[en] Abstract
The cement line (CL) is a thin layer, 1-3 μm in width, separating secondary osteons from interstitial bone and other osteons. Despite the possible role for bone quality, the CL is still one of the least understood features of bone. This study aims to investigate how the mineral content of the CL varies not only with osteon age but also with the surrounding environment. Using quantitative backscattered electron imaging to measure the mineral content, we analyzed 35 osteons from femoral bone of two male individuals (40 and 81 yr old). We implemented a new approach to investigate the mineral content based on a spatially resolved analysis in layers along the CL and incorporating regions both inside the osteon (formed soon after CL deposition) and outside (already present at the time of CL deposition). We found that the CLs had always higher mineral content than the corresponding osteon (p < .001), and that not only the osteon, but also the CL increases its mineral content with time. Including areas outside the osteon in the analysis improved considerable our understanding of CL mineralization. After a rapid primary phase where the CL incorporates more mineral than the osteon, secondary mineralization is about 60% slower in the CL than in the osteon. One key finding is that the mineralization of the CL is not universal but depends on the region in which the osteon is formed. This is supported by a strong correlation between the mineral content of the CL and outside the osteon (R = 0.75, p < .001), but not inside. One possible explanation is that mineral released during bone resorption may contribute to the mineralization of the cement line, as higher mineral content in resorbed bone was associated with greater mineralization in the cement line.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Cantamessa, Astrid ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Blouin, Stéphane ; Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling 1st Medical Department Hanusch Hospital , Vienna ,
Rummler, Maximilian; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces , Potsdam ,
Berzlanovich, Andrea; Center of Forensics Medicine , Vienna ,
Weinkamer, Richard; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces , Potsdam ,
Hartmann, Markus A ; Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling 1st Medical Department Hanusch Hospital , Vienna ,
Ruffoni, Davide ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
Language :
English
Title :
The mineralization of osteonal cement line depends on where the osteon is formed
Lassen NE, Andersen TL, Pløen GG, et al. Coupling of bone resorption and formation in real time: new knowledge gained from human Haversian BMUs. J Bone Miner Res. 2017; 32 (7): 1395-1405. 10.1002/jbmr.3091
Lamarche BA, Thomsen JS, Andreasen CM, Lievers WB, Andersen TL. 2D size of trabecular bone structure units (BSU) correlate more strongly with 3D architectural parameters than age in human vertebrae. Bone. 2022; 160: 116399. 10.1016/j.bone.2022.116399
Tits A, Blouin S, Rummler M, et al. Structural and functional heterogeneity of mineralized fibrocartilage at the Achilles tendon-bone insertion. Acta Biomater. 2023; 166: 409-418. 10.1016/j.actbio.2023.04.018
Gupta HS, Schratter S, Tesch W, et al. Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface. J Struct Biol. 2005; 149 (2): 138-148. 10.1016/j.jsb.2004.10.010
Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO. Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials. 2005; 26 (2): 217-231. 10.1016/j.biomaterials.2004.02.017
Koester KJ, Ager JW, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008; 7 (8): 672-677. 10.1038/nmat2221
Mohsin S, O'Brien FJ, Lee TC. Osteonal crack barriers in ovine compact bone. J Anat. 2006; 208 (1): 81-89. 10.1111/j.1469-7580.2006.00509.x
Zimmermann EA, Gludovatz B, Schaible E, Busse B, Ritchie RO. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials. 2014; 35 (21): 5472-5481. 10.1016/j.biomaterials.2014.03.066
Wagermaier W, Klaushofer K, Fratzl P. Fragility of bone material controlled by internal interfaces. Calcif Tissue Int. 2015; 97 (3): 201-212. 10.1007/s00223-015-9978-4
Gauthier R, Follet H, Olivier C, Mitton D, Peyrin F. 3D analysis of the osteonal and interstitial tissue in human radii cortical bone. Bone. 2019; 127: 526-536. 10.1016/j.bone.2019.07.028
Gustafsson A, Wallin M, Khayyeri H, Isaksson H. Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model. Biomech Model Mechanobiol. 2019; 18 (4): 1247-1261. 10.1007/s10237-019-01142-4
Montalbano T, Feng G. Nanoindentation characterization of the cement lines in ovine and bovine femurs. J Mater Res. 2011; 26 (8): 1036-1041. 10.1557/jmr.2011.46
Burr DB, Schaffler MB, Frederickson RG. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech. 1988; 21 (11): 939-945. 10.1016/0021-9290(88)90132-7
Skedros JG, Holmes JL, Vajda EG, Bloebaum RD. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anat Rec A Discov Mol Cell Evol Biol. 2005; 286A (1): 781-803. 10.1002/ar.a.20214
Langer M, Pacureanu A, Suhonen H, Grimal Q, Cloetens P, Peyrin F. X-ray phase nanotomography resolves the 3D human bone ultrastructure. PLoS One. 2012; 7 (8): e35691. 10.3389/ti.2025.14153
Milovanovic P, vom Scheidt A, Mletzko K, et al. Bone tissue aging affects mineralization of cement lines. Bone. 2018; 110: 187-193. 10.1016/j.bone.2018.02.004
Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008; 42 (3): 456-466. 10.1016/j.bone.2007.10.021
Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R. The bone mineralization density distribution as a fingerprint of the mineralization process. Bone. 2007; 40 (5): 1308-1319. 10.1016/j.bone.2007.01.012
Bala Y, Farlay D, Delmas PD, Meunier PJ, Boivin G. Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes. Bone. 2010; 46 (4): 1204-1212. 10.1016/j.bone.2009.11.032
Lukas C, Ruffoni D, Lambers FM, et al. Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Bone. 2013; 56 (1): 55-60. 10.1016/j.bone.2013.05.005
McKee MD, Nanci A. Osteopontin and the bone remodeling sequence. Colloidal-gold immunocytochemistry of an interfacial extracellular matrix protein. Ann N Y Acad Sci. 1995; 760 (1): 177-189.
Everts V, Delaissé JM, Korper W, et al. The bone lining cell: its role in cleaning Howship's lacunae and initiating bone formation. J Bone Miner Res. 2002; 17 (1): 77-90. 10.1359/jbmr.2002.17.1.77
McKee MD, Farach-Carson MC, Butler WT, Hauschka PV, Nanci A. Ultrastructural immunolocalization of noncollagenous (osteopontin and osteocalcin) and plasma (albumin and α2HS-glycoprotein) proteins in rat bone. J Bone Miner Res. 1993; 8 (4): 485-496. 10.1002/jbmr.5650080413
Roschger A, Wagermaier W, Gamsjaeger S, et al. Newly formed and remodeled human bone exhibits differences in the mineralization process. Acta Biomater. 2020; 104: 221-230. 10.1016/j.actbio.2020.01.004
Tang T, Landis W, Blouin S, et al. Subcanalicular nanochannel volume is inversely correlated with calcium content in human cortical bone. J Bone Miner Res. 2022; 38 (2):313-325. 10.1002/jbmr.4753
Roschger P, Fratzl P, Eschberger J, Klaushofer K. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone. 1998; 23 (4): 319-326. 10.1016/S8756-3282(98)00112-4
Roschger P, Eschberger J, Plenk H Jr. Formation of ultracracks in methacrylate-embedded undecalcified bone samples by exposure to aqueous solutions. Cell Mater. 1993; 3 (4):361-365. Available at: https://digitalcommons.usu.edu/cellsandmaterials/vol3/iss4/3
Lukas C, Kollmannsberger P, Ruffoni D, Roschger P, Fratzl P, Weinkamer R. The heterogeneous mineral content of bone - using stochastic arguments and simulations to overcome experimental limitations. J Stat Phys. 2011; 144 (2): 316-331. 10.1007/s10955-011-0209-8
Hartmann MA, Blouin S, Misof BM, et al. Quantitative backscattered electron imaging of bone using a thermionic or a field emission electron source. Calcif Tissue Int. 2021; 109 (2): 190-202. 10.1007/s00223-021-00832-5
Hinkle DE, Wiersma W, Jurs SG. Applied Statistics for the Behavioral Sciences [Internet]. 5th ed.: Houghton Mifflin; [Hi Marketing] (distributor); 2003. Available from: http://catalog.hathitrust.org/api/volumes/oclc/50716608.html. 10.1523/JNEUROSCI.23-37-11698.2003
Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000; 289 (5484): 1504-1508. 10.1126/science.289.5484.1504
Vääräniemi J, Halleen JM, Kaarlonen K, et al. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res. 2004; 19 (9): 1432-1440. 10.1359/JBMR.040603
McKee MD, Nanci A. Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair. Microsc Res Tech. 1996; 33 (2): 141-164. 10.1002/(SICI)1097-0029(19960201)33:2<141::AID-JEMT5>3.0.CO;2-W
Tang T, Landis W, Raguin E, et al. A 3D network of nanochannels for possible ion and molecule transit in mineralizing bone and cartilage. Adv NanoBiomed Res. 2022; 2 (8): 2100162. 10.1002/anbr.202100162
Webster J. Integrated Bone Tissue Physiology: Anatomy and Physiology. 2001. In book: Bone Mechanics Handbook (pp.1.1-1.68). Publisher: CRC Press
Eriksen EF, Melsen F, Sod E, Barton I, Chines A. Effects of long-term risedronate on bone quality and bone turnover in women with postmenopausal osteoporosis. Bone. 2002; 31 (5): 620-625. 10.1016/S8756-3282(02)00869-4
Parfitt AM. Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone. 2002; 30 (6): 807-809. 10.1016/S8756-3282(02)00735-4
Lerebours C, Weinkamer R, Roschger A, Buenzli PR. Mineral density differences between femoral cortical bone and trabecular bone are not explained by turnover rate alone. Bone Rep. 2020; 13: 100731. 10.1016/j.bonr.2020.100731
Eriksen M. Histologic estimation of age at death using the anterior cortex of the femur. J Phys Anthropol. 1991; 84 (2): 171-179. 10.1002/ajpa.1330840207
Maggiano IS, Maggiano CM, Clement JG, Thomas CDL, Carter Y, Cooper DML. Three-dimensional reconstruction of Haversian systems in human cortical bone using synchrotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age. J Anat. 2016; 228 (5): 719-732. 10.1111/joa.12430
van Tol AF, Roschger A, Repp F, et al. Network architecture strongly influences the fluid flow pattern through the lacunocanalicular network in human osteons. Biomech Model Mechanobiol. 2020; 19 (3): 823-840. 10.1007/s10237-019-01250-1
Redelstorff R. Unique bone histology in partial large bone shafts from Aust cliff (England, Upper Triassic): an early independent experiment in gigantism. Acta Palaeontol Pol. 2014. Available from: http://www.app.pan.pl/article/item/app20120073.html
Yoshino M, Imaizumi K, Miyasaka S, Seta S. Histological estimation of age at death using microradiographs of humeral compact bone. Forensic Sci Int. 1994; 64 (2-3): 191-198. 10.1016/0379-0738(94)90231-3
Gamsjaeger S, Hofstetter B, Zwettler E, et al. Effects of 3 years treatment with once-yearly zoledronic acid on the kinetics of bone matrix maturation in osteoporotic patients. Osteoporos Int. 2013; 24 (1): 339-347. 10.1007/s00198-012-2202-8
Gourion-Arsiquaud S, Burket JC, Havill LM, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res. 2009; 24 (7): 1271-1281. 10.1359/jbmr.090201
Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int. 1997; 61 (6): 480-486. 10.1007/s002239900371
Farlay D, Bala Y, Rizzo S, et al. Bone remodeling and bone matrix quality before and after menopause in healthy women. Bone. 2019; 128: 115030. 10.1016/j.bone.2019.08.003