Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all)
Abstract :
[en] A strong driving force for charge separation and transfer in semiconductors is essential for designing effective photoelectrodes for solar energy conversion. While defect engineering and polarization alignment can enhance this process, their potential interference within a photoelectrode remains unclear. Here we show that oxygen vacancies in bismuth vanadate (BiVO4) can create defect dipoles due to a disruption of symmetry. The modified photoelectrodes exhibit a strong correlation between charge separation and transfer capability and external electrical poling, which is not seen in unmodified samples. Applying poling at -150 Volt boosts charge separation and transfer efficiency to over 90%. A photocurrent density of 6.3 mA cm-2 is achieved on the photoelectrode after loading with a nickel-iron oxide-based cocatalyst. Furthermore, using generated holes for methane partial oxidation can produce methanol with a Faradaic efficiency of approximately 6%. These findings provide valuable insights into the photoelectrocatalytic conversion of greenhouse gases into valuable chemical products.
Disciplines :
Chemistry
Author, co-author :
Li, Xianlong; Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
Wang, Zhiliang ; Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia. zhiliang.wang@uq.edu.au
Sasani, Alireza ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Baktash, Ardeshir ; Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
Wang, Kai ; Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
Lu, Haijiao ; Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
You, Jiakang; Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
Chen, Peng; Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
Chen, Ping; Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
Bao, Yifan; Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
Zhang, Shujun ; Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, New South Wales, 2500, Australia
Liu, Gang ; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China ; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, China
Wang, Lianzhou ; Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia. l.wang@uq.edu.au
The authors would like to acknowledge the support by Australian Research Council through its DECRA (DE210100930, DE230101712), Discovery (DP200101900, DP230100462), Future Fellowship (FT230100251) and Laureate Fellowship (FL190100139) schemes. This work was performed in part at the Queensland node of the Australian National Fabrication Facility. This research was undertaken on the X-ray Absorption Spectroscopy and Soft X-ray Absorption Spectroscopy beamlines at the Australian Synchrotron, part of ANSTO. A company established under the National Collaborative Research Infrastructure Strategy to provide nano and microfabrication facilities for Australia\u2019s researchers. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland. X. L., J. Y. and Y. B. acknowledge scholarship support from UQ Graduate School.
A.J. Cowan J.R. Durrant Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels Chem. Soc. Rev. 2013 42 2281 2293 1:CAS:528:DC%2BC3sXivFKru70%3D 23023269
P. Zhang T. Wang X. Chang J. Gong Effective charge carrier utilization in photocatalytic conversions Acc. Chem. Res. 2016 49 911 921 1:CAS:528:DC%2BC28XmtVWisL8%3D 27075166
R. Chen F. Fan T. Dittrich C. Li Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy Chem. Soc. Rev. 2018 47 8238 8262 1:CAS:528:DC%2BC1cXhsVSmt7rL 30059114
J. Li N. Wu Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review Catal. Sci. Tech. 2015 5 1360 1384 1:CAS:528:DC%2BC2cXhsVOht7jM
Y. Liu et al. Internal‐field‐enhanced charge separation in a single‐domain ferroelectric PbTiO3 photocatalyst Adv. Mater. 2020 32 1906513 1:CAS:528:DC%2BB3cXjt12gsr0%3D
G. Wan et al. Photocatalytic overall water splitting over PbTiO3 modulated by oxygen vacancy and ferroelectric polarization J. Am. Chem. Soc. 2022 144 20342 20350 1:CAS:528:DC%2BB38Xislenu7rE 36287043
X. Li et al. Polarization alignment in polycrystalline BiFeO3 photoelectrodes for tunable band bending ACS Nano 2023 17 22944 22951 1:CAS:528:DC%2BB3sXitlWrtLbP 37947409
E. Cockayne B.P. Burton Dipole moment of a Pb-O vacancy pair in PbTiO3 Phys. Rev. B 2004 69 144116 2004PhRvB.69n4116C
Y. Li J. Li W. Yang X. Wang Implementation of ferroelectric materials in photocatalytic and photoelectrochemical water splitting Nanoscale Horizons 2020 5 1174 1187 2020NanoH..5.1174L 1:CAS:528:DC%2BB3cXhtF2is7vE 32613990
J.H. Kim J.S. Lee Elaborately modified BiVO4 photoanodes for solar water splitting Adv. Mater. 2019 31 1806938
K. Sivula F. Le Formal M. Grätzel Solar water splitting: progress using hematite (α‐Fe2O3) photoelectrodes ChemSusChem 2011 4 432 449 1:CAS:528:DC%2BC3MXks1WktLY%3D 21416621
F. Chen H. Huang L. Guo Y. Zhang T. Ma The role of polarization in photocatalysis Angew. Chem. Int. Ed 2019 58 10061 10073 1:CAS:528:DC%2BC1MXos1Sjsb0%3D
D.-S. Park et al. Induced giant piezoelectricity in centrosymmetric oxides Science 2022 375 653 657 2022Sci..375.653P 1:CAS:528:DC%2BB38XjvFKksbs%3D 35143321
G. Huangfu et al. Giant electric field–induced strain in lead-free piezoceramics Science 2022 378 1125 1130 2022Sci..378.1125H 36480626
W. Dong et al. Collective nonlinear electric polarization via defect-driven local symmetry breaking Mater. Horizons 2019 6 1717 1725 1:CAS:528:DC%2BC1MXpsleit7g%3D
Z. Wang M. Xiao J. You G. Liu L. Wang Defect engineering in photocatalysts and photoelectrodes: from small to big Acc. Mater. Res. 2022 3 1127 1136 1:CAS:528:DC%2BB38XisFyqtbzL
Y. Hu et al. Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer Nat. Commun. 2020 11 1 10 2020NatCo.11..7H
A.B. Cezar I.L. Graff J. Varalda W.H. Schreiner D.H. Mosca Oxygen-vacancy-induced room-temperature magnetization in lamellar V2O5 thin films J. Appl. Phys. 2014 116 163904 2014JAP..116p3904C
Q. Wang K. Domen Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies Chem. Rev. 2019 120 919 985 31393702
Q. Wang et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1% Nat. Mater. 2016 15 611 615 2016NatMa.15.611W 1:CAS:528:DC%2BC28XktVamsb4%3D 26950596
S. Fang et al. Photocatalytic CO2 reduction Nat. Rev. Methods Primers 2023 3 61 1:CAS:528:DC%2BB3sXhs1Ogs7rO
J.L. White et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes Chem. Rev. 2015 115 12888 12935 1:CAS:528:DC%2BC2MXhs1altLfO 26444652
S. Kim Y. Park J. Kim T.P. Pabst P.J. Chirik Ammonia synthesis by photocatalytic hydrogenation of a N2-derived molybdenum nitride Nat. Synth. 2022 1 297 303 2022NatSy..1.297K
Y. Guan et al. Light-driven ammonia synthesis under mild conditions using lithium hydride Nat. Chem. 2024 16 1 7
S. Wang G. Liu L. Wang Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting Chem. Rev. 2019 119 5192 5247 1:CAS:528:DC%2BC1MXkvVCkurc%3D 30875200
S. Tokunaga H. Kato A. Kudo Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties Chem. Mater. 2001 13 4624 4628 1:CAS:528:DC%2BD3MXos1Cjt7s%3D
J.P. Perdew et al. Restoring the density-gradient expansion for exchange in solids and surfaces Phys. Rev. Lett. 2008 100 136406 2008PhRvL.100m6406P 18517979
T.W. Kim K.-S. Choi Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting Science 2014 343 990 994 2014Sci..343.990K 1:CAS:528:DC%2BC2cXjt1ymtLw%3D 24526312
S. Wang P. Chen J.H. Yun Y. Hu L. Wang An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting Angew. Chem. 2017 129 8620 8624 2017AngCh.129.8620W
Z. Wang et al. Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes Angew. Chem. Int. Ed. 2019 58 1030 1034 1:CAS:528:DC%2BC1cXisFekurnP
L. Jin F. Li S.J. Zhang J. Am. Ceram. Soc. 2014 97 1 27 1:CAS:528:DC%2BC2cXitFOhsA%3D%3D
P. Chen et al. In situ growther of 2D perovskite capping layer for stable and efficient perovskite solar cells Adv. Funct. Mater. 2018 28 1706923
Z. Zhang J.T. Yates Jr Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces Chem. Rev. 2012 112 5520 5551 1:CAS:528:DC%2BC38XhtVWhtLrP 22783915
H. Henck et al. Interface dipole and band bending in the hybrid p-n heterojunction MoS2/GaN (0001) Phys. Rev. B 2017 96 115312 2017PhRvB.96k5312H
Z. Wang et al. Identifying copper vacancies and their role in the CuO based photocathode for water splitting Angew. Chem. Int. Ed. 2019 58 17604 17609 1:CAS:528:DC%2BC1MXitVais77E
A. Živković N.H. de Leeuw Exploring the formation of intrinsic p-type and n-type defects in CuO Phys. Rev. Mater. 2020 4 074606
X. Li et al. Oxygen vacancy: how will poling history affect its role in photoelectrocatalysis ChemSusChem 2024 20 e202400946
M.H. Ab Rahim et al. Oxidation of methane to methanol with hydrogen peroxide using supported gold–palladium alloy nanoparticles Angew. Chem. Int. Ed 2013 52 1280 1284 1:CAS:528:DC%2BC38XhvVaju7%2FE
S.J. Freakley et al. Methane oxidation to methanol in water Acc. Chem. Res. 2021 54 2614 2623 1:CAS:528:DC%2BB3MXhtFSqt73K 34008962
A.H.B. Mostaghimi T.A. Al-Attas M.G. Kibria S. Siahrostami A review on electrocatalytic oxidation of methane to oxygenates J. Mater. Chem. A 2020 8 15575 15590
Y. Wu Z. Jiang X. Lu Y. Liang H. Wang Domino electroreduction of CO2 to methanol on a molecular catalyst Nature 2019 575 639 642 2019Natur.575.639W 1:CAS:528:DC%2BC1MXit1OhsrvM 31776492
H.K. Woo et al. Defect engineering of WO3 by rapid flame reduction for efficient photoelectrochemical conversion of methane into liquid oxygenates Nano Lett 2023 23 11493 11500 2023NanoL.2311493W 1:CAS:528:DC%2BB3sXisFCrurbJ 38061056
Li, W. Selective CO Production by Photoelectrochemical Methane Oxidation on TiO2. ACS Cent. Sci. 4, 631–637 (2018).
G. Kresse J. Furthmüller Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mater. Sci. 1996 6 15 50 1:CAS:528:DyaK28XmtFWgsrk%3D
G. Kresse J. Furthmüller Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996 54 11169 1996PhRvB.5411169K 1:CAS:528:DyaK28Xms1Whu7Y%3D
R. King-Smith D. Vanderbilt Theory of polarization of crystalline solids Phys. Rev. B 1993 47 1651 1993PhRvB.47.1651K 1:CAS:528:DyaK3sXlvFeiu7o%3D
D. Vanderbilt R. King-Smith Electric polarization as a bulk quantity and its relation to surface charge Phys. Rev. B 1993 48 4442 1993PhRvB.48.4442V 1:CAS:528:DyaK3sXmtl2iu7c%3D
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumentric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).
Y. Qi et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting Nat. Commun. 2022 13 2022NatCo.13.484Q 1:CAS:528:DC%2BB38XhvFGls7Y%3D 35079003 8789891
Y. Kuang et al. A front-illiminated nanostructured transparent BiVO4 photoanode for > 2% efficient water splitting Adv. Energy Mater. 2016 6 1501645