[en] While triple-negative breast cancer (TNBC) is known to be heterogeneous at the genomic and transcriptomic levels, spatial information on tumor organization and cell composition is still lacking. Here, we investigate TNBC tumor architecture including its microenvironment using spatial transcriptomics on a series of 92 patients. We perform an in-depth characterization of tumor and stroma organization and composition using an integrative approach combining histomorphological and spatial transcriptomics. Furthermore, a detailed molecular characterization of tertiary lymphoid structures leads to identify a gene signature strongly associated to disease outcome and response to immunotherapy in several tumor types beyond TNBC. A stepwise clustering analysis identifies nine TNBC spatial archetypes, further validated in external datasets. Several spatial archetypes are associated with disease outcome and characterized by potentially actionable features. In this work, we provide a comprehensive insight into the complexity of TNBC ecosystem with potential clinical relevance, opening avenues for treatment tailoring including immunotherapy.
Disciplines :
Oncology
Author, co-author :
Wang, Xiaoxiao ; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium ; Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
Venet, David; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
Lifrange, Frédéric ; Department of Pathology, University Hospital Center of Liège, Liège, Belgium
Larsimont, Denis; Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
Rediti, Mattia ; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
Stenbeck, Linnea; Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
Dupont, Floriane; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
Rouas, Ghizlane; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
Garcia, Andrea Joaquin; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
Craciun, Ligia; Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
Buisseret, Laurence; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium ; Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
Ignatiadis, Michail ; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium ; Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
Carausu, Marcela; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
Bhalla, Nayanika ; Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
Masarapu, Yuvarani ; Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
Villacampa, Eva Gracia ; Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
Franzén, Lovisa ; Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
Saarenpää, Sami ; Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
Kvastad, Linda ; Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
Thrane, Kim; Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
Lundeberg, Joakim ; Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
Rothé, Françoise; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
Sotiriou, Christos ; Breast Cancer Translational Research Laboratory J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium. christos.sotiriou@hubruxelles.be ; Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium. christos.sotiriou@hubruxelles.be
BCRF - Breast Cancer Research Foundation F.R.S.-FNRS - Fonds de la Recherche Scientifique Cancerfonden
Funding text :
This research was supported by the Fondation Julie-Fran\u00E7oise Drion, the\u00A0Fondation contre le cancer, the Breast Cancer Research Foundation, the Association Jules Bordet, and the Belgian Fonds National de la Recherche Scientifique (F.R.S.-FNRS). X.W. was supported by the Belgian Fonds National de la Recherche Scientifique (F.R.S.-FNRS). D.V. was supported by the Foundation Julie-Fran\u00E7oise Drion.\u00A0M.R. was supported by T\u00E9l\u00E9vie and the Belgian Fonds National de la Recherche Scientifique (F.R.S.-FNRS). M.R. was supported by T\u00E9l\u00E9vie and the Belgian Fonds National de la Recherche Scientifique (F.R.S.-FNRS), and by Fondation Rose et Jean Hoguet. J.L. was supported by the Swedish Cancer Society. Computational resources have been provided by the Consortium des \u00C9quipements de Calcul Intensif (C\u00C9CI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region. We acknowledge Maja Marklund, Konstantin Carlberg, Ludvig Larsson and Annelie Mollbrink for their involvement in the experimental STs workflow, David Gacquer for his contribution to the conceptualization of the figures and Samira Majjaj for the bulk RNA extraction and library preparation.This research was supported by the Fondation Julie-Fran\u00E7oise Drion, the Fondation contre le cancer, the Breast Cancer Research Foundation, the Association Jules Bordet, and the Belgian Fonds National de la Recherche Scientifique (F.R.S.-FNRS). X.W. was supported by the Belgian Fonds National de la Recherche Scientifique (F.R.S.-FNRS). D.V. was supported by the Foundation Julie-Fran\u00E7oise Drion. M.R. was supported by T\u00E9l\u00E9vie and the Belgian Fonds National de la Recherche Scientifique (F.R.S.-FNRS). M.R. was supported by T\u00E9l\u00E9vie and the Belgian Fonds National de la Recherche Scientifique (F.R.S.-FNRS), and by Fondation Rose et Jean Hoguet. J.L. was supported by the Swedish Cancer Society. Computational resources have been provided by the Consortium des \u00C9quipements de Calcul Intensif (C\u00C9CI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region. We acknowledge Maja Marklund, Konstantin Carlberg, Ludvig Larsson and Annelie Mollbrink for their involvement in the experimental STs workflow, David Gacquer for his contribution to the conceptualization of the figures and Samira Majjaj for the bulk RNA extraction and library preparation.
K. Bauer C. Parise V. Caggiano Use of ER/PR/HER2 subtypes in conjunction with the 2007 St Gallen Consensus Statement for early breast cancer BMC Cancer 2010 10 20492696 2886044 10.1186/1471-2407-10-228
R. Dent et al. Triple-negative breast cancer: clinical features and patterns of recurrence Clin. Cancer Res. 2007 13 4429 4434 17671126 10.1158/1078-0432.CCR-06-3045
W.D. Foulkes I.E. Smith J.S. Reis-Filho Triple-negative breast cancer N. Engl. J. Med. 2010 363 1938 1948 1:CAS:528:DC%2BC3cXhsVCltr7P 21067385 10.1056/NEJMra1001389
W.F. Symmans et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype J. Clin. Oncol. 2017 35 1049 1060 1:CAS:528:DC%2BC1cXktFGrt7w%3D 28135148 5455352 10.1200/JCO.2015.63.1010
G. Bianchini J.M. Balko I.A. Mayer M.E. Sanders L. Gianni Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease Nat. Rev. Clin. Oncol. 2016 13 674 690 1:CAS:528:DC%2BC28XotFOhtbs%3D 27184417 5461122 10.1038/nrclinonc.2016.66
B.D. Lehmann et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies J. Clin. Invest. 2011 121 2750 2767 1:CAS:528:DC%2BC3MXovVKgu78%3D 21633166 3127435 10.1172/JCI45014
M.D. Burstein et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer Clin. Cancer Res. 2015 21 1688 1698 1:CAS:528:DC%2BC2MXmtVaht7w%3D 25208879 10.1158/1078-0432.CCR-14-0432
Y.-Z. Jiang et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies Cancer Cell 2019 35 428 440.e5 1:CAS:528:DC%2BC1MXks1Sit7c%3D 30853353 10.1016/j.ccell.2019.02.001
B.D. Lehmann et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection Plos One 2016 11 e0157368 27310713 4911051 10.1371/journal.pone.0157368
Y. Bareche et al. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis Ann. Oncol. 2018 29 895 902 1:STN:280:DC%2BC1MvjvVWltA%3D%3D 29365031 5913636 10.1093/annonc/mdy024
Y. Bareche et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach J. Natl Cancer Inst. 2020 112 708 719 31665482 10.1093/jnci/djz208
B.D. Lehmann et al. Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes Nat. Commun. 2021 12 2021NatCo.12.6276L 1:CAS:528:DC%2BB3MXitlyktrvP 34725325 8560912 10.1038/s41467-021-26502-6
X.Q. Wang et al. Spatial predictors of immunotherapy response in triple-negative breast cancer Nature 2023 621 868 876 2023Natur.621.868W 1:CAS:528:DC%2BB3sXhvVGrtb3E 37674077 10533410 10.1038/s41586-023-06498-3
C. Yam et al. Immune phenotype and response to neoadjuvant therapy in triple-negative breast cancer Clin. Cancer Res. 2021 27 5365 5375 1:CAS:528:DC%2BB3MXisFanurzK 34253579 8752638 10.1158/1078-0432.CCR-21-0144
S. Garaud M.-C. Dieu-Nosjean K. Willard-Gallo T follicular helper and B cell crosstalk in tertiary lymphoid structures and cancer immunotherapy Nat. Commun. 2022 13 2022NatCo.13.2259G 1:CAS:528:DC%2BB38XhtFGgtr7I 35473931 9043192 10.1038/s41467-022-29753-z
R. Cabrita et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma Nature 2020 577 561 565 2020Natur.577.561C 1:CAS:528:DC%2BB3cXis1Sitr8%3D 31942071 10.1038/s41586-019-1914-8
T. Gruosso et al. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers J. Clin. Invest. 2019 129 1785 1800 30753167 6436884 10.1172/JCI96313
D. Hammerl et al. Spatial immunophenotypes predict response to anti-PD1 treatment and capture distinct paths of T cell evasion in triple negative breast cancer Nat. Commun. 2021 12 2021NatCo.12.5668H 1:CAS:528:DC%2BB3MXitFWisrzK 34580291 8476574 10.1038/s41467-021-25962-0
M. Ignatiadis et al. Gene modules and response to neoadjuvant chemotherapy in breast cancer subtypes: a pooled analysis J. Clin. Oncol. 2012 30 1996 2004 1:CAS:528:DC%2BC38XpvVSgtrg%3D 22508827 10.1200/JCO.2011.39.5624
B. Haibe-Kains et al. A three-gene model to robustly identify breast cancer molecular subtypes J. Natl Cancer Inst. 2012 104 311 325 1:CAS:528:DC%2BC38XjtFKmu70%3D 22262870 3283537 10.1093/jnci/djr545
L.R. Yates et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing Nat. Med. 2015 21 751 759 1:CAS:528:DC%2BC2MXhtFeisrvN 26099045 4500826 10.1038/nm.3886
L. Larsson J. Frisén J. Lundeberg Spatially resolved transcriptomics adds a new dimension to genomics Nat. Methods 2021 18 15 18 1:CAS:528:DC%2BB3MXnsFWhtQ%3D%3D 33408402 10.1038/s41592-020-01038-7
V. Marx Method of the year: spatially resolved transcriptomics Nat. Methods 2021 18 9 14 1:CAS:528:DC%2BB3MXnsFWhsA%3D%3D 33408395 10.1038/s41592-020-01033-y
A. Andersson et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions Nat. Commun. 2021 12 2021NatCo.12.6012A 1:CAS:528:DC%2BB3MXit1CmtLrO 34650042 8516894 10.1038/s41467-021-26271-2
S.Z. Wu et al. A single-cell and spatially resolved atlas of human breast cancers Nat. Genet. 2021 53 1334 1347 1:CAS:528:DC%2BB3MXhvFyjtbbE 34493872 9044823 10.1038/s41588-021-00911-1
R. Bassiouni et al. Spatial transcriptomic analysis of a diverse patient cohort reveals a conserved architecture in triple-negative breast cancer Cancer Res. 2023 83 34 48 1:CAS:528:DC%2BB3sXjt1Cmsb8%3D 36283023 9812886 10.1158/0008-5472.CAN-22-2682
Y. Liu et al. Combined single‐cell and spatial transcriptomics reveal the metabolic evolvement of breast cancer during early dissemination Adv. Sci. 2023 10 2205395 2023usnb.book...L 1:CAS:528:DC%2BB3sXivVGmsA%3D%3D 10.1002/advs.202205395
J. Hu et al. Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA Cell Syst. 2023 14 404 417.e4 1:CAS:528:DC%2BB3sXps1OgtLs%3D 37164011 10246692 10.1016/j.cels.2023.03.008
P.L. Ståhl et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics Science 2016 353 78 82 2016Sci..353..78S 27365449 10.1126/science.aaf2403
F. Salmén et al. Barcoded solid-phase RNA capture for spatial transcriptomics profiling in mammalian tissue sections Nat. Protoc. 2018 13 2501 2534 30353172 10.1038/s41596-018-0045-2
A. Liberzon et al. The molecular signatures database hallmark gene set collection Cell Syst. 2015 1 417 425 1:CAS:528:DC%2BC2sXhtFaltLc%3D 26771021 4707969 10.1016/j.cels.2015.12.004
S.E. Stanton S. Adams M.L. Disis Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review JAMA Oncol. 2016 2 1354 27355489 10.1001/jamaoncol.2016.1061
C. Gu-Trantien et al. CD4+ follicular helper T cell infiltration predicts breast cancer survival J. Clin. Invest. 2013 123 2873 2892 1:CAS:528:DC%2BC3sXhtFWjtr3J 23778140 3696556 10.1172/JCI67428
Y. Zhang et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer Cancer Cell 2021 39 1578 1593.e8 1:CAS:528:DC%2BB3MXit12mtr7I 34653365 10.1016/j.ccell.2021.09.010
B.A. Helmink et al. B cells and tertiary lymphoid structures promote immunotherapy response Nature 2020 577 549 555 2020Natur.577.549H 1:CAS:528:DC%2BB3cXis1Sitrk%3D 31942075 8762581 10.1038/s41586-019-1922-8
W.H. Fridman et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome Nat. Rev. Clin. Oncol. 2022 19 441 457 1:CAS:528:DC%2BB38Xptlequr8%3D 35365796 10.1038/s41571-022-00619-z
C. Sautès-Fridman F. Petitprez J. Calderaro W.H. Fridman Tertiary lymphoid structures in the era of cancer immunotherapy Nat. Rev. Cancer 2019 19 307 325 31092904 10.1038/s41568-019-0144-6
L. Buisseret et al. Reliability of tumor-infiltrating lymphocyte and tertiary lymphoid structure assessment in human breast cancer Mod. Pathol. 2017 30 1204 1212 1:CAS:528:DC%2BC2sXhtVCiu77J 28621322 10.1038/modpathol.2017.43
M. Meylan et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer Immunity 2022 55 527 541.e5 1:CAS:528:DC%2BB38Xlt12ru7g%3D 35231421 10.1016/j.immuni.2022.02.001
M.E.T.A.B.R.I.C. Group et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups Nature 2012 486 346 352 10.1038/nature10983
J. Staaf et al. RNA sequencing-based single sample predictors of molecular subtype and risk of recurrence for clinical assessment of early-stage breast cancer Npj Breast Cancer 2022 8 2022cgbt.book...S 1:CAS:528:DC%2BB38XitlKmsr3P 35974007 9381586 10.1038/s41523-022-00465-3
D.M. Wolf et al. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: predictive biomarkers across 10 cancer therapies Cancer Cell 2022 40 609 623.e6 1:CAS:528:DC%2BB38Xhtl2hsL%2FP 35623341 9426306 10.1016/j.ccell.2022.05.005
Y. Bareche et al. Leveraging big data of immune checkpoint blockade response identifies novel potential targets Ann. Oncol. 2022 33 1304 1317 1:CAS:528:DC%2BB38Xis1CjtbfE 36055464 10.1016/j.annonc.2022.08.084
B. Allard D. Allard L. Buisseret J. Stagg The adenosine pathway in immuno-oncology Nat. Rev. Clin. Oncol. 2020 17 611 629 1:CAS:528:DC%2BB3cXhtFOrurrP 32514148 10.1038/s41571-020-0382-2
Y. Chen et al. Pharmaceutical targeting Th2-mediated immunity enhances immunotherapy response in breast cancer J. Transl. Med. 2022 20 1:CAS:528:DC%2BB3sXit1Onsw%3D%3D 36564797 9783715 10.1186/s12967-022-03807-8
L. Wu et al. Breast cancer cell–neutrophil interactions enhance neutrophil survival and pro-tumorigenic activities Cancers 2020 12 2884 1:CAS:528:DC%2BB3cXis1Sls7jN 33049964 7599756 10.3390/cancers12102884
L. Barrera et al. CD47 overexpression is associated with decreased neutrophil apoptosis/phagocytosis and poor prognosis in non-small-cell lung cancer patients Br. J. Cancer 2017 117 385 397 1:CAS:528:DC%2BC2sXhtVChs7rK 28632731 5537491 10.1038/bjc.2017.173
A.N.J. Tutt et al. Adjuvant olaparib for patients with BRCA1 - or BRCA2 -mutated breast cancer N. Engl. J. Med. 2021 384 2394 2405 1:CAS:528:DC%2BB3MXhsVSrtLzP 34081848 9126186 10.1056/NEJMoa2105215
M. Robson et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation N. Engl. J. Med. 2017 377 523 533 1:CAS:528:DC%2BC2sXhtlyksrbN 28578601 10.1056/NEJMoa1706450
J.K. Litton et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation N. Engl. J. Med. 2018 379 753 763 1:CAS:528:DC%2BC1cXhs1eqsrnI 30110579 10600918 10.1056/NEJMoa1802905
A. Bardia et al. Sacituzumab Govitecan In Metastatic Triple-negative Breast Cancer N. Engl. J. Med. 2021 384 1529 1541 1:CAS:528:DC%2BB3MXhtVWntr3M 33882206 10.1056/NEJMoa2028485
M. Oliveira et al. Patritumab deruxtecan in untreated hormone receptor-positive/HER2-negative early breast cancer: final results from part A of the window-of-opportunity SOLTI TOT-HER3 pre-operative study Ann. Oncol. 2023 34 670 680 1:CAS:528:DC%2BB3sXhtlGisr7P 37211044 10.1016/j.annonc.2023.05.004
P. Schmid et al. Pembrolizumab for early triple-negative breast cancer N. Engl. J. Med. 2020 382 810 821 1:CAS:528:DC%2BB3cXpvFOjtL8%3D 32101663 10.1056/NEJMoa1910549
L. Buisseret et al. Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase III clinical trial Ann. Oncol. 2018 29 1056 1062 1:STN:280:DC%2BC1M3hvFyrsA%3D%3D 29145561 10.1093/annonc/mdx730
R.S. Herbst et al. COAST: an open-label, phase II, multidrug platform study of durvalumab alone or in combination with oleclumab or monalizumab in patients with unresectable, stage III non–small-cell lung cancer J. Clin. Oncol. 2022 40 3383 3393 1:CAS:528:DC%2BB38XisFKnsb%2FF 35452273 10.1200/JCO.22.00227
M. M-Rabet et al. Nectin-4: a new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer Ann. Oncol. 2017 28 769 776 1:STN:280:DC%2BC1c%2FmvFShsA%3D%3D 27998973 10.1093/annonc/mdw678
T. Powles et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma N. Engl. J. Med. 2021 384 1125 1135 1:CAS:528:DC%2BB3MXntlaktbY%3D 33577729 8450892 10.1056/NEJMoa2035807
S. Modi et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer N. Engl. J. Med. 2022 387 9 20 1:CAS:528:DC%2BB38Xit1ersLbF 35665782 10561652 10.1056/NEJMoa2203690
J. Staaf et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study Nat. Med. 2019 25 1526 1533 1:CAS:528:DC%2BC1MXhvVOlur7J 31570822 6859071 10.1038/s41591-019-0582-4
G. Bianchini C. De Angelis L. Licata L. Gianni Treatment landscape of triple-negative breast cancer—expanded options, evolving needs Nat. Rev. Clin. Oncol. 2022 19 91 113 1:CAS:528:DC%2BB38XkvV2qurs%3D 34754128 10.1038/s41571-021-00565-2
Z. Huang et al. Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images Npj Precis. Oncol. 2023 7 1:CAS:528:DC%2BB3sXitlyhurc%3D 36707660 9883475 10.1038/s41698-023-00352-5
P. Sun et al. A computational tumor-infiltrating lymphocyte assessment method comparable with visual reporting guidelines for triple-negative breast cancer EBioMedicine 2021 70 1:CAS:528:DC%2BB3MXis1aku77K 34280779 8318866 10.1016/j.ebiom.2021.103492
M. Arnedos et al. 213MO Primary endpoint analysis of a randomized phase II of darolutamide or capecitabine in patients with triple-negative androgen receptor-positive advanced breast cancer (UCBG3-06 START trial) Ann. Oncol. 2022 33 S635 10.1016/j.annonc.2022.07.252
B.D. Lehmann et al. TBCRC 032 IB/II multicenter study: molecular insights to AR antagonist and PI3K inhibitor efficacy in patients with AR+ metastatic triple-negative breast cancer Clin. Cancer Res. 2020 26 2111 2123 1:CAS:528:DC%2BB3cXitVyktb7E 31822498 10.1158/1078-0432.CCR-19-2170
H. Bonnefoi et al. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1) Ann. Oncol. 2016 27 812 818 1:STN:280:DC%2BC28fnsVCrtA%3D%3D 27052658 10.1093/annonc/mdw067
L. Ascione et al. PIK3CA mutations in breast cancer subtypes other than HR-positive/HER2-negative J. Pers. Med. 2022 12 1793 36579519 9694420 10.3390/jpm12111793
V. Debien et al. Immunotherapy in breast cancer: an overview of current strategies and perspectives Npj Breast Cancer 2023 9 36781869 9925769 10.1038/s41523-023-00508-3
X. Wang et al. Predictive biomarkers for response to immunotherapy in triple negative breast cancer: promises and challenges J. Clin. Med. 2023 12 953 1:CAS:528:DC%2BB3sXjsFyhsb0%3D 36769602 9917763 10.3390/jcm12030953
L. Munoz-Erazo J.L. Rhodes V.C. Marion R.A. Kemp Tertiary lymphoid structures in cancer – considerations for patient prognosis Cell. Mol. Immunol. 2020 17 570 575 1:CAS:528:DC%2BB3cXpsVOitLs%3D 32415259 7264315 10.1038/s41423-020-0457-0
A. Rao D. Barkley G.S. França I. Yanai Exploring tissue architecture using spatial transcriptomics Nature 2021 596 211 220 2021Natur.596.211R 1:CAS:528:DC%2BB3MXhslKqs7bJ 34381231 8475179 10.1038/s41586-021-03634-9
J.A. Sparano et al. Prospective validation of a 21-gene expression assay in breast cancer N. Engl. J. Med. 2015 373 2005 2014 1:CAS:528:DC%2BC28XntVSrsrs%3D 26412349 4701034 10.1056/NEJMoa1510764
F. Cardoso et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer N. Engl. J. Med. 2016 375 717 729 1:CAS:528:DC%2BC28XhvF2ks7zM 27557300 10.1056/NEJMoa1602253
S.M. Tolaney et al. Updated standardized definitions for efficacy end points (STEEP) in adjuvant breast cancer clinical trials: STEEP version 2.0 J. Clin. Oncol. 2021 39 2720 2731 34003702 10166345 10.1200/JCO.20.03613
L. Buisseret et al. Tumor-infiltrating lymphocyte composition, organization and PD-1/ PD-L1 expression are linked in breast cancer OncoImmunology 2017 6 e1257452 28197375 10.1080/2162402X.2016.1257452
A.L. Ji et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma Cell 2020 182 497 514.e22 1:CAS:528:DC%2BB3cXht1KjurfI 32579974 7391009 10.1016/j.cell.2020.05.039
A. Jemt et al. An automated approach to prepare tissue-derived spatially barcoded RNA-sequencing libraries Sci. Rep. 2016 6 2016NatSR..637137J 1:CAS:528:DC%2BC28XhvVygu7%2FK 27849009 5111054 10.1038/srep37137
A.M. Bolger M. Lohse B. Usadel Trimmomatic: a flexible trimmer for Illumina sequence data Bioinformatics 2014 30 2114 2120 1:CAS:528:DC%2BC2cXht1Sqt7nP 24695404 4103590 10.1093/bioinformatics/btu170
R. Patro G. Duggal M.I. Love R.A. Irizarry C. Kingsford Salmon provides fast and bias-aware quantification of transcript expression Nat. Methods 2017 14 417 419 1:CAS:528:DC%2BC2sXltVWgtL8%3D 28263959 5600148 10.1038/nmeth.4197
R. Salgado et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014 Ann. Oncol. 2015 26 259 271 1:STN:280:DC%2BC2M7gsFOnug%3D%3D 25214542 10.1093/annonc/mdu450
X. Robin et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves BMC Bioinformatics 2011 12 21414208 3068975 10.1186/1471-2105-12-77
A. Costa et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer Cancer Cell 2018 33 463 479.e10 1:CAS:528:DC%2BC1cXivFSisrk%3D 29455927 10.1016/j.ccell.2018.01.011
Y. Kieffer et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer Cancer Discov. 2020 10 1330 1351 1:CAS:528:DC%2BB3cXisFamtbbN 32434947 10.1158/2159-8290.CD-19-1384
Y.J. Lee et al. CD39+ tissue-resident memory CD8+ T cells with a clonal overlap across compartments mediate antitumor immunity in breast cancer Sci. Immunol. 2022 7 eabn8390 1:CAS:528:DC%2BB38XitlKiur%2FJ 36026440 10.1126/sciimmunol.abn8390
L. Cassetta et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets Cancer Cell 2019 35 588 602.e10 1:CAS:528:DC%2BC1MXmtlWksLw%3D 30930117 6472943 10.1016/j.ccell.2019.02.009
C. Sotiriou et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis J. Natl Cancer Inst. 2006 98 262 272 1:CAS:528:DC%2BD28Xhs1Skt74%3D 16478745 10.1093/jnci/djj052
L.J. van’t Veer et al. Gene expression profiling predicts clinical outcome of breast cancer Nature 2002 415 530 536 11823860 10.1038/415530a
S.L. Carter A.C. Eklund I.S. Kohane L.N. Harris Z. Szallasi A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers Nat. Genet. 2006 38 1043 1048 1:CAS:528:DC%2BD28XovVWjtr0%3D 16921376 10.1038/ng1861
P. Farmer et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer Nat. Med. 2009 15 68 74 1:CAS:528:DC%2BD1MXhtVyjsQ%3D%3D 19122658 10.1038/nm.1908
C. Desmedt et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes Clin. Cancer Res. 2008 14 5158 5165 1:CAS:528:DC%2BD1cXpslKgur4%3D 18698033 10.1158/1078-0432.CCR-07-4756
A.E. Teschendorff A. Miremadi S.E. Pinder I.O. Ellis C. Caldas An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer Genome Biol. 2007 8 17683518 2374988 10.1186/gb-2007-8-8-r157
G. Heller E.S. Venkatraman ResampLing Procedures To Compare Two Survival Distributions In The Presence Of Right-censored Data Biometrics 1996 52 1204 10.2307/2532836
Venet, D. Spatial transcriptomics reveals substantial heterogeneity in triple negative breast cancer with potential clinical implications. Zenodo https://doi.org/10.5281/ZENODO.13867935 (2024).