chondrites; exoplanets; mantle; Mercury; mineralogy; thermodynamic modeling; Geophysics; Geochemistry and Petrology; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science
Abstract :
[en] The mineralogy of planetary mantles formed under reducing conditions, as documented in the inner regions of the solar system, is not well constrained. We present thermodynamic models of mineral assemblages that would constitute the mantles of exo-Mercuries. We investigated reduced materials such as enstatite chondrites, CH, and CB chondrites, and aubrites, as precursor bulk compositions in phase equilibrium modeling. The resulting isochemical phase diagram sections indicate that dominant phases in these reduced mantles would be pyroxenes rather than olivine, contrasting with the olivine-rich mantles found within Earth, Mars, and Venus. The pyroxene abundances in the modeled mantles assemblages depend on the silica content shown by precursor materials. The silica abundance in the mantle is closely related to Si abundance in the core, particularly in reduced environments. In addition, we propose that pyroxene-rich mantles exhibit more vigorous convective and tectonic activity than olivine-rich mantles, given that pyroxene-rich mantles would have lower viscosity and a lower solidus temperature (Ts).
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Cioria, Camilla ; International Research School of Planetary Sciences, Università d’Annunzio, Pescara, Italy ; Dipartimento di Ingegneria e Geologia, Università d’Annunzio, Pescara, Italy
Mitri, Giuseppe; International Research School of Planetary Sciences, Università d’Annunzio, Pescara, Italy ; Dipartimento di Ingegneria e Geologia, Università d’Annunzio, Pescara, Italy
Connolly, James Alexander Denis ; Department of Earth Sciences, Institute for Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland
Perrillat, Jean-Philippe ; Laboratoire de Géologie de Lyon, CNRS, Université de Lyon, Université Lyon 1, Ens de Lyon, Villeurbanne, France
G.M. and C.C. acknowledge support from the Italian Space Agency (2017\u201040\u2010H.1\u20102020). Authors are grateful to the Editor, and to the three reviewers for their comments that have improved the quality of manuscript.
Allégre, C. J., Poirier, J. P., Humler, E., & Hofmann, A. W. (1995). The chemical composition of the Earth. Earth and Planetary Science Letters, 134(3–4), 515–526. https://doi.org/10.1016/0012-821x(95)00123-t
Anzures, B. A., Parman, S. W., Milliken, R. E., Namur, O., Cartier, C., & Wang, S. (2020). Effect of sulfur speciation on chemical and physical properties of very reduced mercurian melts. Geochimica et Cosmochimica Acta, 286, 1–18. https://doi.org/10.1016/j.gca.2020.07.024
Avé Lallemant, H. G. A. (1978). Experimental deformation of diopside and websterite. Tectonophysics, 48(1–2), 1–27. https://doi.org/10.1016/0040-1951(78)90083-5
Avé Lallemant, H. G. A., Mercier, J. C., Carter, N. L., & Ross, J. V. (1980). Rheology of the upper mantle: Inferences from peridotite xenoliths. Tectonophysics, 70(1–2), 85–113. https://doi.org/10.1016/0040-1951(80)90022-0
Barrat, J. A., Zanda, B., Jambon, A., & Bollinger, C. (2014). The lithophile trace elements in enstatite chondrites. Geochimica et Cosmochimica Acta, 128, 71–94. https://doi.org/10.1016/j.gca.2013.11.042
Batalha, N. M., Borucki, W. J., Bryson, S. T., Buchhave, L. A., Caldwell, D. A., Christensen-Dalsgaard, J., et al. (2011). Kepler's first rocky planet: Kepler-10b. The Astrophysical Journal, 729(1), 27. https://doi.org/10.1088/0004-637X/729/1/27
Batalha, N. M., Rowe, J. F., Bryson, S. T., Barclay, T., Burke, C. J., Caldwell, D. A., et al. (2013). Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. The Astrophysical Journal - Supplement Series, 204(2), 24. https://doi.org/10.1088/0067-0049/204/2/24
Benz, W., Slattery, W. L., & Cameron, A. G. W. (1988). Collisional stripping of Mercury's mantle. Icarus, 74(3), 516–528. https://doi.org/10.1016/0019-1035(88)90118-2
Berthet, S., Malavergne, V., & Righter, K. (2009). Melting of the Indarch meteorite (EH4 chondrite) at 1 GPa and variable oxygen fugacity: Implications for early planetary differentiation processes. Geochimica et Cosmochimica Acta, 73(20), 6402–6420. https://doi.org/10.1016/j.gca.2009.07.030
Best, M. G. (2013). Igneous and metamorphic petrology. John Wiley & Sons.
Boehler, R. (1993). Temperatures in the Earth's core from melting-point measurements of iron at high static pressures. Nature, 363(6429), 534–536. https://doi.org/10.1038/363534a0
Boland, J. N., & Tullis, T. E. (1986). Deformation behavior of wet and dry clinopyroxenite in the brittle to ductile transition region. In B. E. Hobbs & H. C. Heard (Eds.), Mineral and rock deformation: Laboratory studies (pp. 35–49). AGU. https://doi.org/10.1029/GM036p0035
Bouhifd, M. A., Gautron, L., Bolfan-Casanova, N., Malavergne, V., Hammouda, T., Andrault, D., & Jephcoat, A. P. (2007). Potassium partitioning into molten iron alloys at high-pressure: Implications for Earth's core. Physics of the Earth and Planetary Interiors, 160(1), 22–33. https://doi.org/10.1016/j.pepi.2006.08.00
Boujibar, A., Driscoll, P., & Fei, Y. (2020). Super-Earth internal structures and initial thermal states. Journal of Geophysical Research: Planets, 125(5), e2019JE006124. https://doi.org/10.1029/2019je006124
Boujibar, A., Habermann, M., Righter, K., Ross, D. K., Pando, K., Righter, M., et al. (2019). U, Th, and K partitioning between metal, silicate, and sulfide and implications for Mercury’s structure, volatile content, and radioactive heat production. American Mineralogist, 104(9), 1221–1237. https://doi.org/10.2138/am-2019-7000
Boukaré, C. E., Parman, S. W., Parmentier, E. M., & Anzures, B. A. (2019). Production and preservation of sulfide layering in Mercury's mantle. Journal of Geophysical Research: Planets, 124(12), 3354–3372. https://doi.org/10.1029/2019JE005942
Brett, R., & Keil, K. (1986). Enstatite chondrites and enstatite achondrites (aubrites) were not derived from the same parent body. Earth and Planetary Science Letters, 81(1), 1–6. https://doi.org/10.1016/0012-821X(86)90095-6
Brown, S., & Elkins-Tanton, L. T. (2008). Predicting Mercury’s ancient crustal composition. In Paper presented at 39th Lunar and Planetary Science Conference, League City, Texas.
Brown, S., & Elkins-Tanton, L. T. (2009). Earliest planetary crusts: Constraints on the formation of Mercury and implications for bodies of different sizes. In Paper presented at 40th Annual Lunar and Planetary Science Conference, The Woodlands, Texas.
Burbine, T. H., McCOY, T. J., Nittler, L. R., Benedix, G. K., Cloutis, E. A., & Dickinson, T. L. (2002). Spectra of extremely reduced assemblages: Implications for Mercury. Meteoritics & Planetary Science, 37(9), 1233–1244. https://doi.org/10.1111/j.1945-5100.2002.tb00892.x
Bystricky, M., Lawlis, J., Mackwell, S., Heidelbach, F., & Raterron, P. (2016). High-temperature deformation of enstatite aggregates. Journal of Geophysical Research: Solid Earth, 121(9), 6384–6400. https://doi.org/10.1002/2016jb013011
Cameron, A. G. W. (1985). The partial volatilization of Mercury. Icarus, 64(2), 285–294. https://doi.org/10.1016/0019-1035(85)90204-0
Cartier, C., Charlier, B., Boyet, M., Spalding, C., & Namur, O. (2022). A large proto-Mercury as the aubrite parent body. In Paper presented at Mercury 2022 Conference, Orléans, France.
Cartier, C., Hammouda, T., Boyet, M., Bouhifd, M. A., & Devidal, J. L. (2014). Redox control of the fractionation of niobium and tantalum during planetary accretion and core formation. Nature Geoscience, 7(8), 573–576. https://doi.org/10.1038/ngeo2195
Cartier, C., Namur, O., Nittler, L. R., Weider, S. Z., Crapster-Pregont, E., Vorburger, A., et al. (2020). No FeS layer in Mercury? Evidence from Ti/Al measured by MESSENGER. Earth and Planetary Science Letters, 534, 116108. https://doi.org/10.1016/j.epsl.2020.116108
Cartier, C., & Wood, B. J. (2019). The role of reducing conditions in building Mercury. Elements, 15(1), 39–45. https://doi.org/10.2138/gselements.15.1.39
Casanova, I., Keil, K., & Newsom, H. E. (1993). Composition of metal in aubrites: Constraints on core formation. Geochimica et Cosmochimica Acta, 57(3), 675–682. https://doi.org/10.1016/0016-7037(93)90377-9
Chabot, N. L., Wollack, E. A., Klima, R. L., & Minitti, M. E. (2014). Experimental constraints on Mercury's core composition. Earth and Planetary Science Letters, 390, 199–208. https://doi.org/10.1016/j.epsl.2014.01.004
Charlier, B., Grove, T. L., & Zuber, M. T. (2013). Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth and Planetary Science Letters, 363, 50–60. https://doi.org/10.1016/j.epsl.2012.12.021
Charlier, B., & Namur, O. (2019). The origin and differentiation of planet Mercury. Elements, 15(1), 9–14. https://doi.org/10.2138/gselements.15.1.9
Chen, B., Li, Z., Zhang, D., Liu, J., Hu, M. Y., Zhao, J., et al. (2014). Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe7C3. Proceedings of the National Academy of Sciences, 111(50), 17755–17758. https://doi.org/10.1073/pnas.1411154111
Chen, S., Hiraga, T., & Kohlstedt, D. L. (2006). Water weakening of clinopyroxene in the dislocation creep regime. Journal of Geophysical Research, 111(B8), B08203. https://doi.org/10.1029/2005jb003885
Chi, H., Dasgupta, R., Duncan, M. S., & Shimizu, N. (2014). Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean–implications for the abundance and origin of volatiles in Earth, Mars, and the Moon. Geochimica et Cosmochimica Acta, 139, 447–471. https://doi.org/10.1016/j.gca.2014.04.046
Christensen, U. R. (2006). A deep dynamo generating Mercury's magnetic field. Nature, 444(7122), 1056–1058. https://doi.org/10.1038/nature05342
Cioria, C., & Mitri, G. (2022). Model of the mineralogy of the deep interior of Triton. Icarus, 388, 115234. https://doi.org/10.1016/j.icarus.2022.115234
Cioria, C., Mitri, G., Connolly, J. A. D., Perrillat, J.-P., & Saracino, F. (2024). Mantle mineralogy of reduced sub-Earths exoplanets and Mercury-sized objects [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.10824308
Clayton, R. N., & Mayeda, T. K. (1999). Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63(13–14), 2089–2104. https://doi.org/10.1016/S0016-7037(99)00090-3
Connolly, J. A. D. (1990). Multivariable phase diagrams; an algorithm based on generalized thermodynamics. American Journal of Science, 290(6), 666–718. https://doi.org/10.2475/ajs.290.6.666
Dasgupta, R., Buono, A., Whelan, G., & Walker, D. (2009). High-pressure melting relations in Fe–C–S systems: Implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochimica et Cosmochimica Acta, 73(21), 6678–6691. https://doi.org/10.1016/j.gca.2009.08.001
Dasgupta, R., Chi, H., Shimizu, N., Buono, A. S., & Walker, D. (2013). Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: Implications for the origin and distribution of terrestrial carbon. Geochimica et Cosmochimica Acta, 102, 191–212. https://doi.org/10.1016/j.gca.2012.10.011
Defouilloy, C., Cartigny, P., Assayag, N., Moynier, F., & Barrat, J.-A. (2016). High-precision sulfur isotope composition of enstatite meteorites and implications of the formation and evolution of their parent bodies. Geochimica et Cosmochimica Acta, 172, 393–409. https://doi.org/10.1016/j.gca.2015.10.009
Duffy, T., Madhusudhan, N., & Lee, K. K. M. (2015). Mineralogy of super-Earth planets. Treatise on Geophysics (2nd ed., Vol. 2, pp. 149–178). https://doi.org/10.1016/b978-0-444-53802-4.00053-1
Ebel, D., & Stewart, S. (2018). The elusive origin of Mercury. In S. C. Solomon, L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER (Chapter 18). Cambridge University Press. https://doi.org/10.1017/9781316650684.019
Ebel, D. S., & Alexander, C. M. O. ’D. (2011). Equilibrium condensation from chondritic porous IDP enriched vapor: Implications for Mercury and enstatite chondrite origins. Planetary and Space Science, 59(15), 1888–1894. https://doi.org/10.1016/j.pss.2011.07.017
Edmund, E., Morard, G., Baron, M. A., Rivoldini, A., Yokoo, S., Boccato, S., et al. (2022). The Fe-FeSi phase diagram at Mercury’s core conditions. Nature Communications, 13(1), 387. https://doi.org/10.1038/s41467-022-27991-9
Fegley, B., Jr., & Cameron, A. G. W. (1987). A vaporization model for iron/silicate fractionation in the Mercury protoplanet. Earth and Planetary Science Letters, 82(3–4), 207–222. https://doi.org/10.1016/0012-821x(87)90196-8
Fischer, R. A., Cottrell, E., Hauri, E., Lee, K. K., & Le Voyer, M. (2020). The carbon content of Earth and its core. Proceedings of the National Academy of Sciences, 117(16), 8743–8749. https://doi.org/10.1073/pnas.1919930117
Fischer, R. A., Nakajima, Y., Campbell, A. J., Frost, D. J., Harries, D., Langenhorst, F., et al. (2015). High pressure metal–silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochimica et Cosmochimica Acta, 167, 177–194. https://doi.org/10.1016/j.gca.2015.06.026
Fogel, R. A. (2005). Aubrite basalt vitrophyres: The missing basaltic component and high-sulfur silicate melts. Geochimica et Cosmochimica Acta, 69(6), 1633–1648. https://doi.org/10.1016/j.gca.2003.11.032
Fuhrman, M. L., & Lindsley, D. H. (1988). Ternary-feldspar modeling and thermometry. American Mineralogist, 73(3–4), 201–215.
Genova, A., Goossens, S., Mazarico, E., Lemoine, F. G., Neumann, G. A., Kuang, W., et al. (2019). Geodetic evidence that Mercury has a solid inner core. Geophysical Research Letters, 46(7), 3625–3633. https://doi.org/10.1029/2018GL081135
Gerya, T. (2019). Introduction to numerical geodynamic modelling. Cambridge University Press.
Gessmann, C. K., & Wood, B. J. (2002). Potassium in the Earth’s core? Earth and Planetary Science Letters, 200(1–2), 63–78. https://doi.org/10.1016/s0012-821x(02)00593-9
Ghiorso, M. S., & Sack, R. O. (1995). Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119(2–3), 197–212. https://doi.org/10.1007/BF00307281
Goettel, K. A. (1988). Present bounds on the bulk composition of Mercury - Implications for planetary formation processes. In F. Vilas, C. R. Chapman, & M. S. Matthews (Eds.), Mercury (pp. 613–621). The University of Arizona Press.
Grady, M. M., & Pillinger, C. T. (1990). ALH 85085: Nitrogen isotope analysis of a highly unusual primitive chondrite. Earth and Planetary Science Letters, 97(1–2), 29–40. https://doi.org/10.1016/0012-821X(90)90096-G
Grasset, O., Sotin, C., & Deschamps, F. (2000). On the internal structure and dynamics of Titan. Planetary and Space Science, 48(7–8), 617–636. https://doi.org/10.1016/s0032-0633(00)00039-8
Green, D. H., & Ringwood, A. E. (1967). The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth and Planetary Science Letters, 3, 151–160. https://doi.org/10.1016/0012-821X(67)90027-1
Hansen, L. N., & Warren, J. M. (2015). Quantifying the effect of pyroxene on deformation of peridotite in a natural shear zone. Journal of Geophysical Research: Solid Earth, 120(4), 2717–2738. https://doi.org/10.1002/2014jb011584
Hauck, S. A., Margot, J. L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., et al. (2013). The curious case of Mercury's internal structure. Journal of Geophysical Research: Planets, 118(6), 1204–1220. https://doi.org/10.1002/jgre.20091
Heinrich, C. A., & Connolly, J. A. D. (2022). Physical transport of magmatic sulfides promotes copper enrichment in hydrothermal ore fluids. Geology, 50(10), 1101–1105. https://doi.org/10.1130/G50138.1
Hier-Majumder, S., Mei, S., & Kohlstedt, D. L. (2005). Water weakening of clinopyroxenite in diffusion creep. Journal of Geophysical Research, 110(B7), B07406. https://doi.org/10.1029/2004jb003414
Hinkel, N. R., Timmes, F. X., Young, P. A., Pagano, M. D., & Turnbull, M. C. (2014). Stellar abundances in the solar neighborhood: The Hypatia Catalog. The Astronomical Journal, 148(3), 54. https://doi.org/10.1088/0004-6256/148/3/54
Hinkel, N. R., & Unterborn, C. T. (2018). The star–planet connection. I. Using stellar composition to observationally constrain planetary mineralogy for the 10 closest stars. The Astrophysical Journal, 853(1), 83. https://doi.org/10.3847/1538-4357/aaa5b4
Hinkel, N. R., Young, P. A., Pagano, M. D., Desch, S. J., Anbar, A. D., Adibekyan, V., et al. (2016). A comparison of stellar elemental abundance techniques and measurements. The Astrophysical Journal - Supplement Series, 226(1), 4. https://doi.org/10.3847/0067-0049/226/1/4
Hirose, K., Morard, G., Sinmyo, R., Umemoto, K., Hernlund, J., Helffrich, G., & Labrosse, S. (2017). Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature, 543(7643), 99–102. https://doi.org/10.1038/nature21367
Hirschmann, M. M., & Stolper, E. M. (1996). A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contributions to Mineralogy and Petrology, 124(2), 185–208. https://doi.org/10.1007/s004100050184
Hitchings, R. S., Paterson, M. S., & Bitmead, J. (1989). Effects of iron and magnetite additions in olivine-pyroxene rheology. Physics of the Earth and Planetary Interiors, 55(3–4), 277–291. https://doi.org/10.1016/0031-9201(89)90076-9
Holland, T., & Powell, R. (2003). Activity–composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145(4), 492–501. https://doi.org/10.1007/s00410-003-0464-z
Holland, T. J., Green, E. C., & Powell, R. (2018). Melting of peridotites through to granites: A simple thermodynamic model in the system KNCFMASHTOCr. Journal of Petrology, 59(5), 881–900. https://doi.org/10.1093/petrology/egy048
Holland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids [Dataset]. Journal of Metamorphic Geology, 29(3), 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923
Holzheid, A., & Grove, T. L. (2002). Sulfur saturation limits in silicate melts and their implications for core formation scenarios for terrestrial planets. American Mineralogist, 87(2–3), 227–237. https://doi.org/10.2138/am-2002-2-304
Hutchison, R. (2004). Meteorites: A petrologic, chemical, and isotopic synthesis. Cambridge University Press.
Ivanova, M. A., Kononkova, N. N., Franchi, I. A., Verchovsky, A. B., Korochantseva, E. V., Trieloff, M., et al. (2006). Isheyevo Meteorite: Genetic link between CH and CB chondrites? In Paper presented at 37th Lunar and Planetary Science Conference, Houston, Texas.
Jarosewich, E. (1990). Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics, 25(4), 323–337. https://doi.org/10.1111/j.1945-5100.1990.tb00717.x
Javoy, M., Kaminski, E., Guyot, F., Andrault, D., Sanloup, C., Moreira, M., et al. (2010). The chemical composition of the Earth: Enstatite chondrite models. Earth and Planetary Science Letters, 293(3–4), 259–268. https://doi.org/10.1016/j.epsl.2010.02.033
Jennings, E. S., & Holland, T. J. (2015). A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. Journal of Petrology, 56(5), 869–892. https://doi.org/10.1093/petrology/egv020
Ji, S., Wang, Z., & Wirth, R. (2001). Bulk flow strength of forsterite–enstatite composites as a function of forsterite content. Tectonophysics, 341(1–4), 69–93. https://doi.org/10.1016/S0040-1951(01)00191-3
Kallemeyn, G. W., & Wasson, J. T. (1986). Compositions of enstatite (EH3, EH4, 5 and EL6) chondrites: Implications regarding their formation. Geochimica et Cosmochimica Acta, 50(10), 2153–2164. https://doi.org/10.1016/0016-7037(86)90070-0
Keil, K. (1968). Mineralogical and chemical relationships among enstatite chondrites. Journal of Geophysical Research, 73(22), 6945–6976. https://doi.org/10.1029/JB073i022p06945
Keil, K. (2010). Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Geochemistry, 70(4), 295–317. https://doi.org/10.1016/j.chemer.2010.02.002
Keppler, H., & Golabek, G. (2019). Graphite floatation on a magma ocean and the fate of carbon during core formation. Geochemical Perspectives Letters, 11, 12–17. https://doi.org/10.7185/geochemlet.1918
Kilburn, M. R., & Wood, B. J. (1997). Metal–silicate partitioning and the incompatibility of S and Si during core formation. Earth and Planetary Science Letters, 152(1–4), 139–148. https://doi.org/10.1016/S0012-821X(97)00125-8
Kirby, S. H., & Kronenberg, A. K. (1987). Rheology of the lithosphere: Selected topics. Reviews of Geophysics, 25(6), 1219–1244. https://doi.org/10.1029/RG025i006p01219
Knibbe, J. S., Rivoldini, A., Luginbuhl, S. M., Namur, O., Charlier, B., Mezouar, M., et al. (2021). Mercury's interior structure constrained by density and P-wave velocity measurements of liquid Fe-Si-C alloys. Journal of Geophysical Research: Planets, 126(1), e2020JE006651. https://doi.org/10.1029/2020JE006651
Knibbe, J. S., & Van Hoolst, T. (2021). Modelling of thermal stratification at the top of a planetary core: Application to the cores of Earth and Mercury and the thermal coupling with their mantles. Physics of the Earth and Planetary Interiors, 321, 106804. https://doi.org/10.1016/j.pepi.2021.106804
Knibbe, J. S., & van Westrenen, W. (2015). The interior configuration of planet Mercury constrained by moment of inertia and planetary contraction. Journal of Geophysical Research: Planets, 120(11), 1904–1923. https://doi.org/10.1002/2015JE004908
Knibbe, J. S., & van Westrenen, W. (2018). The thermal evolution of Mercury's Fe–Si core. Earth and Planetary Science Letters, 482, 147–159. https://doi.org/10.1016/j.epsl.2017.11.006
Kohlstedt, D. L., Evans, B., & Mackwell, S. J. (1995). Strength of the lithosphere: Constraints imposed by laboratory experiments. Journal of Geophysical Research, 100(B9), 17587–17602. https://doi.org/10.1029/95JB01460
Kruijer, T. S., Kleine, T., & Borg, L. E. (2020). The great isotopic dichotomy of the early Solar System. Nature Astronomy, 4(1), 32–40. https://doi.org/10.1038/s41550-019-0959-9
Kuskov, O. L., & Kronrod, V. A. (2005). Internal structure of Europa and Callisto. Icarus, 177(2), 550–569. https://doi.org/10.1016/j.icarus.2005.04.014
Labrosse, S. (2003). Thermal and magnetic evolution of the Earth’s core. Physics of the Earth and Planetary Interiors, 140(1–3), 127–143. https://doi.org/10.1016/j.pepi.2003.07.006
Lambart, S., Baker, M. B., & Stolper, E. M. (2016). The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. Journal of Geophysical Research: Solid Earth, 121(8), 5708–5735. https://doi.org/10.1002/2015JB012762
Lambart, S., Laporte, D., Provost, A., & Schiano, P. (2012). Fate of pyroxenite-derived melts in the peridotitic mantle: Thermodynamic and experimental constraints. Journal of Petrology, 53(3), 451–476. https://doi.org/10.1093/petrology/egr068
Lambart, S., Laporte, D., & Schiano, P. (2009). An experimental study of pyroxenite partial melts at 1 and 1.5 GPa: Implications for the major-element composition of Mid-Ocean Ridge Basalts. Earth and Planetary Science Letters, 288(1–2), 335–347. https://doi.org/10.1016/j.epsl.2009.09.03
Lark, L. H., Head, J. W., & Huber, C. (2023). Evidence for a carbon-rich Mercury from the distribution of low-reflectance material (LRM) associated with large impact basins. Earth and Planetary Science Letters, 613, 118192. https://doi.org/10.1016/j.epsl.2023.118192
Lark, L. H., Parman, S., Huber, C., Parmentier, E. M., & Head III, J. W. (2022). Sulfides in Mercury's mantle: Implications for Mercury's interior as interpreted from moment of inertia. Geophysical Research Letters, 49(6), e2021GL096713. https://doi.org/10.1029/2021GL096713
Lawlis, J. D. (1998). High temperature creep of synthetic olivine-enstatite aggregates (Doctoral dissertation). Pennsylvania State University.
Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (Eds.). (2002). Igneous rocks: A classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press.
Li, Y., Dasgupta, R., & Tsuno, K. (2015). The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600 C: Implications for core–mantle differentiation and degassing of magma oceans and reduced planetary mantles. Earth and Planetary Science Letters, 415, 54–66. https://doi.org/10.1016/j.epsl.2015.01.017
Litasov, K. D., & Shatskiy, A. F. (2016). Composition of the Earth’s core: A review. Russian Geology and Geophysics, 57(1), 22–46. https://doi.org/10.1016/j.rgg.2016.01.003
Lodders, K., Palme, H., & Wlotzka, F. (1993). Trace elements in mineral separates of the Pena Blanca Spring aubrite: Implications for the evolution of the aubrite parent body. Meteoritics, 28(4), 538–551. https://doi.org/10.1111/j.1945-5100.1993.tb00277.x
Mackwell, S. J. (1991). High-temperature rheology of enstatite: Implications for creep in the mantle. Geophysical Research Letters, 18(11), 2027–2030. https://doi.org/10.1029/91GL02492
Malavergne, V., Berthet, S., & Righter, K. (2007). Formation of CaS-MgS in enstatite chondrites and achondrites as a function of redox conditions and temperature: Constraints on their evolution in a planetesimal and in a proto-planet. In Lunar and Planetary Science Conference.
Malavergne, V., Cordier, P., Righter, K., Brunet, F., Zanda, B., Addad, A., et al. (2014). How Mercury can be the most reduced terrestrial planet and still store iron in its mantle. Earth and Planetary Science Letters, 394, 186–197. https://doi.org/10.1016/j.epsl.2014.03.028
Malavergne, V., Tarrida, M., Combes, R., Bureau, H., Jones, J., & Schwandt, C. (2007). New high-pressure and high-temperature metal/silicate partitioning of U and Pb: Implications for the cores of the Earth and Mars. Geochimica et Cosmochimica Acta, 71(10), 2637–2655. https://doi.org/10.1016/j.gca.2007.03.011
Malavergne, V., Toplis, M. J., Berthet, S., & Jones, J. (2010). Highly reducing conditions during core formation on Mercury: Implications for internal structure and the origin of a magnetic field. Icarus, 206(1), 199–209. https://doi.org/10.1016/j.icarus.2009.09.001
Marcy, G. W., & Butler, R. P. (1996). A planetary companion to 70 Virginis. The Astrophysical Journal, 464(2), L147–L151. https://doi.org/10.1086/310096
Margot, J.-L., Hauck, S. A., Mazarico, E., Padovan, S., & Peale, S. J. (2018). Mercury’s internal structure. In S. C. Solomon, L. R. Nittler, & B. J. Anderson (Eds.), Mercury (1st ed., pp. 85–113). Cambridge University Press.
Mason, B. (1966). The enstatite chondrites. Geochimica et Cosmochimica Acta, 30(1), 23–39. https://doi.org/10.1016/0016-7037(66)90089-5
McCoy, T. J., Dickinson, T. L., & Lofgren, G. E. (1999). Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics & Planetary Science, 34(5), 735–746. https://doi.org/10.1111/j.1945-5100.1999.tb01386.x
McCubbin, F. M., Riner, M. A., Vander Kaaden, K. E., & Burkemper, L. K. (2012). Is Mercury a volatile-rich planet? Geophysical Research Letters, 39(9), L09202. https://doi.org/10.1029/2012GL051711
McDonough, W. F., & Yoshizaki, T. (2021). Terrestrial planet compositions controlled by accretion disk magnetic field. Progress in Earth and Planetary Science, 8, 1–12. https://doi.org/10.1186/s40645-021-00429-4
Michel, N. C., Hauck, S. A., Solomon, S. C., Phillips, R. J., Roberts, J. H., & Zuber, M. T. (2013). Thermal evolution of Mercury as constrained by MESSENGER observations. Journal of Geophysical Research: Planets, 118(5), 1033–1044. https://doi.org/10.1002/jgre.20049
Mookherjee, M., Nakajima, Y., Steinle-Neumann, G., Glazyrin, K., Wu, X., Dubrovinsky, L., et al. (2011). High-pressure behavior of iron carbide (Fe7C3) at inner core conditions. Journal of Geophysical Research, 116(B4), B04201. https://doi.org/10.1029/2010JB007819
Morgan, J. W., & Anders, E. (1980). Chemical composition of Earth, Venus, and Mercury. Proceedings of the National Academy of Sciences, 77(12), 6973–6977. https://doi.org/10.1073/pnas.77.12.6973
Mueller, S., & McKinnon, W. B. (1988). Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution. Icarus, 76(3), 437–464. https://doi.org/10.1016/0019-1035(88)90014-0
Nakagawa, T., & Tackley, P. J. (2004a). Effects of thermo-chemical mantle convection on the thermal evolution of the Earth’s core. Earth and Planetary Science Letters, 220(1–2), 107–119. https://doi.org/10.1016/S0012-821X(04)00055-X
Nakagawa, T., & Tackley, P. J. (2004b). Thermo-chemical structure in the mantle arising from a three-component convective system and implications for geochemistry. Physics of the Earth and Planetary Interiors, 146(1–2), 125–138. https://doi.org/10.1016/j.pepi.2003.05.006
Namur, O., Charlier, B., Holtz, F., Cartier, C., & McCammon, C. (2016). Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury. Earth and Planetary Science Letters, 448, 102–114. https://doi.org/10.1016/j.epsl.2016.05.024
Namur, O., Collinet, M., Charlier, B., Grove, T. L., Holtz, F., & McCammon, C. (2016). Melting processes and mantle sources of lavas on Mercury. Earth and Planetary Science Letters, 439, 117–128. https://doi.org/10.1016/j.epsl.2016.01.030
Néri, A., Guyot, F., Reynard, B., & Sotin, C. (2020). A carbonaceous chondrite and cometary origin for icy moons of Jupiter and Saturn. Earth and Planetary Science Letters, 530, 115920. https://doi.org/10.1016/j.epsl.2019.115920
Nittler, L. R., Chabot, N. L., Grove, T. L., & Peplowski, P. N. (2018). The chemical composition of Mercury. In S. C. Solomon, L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The View after MESSENGER (1st ed., pp. 30–51). Cambridge University Press.
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., et al. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333(6051), 1847–1850. https://doi.org/10.1126/science.1211567
Ohuchi, T., Karato, S., & Fujino, K. (2011). Strength of single-crystal orthopyroxene under lithospheric conditions. Contributions to Mineralogy and Petrology, 161(6), 961–975. https://doi.org/10.1007/s00410-010-0574-3
Olson, P., Deguen, R., Rudolph, M. L., & Zhong, S. (2015). Core evolution driven by mantle global circulation. Physics of the Earth and Planetary Interiors, 243, 44–55. https://doi.org/10.1016/j.pepi.2015.03.002
Padovan, S., Tosi, N., Plesa, A. C., & Ruedas, T. (2017). Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures. Nature Communications, 8(1), 1945. https://doi.org/10.1038/s41467-017-01692-0
Perryman, M. A. C. (2011). The exoplanet handbook. Cambridge University Press.
Pertermann, M., & Hirschmann, M. M. (2003). Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. Journal of Geophysical Research, 108(B2), 2125. https://doi.org/10.1029/2000JB000118
Philpotts, A. R., & Ague, J. J. (2022). Principles of igneous and metamorphic petrology. Cambridge University Press.
Pirotte, H., Cartier, C., Namur, O., Pommier, A., Zhang, Y., Berndt, J., et al. (2023). Internal differentiation and volatile budget of Mercury inferred from the partitioning of heat-producing elements at highly reduced conditions. Icarus, 405, 115699. https://doi.org/10.1016/j.icarus.2023.115699
Putirka, K. D., & Rarick, J. C. (2019). The composition and mineralogy of rocky exoplanets: A survey of> 4000 stars from the Hypatia Catalog. American Mineralogist: Journal of Earth and Planetary Materials, 104(6), 817–829. https://doi.org/10.2138/am-2019-6787
Putirka, K. D., & Xu, S. (2021). Polluted white dwarfs reveal exotic mantle rock types on exoplanets in our solar neighborhood. Nature Communications, 12(1), 6168. https://doi.org/10.1038/s41467-021-26403-8
Raleigh, C. B., Kirby, S. H., Carter, N. L., & Ave’ Lallemant, H. G. (1971). Slip and the clinoenstatite transformation as competing rate processes in enstatite. Journal of Geophysical Research, 76(17), 4011–4022. https://doi.org/10.1029/jb076i017p04011
Ranalli, G. (1995). Rheology of the Earth. Springer Science & Business Media.
Ranalli, G. (1997). Rheology of the lithosphere in space and time. Geological Society, London, Special Publications, 121(1), 19–37. https://doi.org/10.1144/GSL.SP.1997.121.01.02
Redmond, H. L., & King, S. D. (2007). Does mantle convection currently exist on Mercury? Physics of the Earth and Planetary Interiors, 164(3–4), 221–231. https://doi.org/10.1016/j.pepi.2007.07.004
Righter, K., Herd, C. D., & Boujibar, A. (2020). Redox Processes in early earth accretion and in terrestrial bodies. Elements: An International Magazine of Mineralogy. Geochemistry, and Petrology, 16(3), 161–166. https://doi.org/10.2138/gselements.16.3.161
Riner, M. A., Bina, C. R., Robinson, M. S., & Desch, S. J. (2008). Internal structure of Mercury: Implications of a molten core. Journal of Geophysical Research, 113(E8), E08013. https://doi.org/10.1029/2007JE002993
Rivoldini, A., & Van Hoolst, T. (2013). The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury. Earth and Planetary Science Letters, 377, 62–72. https://doi.org/10.1016/j.epsl.2013.07.021
Rivoldini, A., Van Hoolst, T., & Verhoeven, O. (2009). The interior structure of Mercury and its core sulfur content. Icarus, 201(1), 12–30. https://doi.org/10.1016/j.icarus.2008.12.020
Rohrbach, A., Ballhaus, C., Golla–Schindler, U., Ulmer, P., Kamenetsky, V. S., & Kuzmin, D. V. (2007). Metal saturation in the upper mantle. Nature, 449(7161), 456–458. https://doi.org/10.1038/nature06183
Ross, J. V., & Nielsen, K. C. (1978). High-temperature flow of wet polycrystalline enstatite. Tectonophysics, 44(1–4), 233–261. https://doi.org/10.1016/0040-1951(78)90072-0
Rubin, A., & Ma, C. (2021). Meteorite mineralogy (Cambridge Planetary Science). Cambridge University Press.
Rubin, A. E. (1984). The Blithfield meteorite and the origin of sulfide-rich, metal-poor clasts and inclusions in brecciated enstatite chondrites. Earth and Planetary Science Letters, 67(3), 273–283. https://doi.org/10.1016/0012-821X(84)90167-5
Schaefer, L., Jacobsen, S. B., Remo, J. L., Petaev, M. I., & Sasselov, D. D. (2017). Metal-silicate partitioning and its role in core formation and composition on super-Earths. The Astrophysical Journal, 835(2), 234. https://doi.org/10.3847/1538-4357/835/2/234
Schoenbeck, T. W., & Palme, H. (2003). Silicon concentrations in metal grains of CB-, CH and CR-chondrites – Implications for their formation. In Paper presented at 34th Annual Lunar and Planetary Science Conference. League City, Texas.
Schoenbeck, T. W., & Palme, H. (2005). SIMS analysis of moderately lithophile elements in CR and CB chondrite metal – Characteristic properties of pristine and processed metal. In Paper presented at 36th Annual Lunar and Planetary Science Conference. League City, Texas.
Scott, E. R. (1988). A new kind of primitive chondrite, Allan Hills 85085. Earth and Planetary Science Letters, 91(1–2), 1–18. https://doi.org/10.1016/0012-821X(88)90147-1
Sears, D. W. (1980). Formation of E chondrites and aubrites—A thermodynamic model. Icarus, 43(2), 184–202. https://doi.org/10.1016/0019-1035(80)90120-7
Siebert, J., Badro, J., Antonangeli, D., & Ryerson, F. J. (2012). Metal–silicate partitioning of Ni and Co in a deep magma ocean. Earth and Planetary Science Letters, 321, 189–197. https://doi.org/10.1016/j.epsl.2012.01.013
Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A., Lemoine, F. G., et al. (2012). Gravity field and internal structure of Mercury from MESSENGER. Science, 336(6078), 214–217. https://doi.org/10.1126/science.1218809
Smith, R. F., Fratanduono, D. E., Braun, D. G., Duffy, T. S., Wicks, J. K., Celliers, P. M., et al. (2018). Equation of state of iron under core conditions of large rocky exoplanets. Nature Astronomy, 2(6), 452–458. https://doi.org/10.1038/s41550-018-0437-9
Smrekar, S. E., Elkins-Tanton, L., Leitner, J. J., Lenardic, A., Mackwell, S., Moresi, L., et al. (2007). Tectonic and thermal evolution of Venus and the role of volatiles: Implications for understanding the terrestrial planets. Exploring Venus as a Terrestrial Planet, 176, 45–71. https://doi.org/10.1029/176gm05
Sotin, C., Jackson, J. M., & Seager, S. (2010). Terrestrial planet interiors. In S. Seager (Ed.), Exoplanets (pp. 375–395). University of Arizona.
Steenstra, E. S., Seegers, A. X., Putter, R., Berndt, J., Klemme, S., Matveev, S., et al. (2020). Metal-silicate partitioning systematics of siderophile elements at reducing conditions: A new experimental database. Icarus, 335, 113391. https://doi.org/10.1016/j.icarus.2019.113391
Steenstra, E. S., Trautner, V. T., Berndt, J., Klemme, S., & van Westrenen, W. (2020). Trace element partitioning between sulfide-metal-and silicate melts at highly reduced conditions: Insights into the distribution of volatile elements during core formation in reduced bodies. Icarus, 335, 113408. https://doi.org/10.1016/j.icarus.2019.113408
Steenstra, E. S., & van Westrenen, W. (2020). Geochemical constraints on core-mantle differentiation in Mercury and the aubrite parent body. Icarus, 340, 113621. https://doi.org/10.1016/j.icarus.2020.113621
Steinbrügge, G., Dumberry, M., Rivoldini, A., Schubert, G., Cao, H., Schroeder, D. M., & Soderlund, K. M. (2021). Challenges on Mercury's interior structure posed by the new measurements of its obliquity and tides. Geophysical Research Letters, 48(3), e2020GL089895. https://doi.org/10.1029/2020GL089895
Stixrude, L. (2014). Melting in super-earths. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 372(2014), 20130076. https://doi.org/10.1098/rsta.2013.0076
Stockstill-Cahill, K. R., McCoy, T. J., Nittler, L. R., Weider, S. Z., & Hauck, S. A. (2012). Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling. Journal of Geophysical Research, 117(E12), E00L15. https://doi.org/10.1029/2012je004140
Suer, T. A., Siebert, J., Remusat, L., Menguy, N., & Fiquet, G. (2017). A sulfur-poor terrestrial core inferred from metal–silicate partitioning experiments. Earth and Planetary Science Letters, 469, 84–97. https://doi.org/10.1016/j.epsl.2017.04.016
Tackley, P. J. (2002). Strong heterogeneity caused by deep mantle layering. Geochemistry, Geophysics, Geosystems, 3(4), 1–22. https://doi.org/10.1029/2001GC000167
Taylor, G. J., & Scott, E. R. D. (2001). Workshop on Mercury: Space environment, surface, and interior.
Taylor, G. J., & Scott, E. R. D. (2003). Mercury. In A. M. Davis, H. D. Holland, & K. K. Turekian (Eds.), Meteorites, Comets, and Planets, Treatise on Geochemistry (Vol. 1, pp. 477–485). Pergamon. https://doi.org/10.1016/b0-08-043751-6/01071-9
Thompson, J. B. (1982). Reaction Space: An algebraic and geometric approach. In J. M. Ferry (Ed.), Characterization of Metamorphism through mineral equilibria, Reviews in mineralogy (Vol. 10, pp. 33–52). Mineralogical Society of America.
Tosi, N., Grott, M., Plesa, A. C., & Breuer, D. (2013). Thermochemical evolution of Mercury's interior. Journal of Geophysical Research: Planets, 118(12), 2474–2487. https://doi.org/10.1002/jgre.20168
Trønnes, R. G., Baron, M. A., Eigenmann, K. R., Guren, M. G., Heyn, B. H., Løken, A., & Mohn, C. E. (2019). Core formation, mantle differentiation and core-mantle interaction within Earth and the terrestrial planets. Tectonophysics, 760, 165–198. https://doi.org/10.1016/j.tecto.2018.10.021
Udry, A., Wilbur, Z. E., Rahib, R. R., McCubbin, F. M., Vander Kaaden, K. E., McCoy, T. J., et al. (2019). Reclassification of four aubrites as enstatite chondrite impact melts: Potential geochemical analogs for Mercury. Meteoritics and Planetary Science, 54(4), 785–810. https://doi.org/10.1111/maps.13252
Umemoto, K., Wentzcovitch, R. M., & Allen, P. B. (2006). Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets. Science, 311(5763), 983–986. https://doi.org/10.1126/science.1120865
Umemoto, K., Wentzcovitch, R. M., Wu, S., Ji, M., Wang, C. Z., & Ho, K. M. (2017). Phase transitions in MgSiO3 post-perovskite in super-Earth mantles. Earth and Planetary Science Letters, 478, 40–45. https://doi.org/10.1016/j.epsl.2017.08.032
Unterborn, C. T., Desch, S. J., Haldemann, J., Lorenzo, A., Schulze, J. G., Hinkel, N. R., & Panero, W. R. (2023). The nominal ranges of rocky planet masses, radii, surface gravities, and bulk densities. The Astrophysical Journal, 944(1), 42. https://doi.org/10.3847/1538-4357/acaa3b
Unterborn, C. T., & Panero, W. R. (2019). The pressure and temperature limits of likely rocky exoplanets. Journal of Geophysical Research: Planets, 124(7), 1704–1716. https://doi.org/10.1029/2018JE005844
Valencia, D. (2013). Composition and internal dynamics of super-Earths. Physics and Chemistry of the Deep Earth, 271–294. https://doi.org/10.1002/9781118529492.ch9
Valencia, D., O’Connell, R. J., & Sasselov, D. (2006). Internal structure of massive terrestrial planets. Icarus, 181(2), 545–554. https://doi.org/10.1016/j.icarus.2005.11.021
Vander Kaaden, K. E., & McCubbin, F. M. (2015). Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. Journal of Geophysical Research: Planets, 120(2), 195–209. https://doi.org/10.1002/2014JE004733
Vander Kaaden, K. E., & McCubbin, F. M. (2016). The origin of boninites on Mercury: An experimental study of the northern volcanic plains lavas. Geochimica et Cosmochimica Acta, 173, 246–263. https://doi.org/10.1016/j.gca.2015.10.016
Vander Kaaden, K. E., McCubbin, F. M., Nittler, L. R., Peplowski, P. N., Weider, S. Z., Frank, E. A., & McCoy, T. J. (2017). Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle. Icarus, 285, 155–168. https://doi.org/10.1016/j.icarus.2016.11.041
Vander Kaaden, K. E., McCubbin, F. M., Turner, A. A., & Ross, D. K. (2020). Constraints on the abundances of carbon and silicon in Mercury's core from experiments in the Fe-Si-C system. Journal of Geophysical Research: Planets, 125(5), e2019JE006239. https://doi.org/10.1029/2019JE006239
Wadhwa, M. (2008). Redox conditions on small bodies, the Moon and Mars. Reviews in Mineralogy and Geochemistry, 68(1), 493–510. https://doi.org/10.2138/rmg.2008.68.17
Wänke, H., Dreibus, G., & Jagoutz, E. (1984). Mantle chemistry and accretion history of the Earth. In Archaean geochemistry: The origin and evolution of the Archaean Continental crust (pp. 1–24). Springer Berlin Heidelberg.
Warren, P. H. (2011). Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311(1–2), 93–100. https://doi.org/10.1016/j.epsl.2011.08.047
Wasson, J. T., & Kallemeyn, G. W. (1990). Allan Hills 85085: A subchondritic meteorite of mixed nebular and regolithic heritage. Earth and Planetary Science Letters, 101(2–4), 148–161. https://doi.org/10.1016/0012-821X(90)90150-V
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., et al. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER's X-Ray Spectrometer. Earth and Planetary Science Letters, 416, 109–120. https://doi.org/10.1016/j.epsl.2015.01.023
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., & Solomon, S. C. (2014). Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations. Icarus, 235, 170–186. https://doi.org/10.1016/j.icarus.2014.03.002
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., et al. (2012). Chemical heterogeneity on Mercury's surface revealed by the MESSENGER X-Ray Spectrometer. Journal of Geophysical Research, 117(E12), E00L05. https://doi.org/10.1029/2012JE004153
Weisberg, M. K., & Kimura, M. (2012). The unequilibrated enstatite chondrites. Geochemistry, 72(2), 101–115. https://doi.org/10.1016/j.chemer.2012.04.003
Weisberg, M. K., Prinz, M., Clayton, R. N., Mayeda, T. K., Sugiura, N., & Zashu, S. (1998). The bencubbinite (B) group of the CR clan. Meteoritics & Planetary Science, 33, A166.
Weisberg, M. K., Prinz, M., Clayton, R. N., Mayeda, T. K., Sugiura, N., Zashu, S., & Ebihara, M. (2001). A new metal-rich chondrite grouplet. Meteoritics & Planetary Science, 36(3), 401–418. https://doi.org/10.1111/j.1945-5100.2001.tb01882.x
Weisberg, M. K., Prinz, M., & Nehru, C. E. (1988). Petrology of ALH85085: A chondrite with unique characteristics. Earth and Planetary Science Letters, 91(1–2), 19–32. https://doi.org/10.1016/0012-821X(88)90148-3
White, W. (2013). Geochemistry (1st ed.). Wiley.
Wicks, J. K., Smith, R. F., Fratanduono, D. E., Coppari, F., Kraus, R. G., Newman, M. G., et al. (2018). Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions. Science Advances, 4(4), eaao5864. https://doi.org/10.1126/sciadv.aao5864
Wilbur, Z. E., Udry, A., McCubbin, F. M., vander Kaaden, K. E., DeFelice, C., Ziegler, K., et al. (2022). The effects of highly reduced magmatism revealed through aubrites. Meteoritics & Planetary Science, 57(7), 1387–1420. https://doi.org/10.1111/maps.13823
Wohlers, A., & Wood, B. J. (2015). A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd. Nature, 520(7547), 337–340. https://doi.org/10.1038/nature14350
Wolszczan, A., & Frail, D. A. (1992). A planetary system around the millisecond pulsar PSR1257+ 12. Nature, 355(6356), 145–147. https://doi.org/10.1038/355145a0
Wood, B. J. (1993). Carbon in the core. Earth and Planetary Science Letters, 117(3–4), 593–607. https://doi.org/10.1016/0012-821x(93)90105-i
Wood, B. J., Li, J., & Shahar, A. (2013). Carbon in the core: Its influence on the properties of core and mantle. Reviews in Mineralogy and Geochemistry, 75(1), 231–250. https://doi.org/10.2138/rmg.2013.75.8
Yamamoto, J., Ando, J. I., Kagi, H., Inoue, T., Yamada, A., Yamazaki, D., & Irifune, T. (2008). In situ strength measurements on natural upper-mantle minerals. Physics and Chemistry of Minerals, 35(5), 249–257. https://doi.org/10.1007/s00269-008-0218-6
Yamamoto, J., Kagi, H., Kaneoka, I., Lai, Y., Prikhod’ko, V. S., & Arai, S. (2002). Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals: Implications for the geobarometry of mantle minerals using micro Raman spectroscopy. Earth and Planetary Science Letters, 198(3–4), 511–519. https://doi.org/10.1016/s0012-821x(02)00528-9
Yasuda, A., Fujii, T., & Kurita, K. (1994). Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle. Journal of Geophysical Research, 99(B5), 9401–9414. https://doi.org/10.1029/93JB03205
Yaxley, G. M., & Green, D. H. (1998). Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweizerische mineralogische und petrographische Mitteilungen, 78(2), 243–255.
Yokoo, S., Edmund, E., Morard, G., Anna Baron, M., Boccato, S., Decremps, F., et al. (2023). Composition-dependent thermal equation of state of B2 Fe-Si alloys at high pressure. American Mineralogist, 108(3), 536–542. https://doi.org/10.2138/am-2022-8067
Yoshizaki, T., & McDonough, W. F. (2020). The composition of Mars. Geochimica et Cosmochimica Acta, 273, 137–162. https://doi.org/10.1016/j.gca.2020.01.011
Zhang, G., Mei, S., Song, M., & Kohlstedt, D. L. (2017). Diffusion creep of enstatite at high pressures under hydrous conditions. Journal of Geophysical Research: Solid Earth, 122(10), 7718–7728. https://doi.org/10.1002/2017JB014400
Zolotov, M. Y., Sprague, A. L., Hauck, S. A., Nittler, L. R., Solomon, S. C., & Weider, S. Z. (2013). The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. Journal of Geophysical Research: Planets, 118(1), 138–146. https://doi.org/10.1029/2012JE004274