-1
Hamanaka, N., Kan, H., Nakashima, Y., Yokoyama, Y., Okamoto, T., Ohashi, T., et al. (2015). Holocene reef-growth dynamics on Kodakara Island (29° N, 129° E) in the Northwest Pacific. Geomorphology, 243, 27–39. https://doi.org/10.1016/j.geomorph.2015.04.011
Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., et al. (2011). Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 11(15), 7781–7816. https://doi.org/10.5194/acp-11-7781-2011
Hurrell, J. W., & Deser, C. (2010). North Atlantic climate variability: The role of the North Atlantic Oscillation. Journal of Marine Systems, 79(3–4), 231–244. https://doi.org/10.1016/j.jmarsys.2009.11.002
Inomata, Y., Igarashi, Y., Chiba, M., Shinoda, Y., & Takahashi, H. (2009). Dry and wet deposition of water-insoluble dust and water-soluble chemical species during spring 2007 in Tsukuba, Japan. Atmospheric Environment, 43(29), 4503–4512. https://doi.org/10.1016/j.atmosenv.2009.06.048
Ishi, Y., & Hanawa, K. (2005). Large-scale variabilities of wintertime wind stress curl field in the North Pacific and their relation to atmospheric teleconnection patterns. Geophysical Research Letters, 32(10), L10607. https://doi.org/10.1029/2004GL022330
Koizumi, I., Tada, R., Narita, H., Irino, T., Aramaki, T., Oba, T., & Yamamoto, H. (2006). Paleoceanographic history around the Tsugaru strait between the Japan Sea and the Northwest Pacific Ocean since 30 cal kyr BP. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(1), 36–52. https://doi.org/10.1016/j.palaeo.2005.09.003
Koshimizu, S., Uchiyama, T., Yamamoto, G., Aramaki, S., Fujii, T., Nakada, S., & Miyaji, N. (2007). Volcanic history of Mt. Fuji recorded in borehole cores from Fuji five lakes surrounding Mt. Fuji. Aramaki, S., Fujii, T., Nakada, S. and Miyaji, N. Yamanashi Institute of Environmental Sciences, 365–374.
Kuang, X., & Zhang, Y. (2005). Seasonal variation of the East Asian subtropical westerly jet and its association with the heating field over East Asia. Advances in Atmospheric Sciences, 22(6), 831–840. https://doi.org/10.1007/BF02918683
Kyotani, T., & Koshimizu, S. (2001). Quantification of Asian dust-storm particles (Kosa) in Lake Kawaguchi at the foot of Mt. Fuji, central Japan by SEM-EDX and its application to paleo-climate analysis. Analytical Sciences/Supplements, 17(0), i1593–i1596.
Lamb, A. L., Wilson, G. P., & Leng, M. J. (2006). A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews, 75(1–4), 29–57. https://doi.org/10.1016/j.earscirev.2005.10.003
Lee, Y. G., Kim, J., Ho, C. H., An, S. I., Cho, H. K., Mao, R., et al. (2015). The effects of ENSO under negative AO phase on spring dust activity over northern China: An observational investigation. International Journal of Climatology, 35(6), 935–947. https://doi.org/10.1002/joc.4028
Li, X. H. (1989). Case study on specific synoptic features in spring season of Xinjiang: Implication of meteorological satellite images. Xinjiang Meteorol, 8(9), 13–17.
Lim, J., & Matsumoto, E. (2006). Bimodal grain-size distribution of aeolian quartz in a maar of Cheju Island, Korea, during the last 6500 years: Its flux variation and controlling factor. Geophysical Research Letters, 33(21), L21816. https://doi.org/10.1029/2006GL027432
Lim, J., & Matsumoto, E. (2008). Fine aeolian quartz records in Cheju Island, Korea, during the last 6500 years and pathway change of the westerlies over east Asia. Journal of Geophysical Research, 113(D8), D08106. https://doi.org/10.1029/2007JD008501
Mao, R., Ho, C.-H., Shao, Y., Gong, D.-Y., & Kim, J. (2011). Influence of Arctic Oscillation on dust activity over northeast Asia. Atmospheric Environment, 45(2), 326–337. https://doi.org/10.1016/j.atmosenv.2010.10.020
Meyer, I., Van Daele, M., Tanghe, N., De Batist, M., & Verschuren, D. (2020). Reconstructing East African monsoon variability from grain-size distributions: End-member modeling and source attribution of diatom-rich sediments from Lake Chala. Quaternary Science Reviews, 247, 106574. https://doi.org/10.1016/j.quascirev.2020.106574
Moy, C. M., Seltzer, G. O., Rodbell, D. T., & Anderson, D. M. (2002). Variability of El Niño/southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420(6912), 162–165. https://doi.org/10.1038/nature01194
Nagashima, K., Suzuki, Y., Irino, T., Nakagawa, T., Tada, R., Hara, Y., et al. (2016). Asian dust transport during the last century recorded in Lake Suigetsu sediments. Geophysical Research Letters, 43(6), 2835–2842. https://doi.org/10.1002/2015GL067589
Nagashima, K., Tada, R., Matsui, H., Irino, T., Tani, A., & Toyoda, S. (2007). Orbital-and millennial-scale variations in Asian dust transport path to the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(1–2), 144–161. https://doi.org/10.1016/j.palaeo.2006.11.027
Nagashima, K., Tada, R., & Toyoda, S. (2013). Westerly jet-East Asian summer monsoon connection during the Holocene. Geochemistry, Geophysics, Geosystems, 14(12), 5041–5053. https://doi.org/10.1002/2013GC004931
Nemoto, K., Yokoyama, Y., Obrochta, S. P., Miyairi, Y., Fujiwara, O., Yamamoto, S., et al. (2024). Quartz flux at Lake Motosu site MOT15-2 [Dataset]. PANGAEA. https://doi.org/10.1594/PANGAEA.965002
Obrochta, S. P. (2004). Australian Great Barrier Reef initiation timing constrained by seaward shallow-water sediment drift architecture (ODP Leg 194, Marion Plateau). (Master dissertation). University of South Florida. Retrieved from Digital Commons @ USF https://digitalcommons.usf.edu/etd/1183/
Obrochta, S. P., Yokoyama, Y., Yoshimoto, M., Yamamoto, S., Miyairi, Y., Nagano, G., et al. (2018). Mt. Fuji Holocene eruption history reconstructed from proximal lake sediments and high-density radiocarbon dating. Quaternary Science Reviews, 200, 395–405. https://doi.org/10.1016/j.quascirev.2018.09.001
Olsen, J., Anderson, N. J., & Knudsen, M. F. (2012). Variability of the North Atlantic Oscillation over the past 5,200 years. Nature Geoscience, 5(11), 808–812. https://doi.org/10.1038/nature01194
Ota, K., Yokoyama, Y., Miyairi, Y., Yamamoto, S., & Miyajima, T. (2021). Lake water dissolved inorganic carbon dynamics revealed from monthly measurements of radiocarbon in the Fuji Five Lakes, Japan. Elementa: Science of the Anthropocene, 9(1), 00149. https://doi.org/10.1525/elementa.2020.00149
Ozaki, M., Makimoto, H., Sugiyama, Y., Mimura, K., Sakai, A., Kubo, K., et al. (2002). Geological Map, 1:200,000, Kofu, NI-54-31, 1.
Pausata, F. S. R., Li, C., Wettstein, J. J., Nisancioglu, K. H., & Battisti, D. S. (2009). Changes in atmospheric variability in a glacial climate and the impacts on proxy data: A model intercomparison. Climate of the Past, 5(3), 489–502. https://doi.org/10.5194/cp-5-489-2009
Rea, D. K., & Leinen, M. (1988). Asian aridity and the zonal westerlies: Late Pleistocene and Holocene record of eolian deposition in the northwest Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 66(1–2), 1–8. https://doi.org/10.1016/0031-0182(88)90076-4
Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., & Dullo, W. C. (2005). El Niño variability off Peru during the last 20,000 years. Paleoceanography, 20(4), PA4003. https://doi.org/10.1029/2004PA001099
Schiemann, R., Lüthi, D., & Schär, C. (2009). Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. Journal of Climate, 22(11), 2940–2957. https://doi.org/10.1175/2008JCLI2625.1
Sone, T., Kano, A., Okumura, T., Kashiwagi, K., Hori, M., Jiang, X., & Shen, C.-C. (2013). Holocene stalagmite oxygen isotopic record from the Japan Sea side of the Japanese Islands, as a new proxy of the East Asian winter monsoon. Quaternary Science Reviews, 75, 150–160. https://doi.org/10.1016/j.quascirev.2013.06.019
Sproson, A. D., Yokoyama, Y., Miyairi, Y., Aze, T., & Totten, R. L. (2022). Holocene melting of the west Antarctic Ice Sheet driven by tropical Pacific warming. Nature Communications, 13(1), 1–9. https://doi.org/10.1038/s41467-022-30076-2
Sun, J., Zhang, M., & Liu, T. (2001). Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. Journal of Geophysical Research, 106(D10), 10325–10333. https://doi.org/10.1029/2000JD900665
Tada, R., Zheng, H., & Clift, P. D. (2016). Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Progress in Earth and Planetary Science, 3, 1–26. https://doi.org/10.1186/s40645-016-0080-y
Thompson, D. W. J., & Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25(9), 1297–1300. https://doi.org/10.1029/98GL00950
Toth, L. T., Aronson, R. B., Vollmer, S. V., Hobbs, J. W., Urrego, D. H., Cheng, H., et al. (2012). ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science, 337(6090), 81–84. https://doi.org/10.1126/science.1221168
Yatsu, A., Watanabe, T., Ishida, M., Sugisaki, H., & Jacobson, L. D. (2005). Environmental effects on recruitment and productivity of Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus with recommendations for management. Fisheries Oceanography, 14(4), 263–278. https://doi.org/10.1111/j.1365-2419.2005.00335.x
Yokoyama, Y., & Esat, T. (2006). Comment on" Extending the radiocarbon calibration beyond 26,000 years before present using fossil corals. Quaternary Science Reviews, 25(21–22), 3081–3083. https://doi.org/10.1016/j.quascirev.2006.06.009
Yokoyama, Y., Miyairi, Y., Aze, T., Sawada, C., Ando, Y., Izawa, S., et al. (2022). Efficient radiocarbon measurements on marine and terrestrial samples with single stage accelerator mass spectrometry at the atmosphere and Ocean Research Institute, University of Tokyo. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 532, 62–67. https://doi.org/10.1016/j.nimb.2022.10.006
Yokoyama, Y., Miyairi, Y., Aze, T., Yamane, M., Sawada, C., Ando, Y., et al. (2019). A single stage accelerator mass spectrometry at the atmosphere and Ocean Research Institute, The University of Tokyo. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 455, 311–316. https://doi.org/10.1016/j.nimb.2019.01.055
Yokoyama, Y., Naruse, T., Ogawa, N. O., Tada, R., Kitazato, H., & Ohkouchi, N. (2006). Dust influx reconstruction during the last 26,000 áyears inferred from a sedimentary leaf wax record from the Japan Sea. Global and Planetary Change, 54(3–4), 239–250. https://doi.org/10.1016/j.gloplacha.2006.06.022
Yokoyama, Y., & Purcell, A. (2021). On the geophysical processes impacting palaeo-sea-level observations. Geoscience Letters, 8(1), 1–19. https://doi.org/10.1186/s40562-021-00184-w
Yumimoto, K., Eguchi, K., Uno, I., Takemura, T., Liu, Z., Shimizu, A., & Sugimoto, N. (2009). An elevated large-scale dust veil from the Taklimakan Desert: Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models. Atmospheric Chemistry and Physics, 9(21), 8545–8558. https://doi.org/10.5194/acp-9-8545-2009
Zhang, Y., Zhou, X., He, Y., Jiang, Y., Liu, Y., Xie, Z., et al. (2019). Persistent intensification of the Kuroshio Current during late Holocene cool intervals. Earth and Planetary Science Letters, 506, 15–22. https://doi.org/10.1016/j.epsl.2018.10.018
Zhao, T. L., Gong, S. L., Zhang, X. Y., Blanchet, J.-P., McKendry, I. G., & Zhou, Z. J. (2006). A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part I: Mean climate and validation. Journal of Climate, 19(1), 88–103. https://doi.org/10.1175/JCLI3605.1