community; dominance; environmental predictors; forests; macroecology; rarity; species abundance; species population threats; Global and Planetary Change; Ecology, Evolution, Behavior and Systematics; Ecology
Abstract :
[en] Aim: Ecological and anthropogenic factors shift the abundances of dominant and rare tree species within local forest communities, thus affecting species composition and ecosystem functioning. To inform forest and conservation management it is important to understand the drivers of dominance and rarity in local tree communities. We answer the following research questions: (1) What are the patterns of dominance and rarity in tree communities? (2) Which ecological and anthropogenic factors predict these patterns? And (3) what is the extinction risk of locally dominant and rare tree species?. Location: Global. Time period: 1990–2017. Major taxa studied: Trees. Methods: We used 1.2 million forest plots and quantified local tree dominance as the relative plot basal area of the single most dominant species and local rarity as the percentage of species that contribute together to the least 10% of plot basal area. We mapped global community dominance and rarity using machine learning models and evaluated the ecological and anthropogenic predictors with linear models. Extinction risk, for example threatened status, of geographically widespread dominant and rare species was evaluated. Results: Community dominance and rarity show contrasting latitudinal trends, with boreal forests having high levels of dominance and tropical forests having high levels of rarity. Increasing annual precipitation reduces community dominance, probably because precipitation is related to an increase in tree density and richness. Additionally, stand age is positively related to community dominance, due to stem diameter increase of the most dominant species. Surprisingly, we find that locally dominant and rare species, which are geographically widespread in our data, have an equally high rate of elevated extinction due to declining populations through large-scale land degradation. Main conclusions: By linking patterns and predictors of community dominance and rarity to extinction risk, our results suggest that also widespread species should be considered in large-scale management and conservation practices.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Hordijk, Iris ; Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland ; Wageningen University and Research, Wageningen, Netherlands
Bialic-Murphy, Lalasia; Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
Lauber, Thomas; Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
Routh, Devin; Department of Geography, University of Zürich, Zürich, Switzerland ; Department of Science IT, University of Zürich, Zürich, Switzerland
Poorter, Lourens ; Wageningen University and Research, Wageningen, Netherlands
Rivers, Malin C.; Botanic Gardens Conservation International, Richmond, United Kingdom
ter Steege, Hans; Naturalis Biodiversity Centre, Leiden, Netherlands ; Quantitative Biodiversity Dynamics, Department of Biology, Utrecht University, Utrecht, Netherlands
Liang, Jingjing ; Department of Forestry and Natural Resources, Purdue University, West Lafayette, United States
Reich, Peter B.; Department of Forest Resources, University of Minnesota, St Paul, United States ; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
de-Miguel, Sergio ; Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Lleida, Spain ; Joint Research Unit CTFC – AGROTECNIO – CERCA, Solsona, Spain
Nabuurs, Gert-Jan; Wageningen University and Research, Wageningen, Netherlands
Gamarra, Javier G. P.; Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
Chen, Han Y. H. ; Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Canada
Zhou, Mo; Department of Forestry and Natural Resources, Purdue University, West Lafayette, United States
Wiser, Susan K.; Manaaki Whenua–Landcare Research, Lincoln, New Zealand
Pretzsch, Hans; Chair for Forest Growth and Yield Science, TUM School for Life Sciences, Technical University of Munich, Munich, Germany
Paquette, Alain; Centre for Forest Research, Université du Québec à Montréal, Montréal, Canada
Picard, Nicolas; GIP ECOFOR, Paris, France
Hérault, Bruno ; Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France ; Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Cote d'Ivoire
Bastin, Jean-François ; Université de Liège - ULiège > TERRA Research Centre > Biodiversité, Ecosystème et Paysage (BEP)
Alberti, Giorgio; Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy ; Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
Abegg, Meinrad; Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Birmensdorf, Switzerland
Almeyda Zambrano, Angelica M.; Spatial Ecology and Conservation Laboratory, Center for Latin American Studies, University of Florida, Gainesville, United States
Alvarado, Braulio V.; Forestry School, Tecnológico de Costa Rica TEC, Cartago, Costa Rica
Alvarez-Davila, Esteban; Fundacion ConVida, Universidad Nacional Abierta y a Distancia, UNAD, Medellin, Colombia
Alvarez-Loayza, Patricia; Field Museum of Natural History, Chicago, United States
Alves, Luciana F.; Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, United States
Ammer, Christian ; Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
Antón-Fernández, Clara; Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
Araujo-Murakami, Alejandro; Museo de Historia natural Noel kempff Mercado, Santa Cruz, Bolivia
Arroyo, Luzmila; Museo de Historia natural Noel kempff Mercado, Santa Cruz, Bolivia
Avitabile, Valerio; European Commission, Joint Research Centre, Ispra, Italy
Aymard Corredor, Gerardo A.; UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Portuguesa, Venezuela ; Compensation International S. A. Ci Progress-GreenLife, Bogotá D.C., Colombia
Baker, Timothy; School of Geography, University of Leeds, Leeds, United Kingdom
Banki, Olaf; Naturalis Biodiversity Centre, Leiden, Netherlands
Barroso, Jorcely; Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil
Bastian, Meredith L.; Proceedings of the National Academy of Sciences, Washington, United States ; Department of Evolutionary Anthropology, Duke University, Durham, United States
Birigazzi, Luca; United Nation Framework Convention on Climate Change, Bonn, Germany
Birnbaum, Philippe; Cirad, UMR-AMAP, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
Bitariho, Robert; Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda
Bongers, Frans; Wageningen University and Research, Wageningen, Netherlands
Bouriaud, Olivier; Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, Suceava, Romania
Brancalion, Pedro H. S.; Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
Brandl, Susanne; Bavarian State Institute of Forestry, Freising, Germany
Brienen, Roel; School of Geography, University of Leeds, Leeds, United Kingdom
Broadbent, Eben N.; Spatial Ecology and Conservation Laboratory, School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, United States
Bruelheide, Helge ; Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany ; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
Bussotti, Filippo; Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy
Gatti, Roberto Cazzolla; Biological Institute, Tomsk State University, Tomsk, Russian Federation
Cesar, Ricardo G.; Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
Cesljar, Goran; Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia
Chazdon, Robin; Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, United States ; Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Australia
Chisholm, Chelsea; Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
Cienciala, Emil; IFER – Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic ; Global Change Research Institute CAS, Brno, Czech Republic
Clark, Connie J.; Nicholas School of the Environment, Duke University, Durham, United States
Clar, David B.; Department of Biology, University of Missouri-St Louis, St Louis, United States
Colletta, Gabriel; Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
Coomes, David; Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, United Kingdom
Valverde, Fernando Cornejo; Andes to Amazon Biodiversity Program, Madre de Dios, Peru
Corral-Rivas, Jose J.; Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Durango, Mexico
Crim, Philip; Department of Physical and Biological Sciences, The College of Saint Rose, Albany, United States ; Department of Biology, West Virginia University, Morgantown, United States
Cumming, Jonathan; Department of Biology, West Virginia University, Morgantown, United States
Dayanandan, Selvadurai; Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
de Gasper, André L.; Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
Decuyper, Mathieu; Wageningen University and Research, Wageningen, Netherlands ; World Agroforestry (ICRAF), Nairobi, Kenya
Derroire, Géraldine ; Cirad, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
DeVries, Ben; Department of Geographical Sciences, University of Maryland, College Park, United States
Djordjevic, Ilija; Institute of Forestry, Belgrade, Serbia
Iêda, Amaral; National Institute of Amazonian Research, Manaus, Brazil
Dourdain, Aurélie; Cirad, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
Dolezal, Jiri ; Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic ; Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
Obiang, Nestor Laurier Engone; IRET, Herbier National du Gabon (CENAREST), Libreville, Gabon
Enquist, Brian ; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States ; The Santa Fe Institute, Santa Fe, United States
Eyre, Teresa; Department of Environment and Science, Queensland Herbarium, Toowong, Australia
Fandohan, Adandé Belarmain; Ecole de Foresterie et Ingénierie du Bois, Université Nationale d'Agriculture, Ketou, Benin
Fayle, Tom M.; School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom ; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic ; Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
Ferreira, Leandro V.; Museu Paraense Emílio Goeldi. Coordenação de Ciências da Terra e Ecologia, Belém, Brazil
Feldpausch, Ted R.; Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
Finér, Leena ; Natural Resources Institute Finland (Luke), Joensuu, Finland
Fischer, Markus; Institute of Plant Sciences, University of Bern, Bern, Switzerland
Fletcher, Christine; Forest Research Institute Malaysia, Kuala Lumpur, Malaysia
Frizzera, Lorenzo; Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
Gianelle, Damiano; Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
Glick, Henry B.; School of Forestry and Environmental Studies, Yale University, New Haven, United States
Harris, David; Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
Hector, Andrew; Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
Hemp, Andreas ; Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
Hengeveld, Geerten; Wageningen University and Research, Wageningen, Netherlands
Herbohn, John; Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Australia
Hillers, Annika; Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, United Kingdom ; Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia
Honorio Coronado, Eurídice N.; Instituto de Investigaciones de la Amazonía Peruana, Iquitos, Peru
Hui, Cang ; Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa ; Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
Cho, Hyunkook; Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
Ibanez, Thomas; Cirad, UMR-AMAP, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
Jung, Ilbin; Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
Imai, Nobuo; Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
Jagodzinski, Andrzej M. ; Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland ; Department of Game Management and Forest Protection, Poznań University of Life Sciences, Poznań, Poland
Jaroszewicz, Bogdan; Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland
Johannsen, Vivian; Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Joly, Carlos A.; Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
Jucker, Tommaso; School of Biological Sciences, University of Bristol, Bristol, United Kingdom
Kartawinata, Kuswata; Field Museum of Natural History, Chicago, United States
Kearsley, Elizabeth ; CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
Kenfack, David; CTFS-ForestGEO, Smithsonian Tropical Research Institute, Balboa, Panama
Kennard, Deborah; Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, United States
Kepfer-Rojas, Sebastian; Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Keppel, Gunnar; UniSA STEM and Future Industries Institute, University of South Australia, Adelaide, Australia
Khan, Mohammed Latif; Department of Botany, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
Killeen, Timothy; Museo de Historia natural Noel kempff Mercado, Santa Cruz, Bolivia
Kim, Hyun Seok; Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea ; Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea ; National Center for Agro Meteorology, Seoul, South Korea ; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
Kitayama, Kanehiro; Graduate School of Agriculture, Kyoto University, Kyoto, Japan
Köhl, Michael; Institute for World Forestry, University of Hamburg, Hamburg, Germany
Korjus, Henn; Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
Kraxner, Florian; International Institute for Applied Systems Analysis, Laxenburg, Austria
Laarmann, Diana; Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
Lang, Mait; Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
Lewis, Simon; School of Geography, University of Leeds, Leeds, United Kingdom ; Department of Geography, University College London, London, United Kingdom
Lu, Huicui; Faculty of Forestry, Qingdao Agricultural University, Qingdao, China
Lukina, Natalia; Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russian Federation
Maitner, Brian; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
Malhi, Yadvinder; School of Geography, University of Oxford, Oxford, United Kingdom
Marcon, Eric; UMR EcoFoG, AgroParisTech, Kourou, France
Marimon, Beatriz Schwantes; Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Marimon-Junior, Ben Hur; Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
Marshall, Andrew Robert; Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Australia ; Flamingo Land Ltd, Kirby Misperton, United Kingdom ; Department of Environment & Geography, University of York, York, United Kingdom
Martin, Emanuel; Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
Meave, Jorge A.; Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
Melo-Cruz, Omar; Universidad del Tolima, Ibagué, Colombia
Mendoza, Casimiro; Colegio de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia
Merow, Cory ; Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, United States
Miscicki, Stanislaw; Department of Forest Management, Dendrometry and Forest Economics, Warsaw University of Life Sciences, Warsaw, Poland
Mendoza, Abel Monteagudo; Jardín Botánico de Missouri, Oxapampa, Peru ; Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
Moreno, Vanessa; Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
Mukul, Sharif A.; Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Australia ; Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
Mundhenk, Philip; Institute for World Forestry, University of Hamburg, Hamburg, Germany
Nava-Miranda, Maria G.; Laboratorio de geomática, Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico ; Programa de doctorado en Ingeniería para el desarrollo rural y civil, Escuela de Doctorado Internacional de la Universidad de Santiago de Compostela (EDIUS), Santiago de Compostela, Spain
Neill, David; Universidad Estatal Amazónica, Puyo, Ecuador
Neldner, Victor; Department of Environment and Science, Queensland Herbarium, Toowong, Australia
Nevenic, Radovan; Institute of Forestry, Belgrade, Serbia
Ngugi, Michael; Department of Environment and Science, Queensland Herbarium, Toowong, Australia
Niklaus, Pascal A.; Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
Oleksyn, Jacek; Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
Ortiz-Malavasi, Edgar; Forestry School, Tecnológico de Costa Rica TEC, Cartago, Costa Rica
Pan, Yude; Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, United States
Parada-Gutierrez, Alexander; Museo de Historia natural Noel kempff Mercado, Santa Cruz, Bolivia
Parfenova, Elena; V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Park, Minjee; Department of Forestry and Natural Resources, Purdue University, West Lafayette, United States ; Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
Parren, Marc; Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, Netherlands
Parthasarathy, Narayanaswamy; Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
Peri, Pablo L.; Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Rio Gallegos, Argentina
Pfautsch, Sebastian; School of Social Sciences (Urban Studies), Western Sydney University, Penrith, Australia
Phillips, Oliver L.; School of Geography, University of Leeds, Leeds, United Kingdom
Piedade, Maria Teresa; Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
Piotto, Daniel; Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação Em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
Pitman, Nigel C. A.; Field Museum of Natural History, Chicago, United States
Polo, Irina; Jardín Botánico de Medellín, Medellín, Colombia
Poulsen, Axel Dalberg; Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
Poulsen, John R. ; Nicholas School of the Environment, Duke University, Durham, United States
Arevalo, Freddy Ramirez; Universidad Nacional de la Amazonía Peruana, Iquitos, Peru
Restrepo-Correa, Zorayda; Servicios Ecosistémicos y Cambio Climático (SECC), Fundación con Vida & Corporación COL-TREE, Medellín, Colombia
Rodeghiero, Mirco; Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele all'Adige, Italy
Rolim, Samir; Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação Em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
Roopsind, Anand; Department of Biological Sciences, Boise State University, Boise, United States
Rovero, Francesco ; Department of Biology, University of Florence, Florence, Italy ; Tropical Biodiversity, MUSE – Museo delle Scienze, Trento, Italy
Rutishauser, Ervan; Info Flora, Geneva, Switzerland
Saikia, Purabi; Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
Salas-Eljatib, Christian; Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile ; Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile ; Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
Schall, Peter; Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
Schepaschenko, Dmitry; International Institute for Applied Systems Analysis, Laxenburg, Austria
Scherer-Lorenzen, Michael; Faculty of Biology, Geobotany, University of Freiburg, Freiburg im Breisgau, Germany
Schmid, Bernhard; Centre for Forest Research, Université du Québec à Montréal, Montréal, Canada
Schöngart, Jochen; Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
Searle, Eric B.; Centre for Forest Research, Université du Québec à Montréal, Montréal, Canada
Seben, Vladimír; National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia
Serra-Diaz, Josep M.; Université de Lorraine, AgroParisTech, Inra, Silva, Nancy, France ; Department of Biology, Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Aarhus, Denmark
Sheil, Douglas; Wageningen University and Research, Wageningen, Netherlands ; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
Shvidenko, Anatoly; International Institute for Applied Systems Analysis, Laxenburg, Austria
Silva-Espejo, Javier; Departamento de Biología, Universidad de la Serena, La Serena, Chile
Silveira, Marcos; Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Brazil
Singh, James; Guyana Forestry Commission, Georgetown, French Guiana
Sist, Plinio; Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
Slik, Ferry ; Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
Sonké, Bonaventure; Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon
Souza, Alexandre F.; Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
Stereńczak, Krzysztof ; Department of Geomatics, Forest Research Institute, Raszyn, Poland
Svenning, Jens-Christian; Department of Biology, Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Aarhus, Denmark ; Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
Svoboda, Miroslav; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
Targhetta, Natalia; Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
Tchebakova, Nadja; V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Thomas, Raquel; Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, French Guiana
Tikhonova, Elena; School of Geography, University of Oxford, Oxford, United Kingdom
Umunay, Peter; School of Forestry and Environmental Studies, Yale University, New Haven, United States
Usoltsev, Vladimir; Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Ekaterinburg, Russian Federation
Valencia, Renato; Pontificia Universidad Católica del Ecuador, Quito, Ecuador
Valladares, Fernando; LINCGlobal, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
van der Plas, Fons; Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, Netherlands
Van Do, Tran ; Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Viet Nam
Van Nuland, Michael E.; Department of Biology, Stanford University, Stanford, United States
Martinez, Rodolfo Vasquez; Department of Forest Management, Dendrometry and Forest Economics, Warsaw University of Life Sciences, Warsaw, Poland
Verbeeck, Hans; CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
Viana, Helder; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Vila Real, Portugal ; Department of Ecology and Sustainable Agriculture, Agricultural High School of Polytechnic Institute of Viseu, Portugal
Vibrans, Alexander C.; Global Change Research Institute CAS, Brno, Czech Republic ; Department of Forest Engineering, Universidade Regional de Blumenau, Blumenau, Brazil
Vieira, Simone; Environmental Studies and Research Center, University of Campinas, UNICAMP, Campinas, Brazil
von Gadow, Klaus; Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
Wang, Hua-Feng; Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
Watson, James; Division of Forestry and Natural Resources, West Virginia University, Morgantown, United States
Werner, Gijsbert D. A.; Department of Zoology, University of Oxford, Oxford, United Kingdom
Wittmann, Florian; Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany
Wortel, Verginia; Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
Zawila-Niedzwiecki, Tomasz; Polish State Forests, Coordination Center for Environmental Projects, Warsaw, Poland
Zhang, Chunyu ; Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
Zhao, Xiuhai ; Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
Zhu, Zhi-Xin; Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
Zo-Bi, Irie Casimir; Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Cote d'Ivoire
Maynard, Daniel S.; Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland ; Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
Crowther, Thomas W.; Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
This research has been funded by a grant from DOB Ecology. Swiss National Science Foundation, Ambizione grant #PZ00P3_193612 to DSM. JCS considers this work a contribution to Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by Danish National Research Foundation (grant DNRF173), and his VILLUM Investigator project \u201CBiodiversity Dynamics in a Changing World\u201D, funded by VILLUM FONDEN (grant 16549). The GFBI data from New Zealand were drawn from the Natural Forest plot data collected between January 2009 and March 2014 by the LUCAS programme for the New Zealand Ministry for the Environment and sourced from the New Zealand National Vegetation Survey Databank\u2019. Russian Science Foundation Project 21-46-07002 for the plot data collected in the Krasnoyarsk region. Instituto de Conserva\u00E7\u00E3o da Natureza. FCT\u2014UIDB/04033/2020. GFBi plot data collection in the S\u00E3o Francisco de Paula National Forest, Rio Grande do Sul, Brazil was financed by Conselho Nacional de Desenvolvimento Cient\u00EDfico e Tecnol\u00F3gico (CNPq) (project 520053/1998-2). ReVaTene project is funded by the Education and Research Ministry of C\u00F4te d'Ivoire, as part of the Debt Reduction-Development Contracts (C2Ds) managed by IRD. GFBI data from southern Ethiopia were collected with funding from the International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMU) (IKI-1 project number 09 II 066ETH A Kaffeew\u00E4lder). GFBI data from Atlantic Forest, Brazil, was funded by the State of S\u00E3o Paulo Research Foundation (FAPESP 03/12595-7) as part of the BIOTA Program. COTEC/IF 41.065/2005 and IBAMA/CGEN 093/2005 granted permits to establish the permanent plots and collect data. The Exploratory plots of FunDivEUROPE (with sites in Germany, Finland, Poland, Romania, Italy and Spain) received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 265171. Permission to work in the MAWAS region of Indonesia: the BOS Foundation, the Indonesian Institute of Sciences (LIPI), the Direktorat Fasilitasi Organisasi Politik dan Kemasyarakatan, Departamen Dalam Negri and the BKSDA Palangkaraya. Funding sources: The American Society of Primatologists, the Duke University Graduate School, the L.S.B. Leakey Foundation, the National Science Foundation (Grant No. 0452995) and the Wenner-Gren Foundation for Anthropological Research (Grant No. 7330). This study was supported by National Natural Science Foundation of China (31800374), Shandong Provincial Natural Science Foundation (ZR2019BC083). The Spanish Agency for International Development Cooperation [Agencia Espa\u00F1ola de Cooperaci\u00F3n Internacional para el Desarrollo (AECID)] and Fundaci\u00F3n Biodiversidad, in cooperation with the governments of Syria and Lebanon. Projects D/9170/07, D/018222/08, D/023225/09 and D/032548/10 funded by the Spanish Agency for International Development Cooperation [Agencia Espa\u00F1ola de Cooperaci\u00F3n Internacional para el Desarrollo (AECID)] and Fundaci\u00F3n Biodiversidad, in cooperation with the Universidad Mayor de San Sim\u00F3n (UMSS), the FOMABO (Manejo Forestal en las Tierras Tropicales de Bolivia) project and CIMAL (Compa\u00F1\u00EDa Industrial Maderera Ltda.). All persons who made the Third Spanish Forest Inventory possible, especially the main coordinator, J. A. Villanueva (IFN3). Research was supported by APVV 20-0168 from the Slovak Research and Development Agency. E.C. acknowledges funding from the project SustES\u2014Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797); We acknowledge collaboration with the International Boreal Forest Research Association (IBFRA, http://ibfra.org). We thank the the Minist\u00E8re des For\u00EAts, de la Faune et des Parcs du Qu\u00E9bec for access to their database of permanent sample plots. We thank the Amazon Forest Inventory Network (RAINFOR), the African Tropical Rainforest Observation Network, and the ForestPlots.net initiative for their contributions from Amazonian and African forests. These were supported by many projects including an ERC Advanced Grant 291585 (\u201CT-FORCES\u201D) and a Royal Society Wolfson Research Merit Award to O.L.P.; RAINFOR plots were additionally supported by the Gordon and Betty Moore Foundation and the UK Natural Environment Research Council (NERC), notably NERC Consortium Grants AMAZONICA (NE/F005806/1), TROBIT (NE/D005590/1), and BIO- RED (NE/N012542/1). This study was supported by GACR project 21-27454S from the Czech Science Foundation. Financial support from DBT, Govt. of India, through the project \u2018Mapping and quantitative assessment of geographic distribution and population status of plant resources of Eastern Himalayan region\u2019 is highly acknowledged (Reference no. BT/PR7928/NDB/52/9/2006 dated 29.09.2006). GFBI data from Mexico was funded by many projects including the National Forestry Commission (CONAFOR), Council of Science and Technology of the State of Durango (COCYTED), the Natural Environment Research Council, UK (NERC; NE/T011084/1), and local support of Ejidos and Comunidades. The French National Forest Inventory (NFI campaigns, raw data 2005 and following annual surveys) was downloaded by GFBI at https://inventaire-forestier.ign.fr/spip.php?rubrique159 (site accessed on 1 January 2015); the Italian Forest Inventory (2005 and 2015) was downloaded by GFBI at https://inventarioforestale.org/. Financial support from the Czech Science Foundation (project no. 21-26883S). Open access funding provided by Eidgenossische Technische Hochschule Zurich.This research has been funded by a grant from DOB Ecology. Swiss National Science Foundation, Ambizione grant #PZ00P3_193612 to DSM. JCS considers this work a contribution to Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by Danish National Research Foundation (grant DNRF173), and his VILLUM Investigator project \u201CBiodiversity Dynamics in a Changing World\u201D, funded by VILLUM FONDEN (grant 16549). The GFBI data from New Zealand were drawn from the Natural Forest plot data collected between January 2009 and March 2014 by the LUCAS programme for the New Zealand Ministry for the Environment and sourced from the New Zealand National Vegetation Survey Databank\u2019. Russian Science Foundation Project 21\u201046\u201007002 for the plot data collected in the Krasnoyarsk region. Instituto de Conserva\u00E7\u00E3o da Natureza. FCT\u2014UIDB/04033/2020. GFBi plot data collection in the S\u00E3o Francisco de Paula National Forest, Rio Grande do Sul, Brazil was financed by Conselho Nacional de Desenvolvimento Cient\u00EDfico e Tecnol\u00F3gico (CNPq) (project 520053/1998\u20102). ReVaTene project is funded by the Education and Research Ministry of C\u00F4te d'Ivoire, as part of the Debt Reduction\u2010Development Contracts (C2Ds) managed by IRD. GFBI data from southern Ethiopia were collected with funding from the International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMU) (IKI\u20101 project number 09 II 066ETH A Kaffeew\u00E4lder). GFBI data from Atlantic Forest, Brazil, was funded by the State of S\u00E3o Paulo Research Foundation (FAPESP 03/12595\u20107) as part of the BIOTA Program. COTEC/IF 41.065/2005 and IBAMA/CGEN 093/2005 granted permits to establish the permanent plots and collect data. The Exploratory plots of FunDivEUROPE (with sites in Germany, Finland, Poland, Romania, Italy and Spain) received funding from the European Union Seventh Framework Programme (FP7/2007\u20102013) under grant agreement 265171. Permission to work in the MAWAS region of Indonesia: the BOS Foundation, the Indonesian Institute of Sciences (LIPI), the Direktorat Fasilitasi Organisasi Politik dan Kemasyarakatan, Departamen Dalam Negri and the BKSDA Palangkaraya. Funding sources: The American Society of Primatologists, the Duke University Graduate School, the L.S.B. Leakey Foundation, the National Science Foundation (Grant No. 0452995) and the Wenner\u2010Gren Foundation for Anthropological Research (Grant No. 7330). This study was supported by National Natural Science Foundation of China (31800374), Shandong Provincial Natural Science Foundation (ZR2019BC083). The Spanish Agency for International Development Cooperation [Agencia Espa\u00F1ola de Cooperaci\u00F3n Internacional para el Desarrollo (AECID)] and Fundaci\u00F3n Biodiversidad, in cooperation with the governments of Syria and Lebanon. Projects D/9170/07, D/018222/08, D/023225/09 and D/032548/10 funded by the Spanish Agency for International Development Cooperation [Agencia Espa\u00F1ola de Cooperaci\u00F3n Internacional para el Desarrollo (AECID)] and Fundaci\u00F3n Biodiversidad, in cooperation with the Universidad Mayor de San Sim\u00F3n (UMSS), the FOMABO (Manejo Forestal en las Tierras Tropicales de Bolivia) project and CIMAL (Compa\u00F1\u00EDa Industrial Maderera Ltda.). All persons who made the Third Spanish Forest Inventory possible, especially the main coordinator, J. A. Villanueva (IFN3). Research was supported by APVV 20\u20100168 from the Slovak Research and Development Agency. E.C. acknowledges funding from the project SustES\u2014Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797); We acknowledge collaboration with the International Boreal Forest Research Association (IBFRA, http://ibfra.org ). We thank the the Minist\u00E8re des For\u00EAts, de la Faune et des Parcs du Qu\u00E9bec for access to their database of permanent sample plots. We thank the Amazon Forest Inventory Network (RAINFOR), the African Tropical Rainforest Observation Network, and the ForestPlots.net initiative for their contributions from Amazonian and African forests. These were supported by many projects including an ERC Advanced Grant 291585 (\u201CT\u2010FORCES\u201D) and a Royal Society Wolfson Research Merit Award to O.L.P.; RAINFOR plots were additionally supported by the Gordon and Betty Moore Foundation and the UK Natural Environment Research Council (NERC), notably NERC Consortium Grants AMAZONICA (NE/F005806/1), TROBIT (NE/D005590/1), and BIO\u2010 RED (NE/N012542/1). This study was supported by GACR project 21\u201027454S from the Czech Science Foundation. Financial support from DBT, Govt. of India, through the project \u2018Mapping and quantitative assessment of geographic distribution and population status of plant resources of Eastern Himalayan region\u2019 is highly acknowledged (Reference no. BT/PR7928/NDB/52/9/2006 dated 29.09.2006). GFBI data from Mexico was funded by many projects including the National Forestry Commission (CONAFOR), Council of Science and Technology of the State of Durango (COCYTED), the Natural Environment Research Council, UK (NERC; NE/T011084/1), and local support of Ejidos and Comunidades. The French National Forest Inventory (NFI campaigns, raw data 2005 and following annual surveys) was downloaded by GFBI at https://inventaire\u2010forestier.ign.fr/spip.php?rubrique159 (site accessed on 1 January 2015); the Italian Forest Inventory (2005 and 2015) was downloaded by GFBI at https://inventarioforestale.org/ . Financial support from the Czech Science Foundation (project no. 21\u201026883S). Open access funding provided by Eidgenossische Technische Hochschule Zurich.
Albert, J. S., Carnaval, A. C., Flantua, S. G. A., Lohmann, L. G., Ribas, C. C., Riff, D., Carrillo, J. D., Fan, Y., Figueiredo, J. J. P., Guayasamin, J. M., Hoorn, C., de Melo, G. H., Nascimento, N., Quesada, C. A., Ulloa Ulloa, C., Val, P., Arieira, J., Encalada, A. C., & Nobre, C. A. (2023). Human impacts outpace natural processes in the Amazon. Science, 379(6630), eabo5003.
Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., & Jetz, W. (2018). A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5, 180040.
Arnillas, C. A., & Cadotte, M. W. (2019). Experimental dominant plant removal results in contrasting assembly for dominant and non-dominant plants. Ecology Letters, 22(8), 1233–1242.
Avolio, M. L., Forrestel, E. J., Chang, C. C., La Pierre, K. J., Burghardt, K. T., & Smith, M. D. (2019). Demystifying dominant species. New Phytologist, 223(3), 1106–1126.
Balderas Torres, A., & Lovett, J. C. (2013). Using basal area to estimate aboveground carbon stocks in forests: La primavera biosphere's reserve, Mexico. Forestry, 86(2), 267–281.
Bartelink, H. (1997). Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Annales des Sciences Forestières, 54(1), 39–50.
Batjes, N., Ribeiro, E., van Oostrum, A., Leenaars, J., Hengl, T., & Mendes de Jesus, J. (2017). WoSIS—Providing standardised soil profile data for the world. Earth System Science Data, 9, 1–14.
Bazzaz, F. A. (1975). Plant species diversity in old-field successional ecosystems in Southern Illinois. Ecology, 56(2), 485–488.
Biging, G. S., & Dobbertin, M. (1992). A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. Forest Science, 38(3), 695–720.
Bock, C. E., Jones, Z. F., & Bock, J. H. (2007). Relationships between species richness, evenness, and abundance in a Southwestern Savanna. Ecology, 88(5), 1322–1327.
Boonman, C. C., Serra-Diaz, J. M., Hoeks, S., Guo, W. Y., Enquist, B. J., Maitner, B., Malhi, Y., Merow, C., Buitenwerf, R., & Svenning, J. C. (2024). More than 17,000 tree species are at risk from rapid global change. Nature Communications, 15(1), 166.
Bowler, D. E., Hof, C., Haase, P., Kröncke, I., Schweiger, O., Adrian, R., Baert, L., Bauer, H.-G., Blick, T., Brooker, R. W., Dekoninck, W., Domisch, S., Eckmann, R., Hendrickx, F., Hickler, T., Klotz, S., Kraberg, A., Kühn, I., Matesanz, S., … Böhning-Gaese, K. (2017). Cross-realm assessment of climate change impacts on species' abundance trends. Nature Ecology & Evolution, 1(3), 0067.
Bracken, M. E. S., & Low, N. H. N. (2012). Realistic losses of rare species disproportionately impact higher trophic levels. Ecology Letters, 15(5), 461–467.
Bradford, J. B. (2011). Divergence in forest-type response to climate and weather: Evidence for regional links between forest-type evenness and net primary productivity. Ecosystems, 14(6), 975–986.
Buckley, D. S., Isebrands, J. G., & Sharik, T. L. (1999). Practical field methods of estimating canopy cover, PAR, and LAI in Michigan oak and pine stands. Northern Journal of Applied Forestry, 16(1), 25–32.
Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P. W., Almond, R. E. A., Baillie, J. E. M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K. E., Carr, G. M., Chanson, J., Chenery, A. M., Csirke, J., Davidson, N. C., Dentener, F., Foster, M., Galli, A., … Watson, R. (2010). Global biodiversity: Indicators of recent declines. Science (New York, N.Y.), 328(5982), 1164–1168.
Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R., Sechrest, W., Orme, C. D. L., & Purvis, A. (2005). Multiple causes of high extinction risk in large mammal species. Science, 309(5738), 1239–1241.
Cazzolla Gatti, R., Reich, P. B., Gamarra, J. G., Crowther, T., Hui, C., Morera, A., Bastin, J.-F., de-Miguel, S., Nabuurs, G.-J., Svenning, J.-C., Serra-Diaz, J. M., Merow, C., Enquist, B., Kamenetsky, M., Lee, J., Zhu, J., Fang, J., Jacobs, D. F., Pijanowski, B., … Liang, J. (2022). The number of tree species on Earth. Proceedings of the National Academy of Sciences, 119(6), e2115329119.
Center for International Earth Science Information Network—CIESIN—Columbia University. (2016). Gridded population of the world, version 4 (GPWv4): Population density adjusted to Match 2015 revision of UN WPP country totals. NASA Socioeconomic Data and Applications Center (SEDAC).
Chapin, F. S., Sala, O. E., Burke, I. C., Grime, J. P., Hooper, D. U., Lauenroth, W. K., Lombard, A., Mooney, H. A., Mosier, A. R., Naeem, S., Pacala, S. W., Roy, J., Steffen, W. L., & Tilman, D. (2000). Ecosystem consequences of changing biodiversity. Nature, 405, 234–242.
Chichorro, F., Juslén, A., & Cardoso, P. (2019). A review of the relation between species traits and extinction risk. Biological Conservation, 237, 220–229.
Condit R., Perez, R., Aguilar, S., Lao, S., Foster, R., & Hubbell, S. P. (2019a). BCI 50-ha plot taxonomy, 2019 version. Dryad. https://doi.org/10.15146/R3FH61
Condit R., Perez, R., Aguilar, S., Lao, S., Foster, R., & Hubbell, S. P. (2019b). Complete data from the Barro Colorado 50-ha plot: 423617 trees, 35 years, 2019 version. Dryad. https://doi.org/10.15146/5xcp-0d46
Contreras, M. A., Affleck, D., & Chung, W. (2011). Evaluating tree competition indices as predictors of basal area increment in western Montana forests. Forest Ecology and Management, 262(11), 1939–1949.
Corlett, R. T. (2016). Plant diversity in a changing world: Status, trends, and conservation needs. Plant Diversity, 38(1), 10–16.
Cornwell, W. K., & Ackerly, D. D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79(1), 109–126.
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M.-N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., … Bradford, M. A. (2015). Mapping tree density at a global scale. Nature, 525(7568), 201–205.
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018). Classifying drivers of global forest loss. Science (New York, N.Y.), 361(6407), 1108–1111.
de Lima, R. A., Dauby, G., de Gasper, A. L., Fernandez, E. P., Vibrans, A. C., Oliveira, A. A. D., Prado, P. I., Souza, V. C., de Siqueira, M. F., & Ter Steege, H. (2024). Comprehensive conservation assessments reveal high extinction risks across Atlantic Forest trees. Science, 383(6679), 219–225.
Dee, L. E., Cowles, J., Isbell, F., Pau, S., Gaines, S. D., & Reich, P. B. (2019). When do ecosystem services depend on rare species? Trends in Ecology & Evolution, 34(8), 746–758.
DeFries, R. S., Rudel, T., Uriarte, M., & Hansen, M. (2010). Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nature Geoscience, 3(3), 178–181.
Didan, K. (2015). MYD13Q1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC.
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., … Saleem, M. (2017). An ecoregion-based approach to protecting half the terrestrial realm. Bioscience, 67(6), 534–545.
Doncaster, C. P., Alonso Chávez, V., Viguier, C., Wang, R., Zhang, E., Dong, X., Dearing, J. A., Langdon, P. G., & Dyke, J. G. (2016). Early warning of critical transitions in biodiversity from compositional disorder. Ecology, 97(11), 3079–3090.
Ehbrecht, M., Seidel, D., Annighöfer, P., Kreft, H., Köhler, M., Zemp, D. C., Puettmann, K., Nilus, R., Babweteera, F., Willim, K., Stiers, M., Soto, D., Boehmer, H. J., Fisichelli, N., Burnett, M., Juday, G., Stephens, S. L., & Ammer, C. (2021). Global patterns and climatic controls of forest structural complexity. Nature Communications, 12(1), 519.
Enquist, B. J., Feng, X., Boyle, B., Maitner, B., Newman, E. A., Jørgensen, P. M., Roehrdanz, P. R., Thiers, B. M., Burger, J. R., Corlett, R. T., Couvreur, T. L. P., Dauby, G., Donoghue, J. C., Foden, W., Lovett, J. C., Marquet, P. A., Merow, C., Midgley, G., Morueta-Holme, N., … McGill, B. J. (2019). The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 5(11), eaaz0414.
Fang, H., Baret, F., Plummer, S., & Schaepman-Strub, G. (2019). An overview of global leaf area index (LAI): Methods, products, validation, and applications. Reviews of Geophysics, 57(3), 739–799.
FAO. (2001). Global forest resources assessment 2000. FAO Forestry Paper No. 140. UN Food and Agriculture Organization.
Fauset, S., Johnson, M. O., Gloor, M., Baker, T. R., Monteagudo, M. A., Brienen, R. J. W., Feldpausch, T. R., Lopez-Gonzalez, G., Malhi, Y., Ter Steege, H., Pitman, N. C. A., Baraloto, C., Engel, J., Pétronelli, P., Andrade, A., Camargo, J. L. C., Laurance, S. G. W., Laurance, W. F., Chave, J., … Phillips, O. L. (2015). Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 6, 1–9.
Fei, S., Desprez, J. M., Potter, K. M., Jo, I., Knott, J. A., & Oswalt, C. M. (2017). Divergence of species responses to climate change. Science Advances, 3(5), e1603055.
Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. Science (New York, N.Y.), 309(5734), 570–574.
Forrester, D. I., Benneter, A., Bouriaud, O., & Bauhus, J. (2017). Diversity and competition influence tree allometric relationships–developing functions for mixed-species forests. Journal of Ecology, 105(3), 761–774.
Friedman, S. K., & Reich, P. B. (2005). Regional legacies of logging: Departure from presettlement forest conditions in Northern Minnesota. Ecological Applications, 15(2), 726–744.
Gaston, K. J. (1994). Rarity (Vol. 13). Chapman & Hall.
Gaston, K. J. (2010). Valuing common species. Science (New York, N.Y.), 327(5962), 154–155.
Gaston, K. J., Blackburn, T. M., & Lawton, J. H. (1997). Interspecific abundance-range size relationships: An appraisal of mechanisms. Journal of Animal Ecology, 66, 579–601.
Gaston, K. J., & Fuller, R. A. (2007). Biodiversity and extinction: Losing the common and the widespread. Progress in Physical Geography, 31(2), 213–225.
Gaston, K. J., & Fuller, R. A. (2008). Commonness, population depletion and conservation biology. Trends in Ecology & Evolution, 23(1), 14–19.
GBIF Secretariat. (2020). GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei accessed via GBIF.org on 2020-06-08.
GFBI database. (2021). Global forest biodiversity initiative. http://www.gfbinitiative.org Please be aware that the map on the GFBI website may not include all the plots we incorporated in this study due to updates in the database.
Goldberg, D. E. (1990). Components of resource competition in plant communities. In J. B. Grace & D. Tilman (Eds.), Perspectives on plant competition (pp. 27–49). Academic Press.
Goodman, D. (1987). The demography of chance extinction. In M. E. Soulé (Ed.), Viable populations for conservation (pp. 11–34). Cambridge University Press.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.
Grime, J. P. (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86, 902–910.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.
Hart, T. B., Hart, J. A., & Murphy, P. G. (1989). Monodominant and species-rich forests of the humid tropics: Causes for their co-occurrence. The American Naturalist, 133(5), 613–633.
Hartley, S., & Kunin, W. E. (2003). Scale dependency of rarity, extinction risk, and conservation priority. Conservation Biology, 17(6), 1559–1570.
Hartmann, H., Bastos, A., Das, A. J., Esquivel-Muelbert, A., Hammond, W. M., Martínez-Vilalta, J., McDowell, N. G., Powers, J. S., Pugh, T. A., Ruthrof, K. X., & Allen, C. D. (2022). Climate change risks to global forest health: Emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology, 73, 673–702.
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B., & Gräler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6, e5518.
Hillebrand, H., Bennett, D. M., & Cadotte, M. W. (2008). Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology, 89(6), 1510–1520.
Hillebrand, H., Gruner, D. S., Borer, E. T., Bracken, M. E. S., Cleland, E. E., Elser, J. J., Harpole, W. S., Ngai, J. T., Seabloom, E. W., Shurin, J. B., & Smith, J. E. (2007). Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10904–10909.
Hobi, M. L., Commarmot, B., & Bugmann, H. (2015). Pattern and process in the largest primeval beech forest of Europe (Ukrainian Carpathians). Journal of Vegetation Science, 26(2), 323–336.
Hordijk, I., Maynard, D. S., Hart, S. P., Lidong, M., Ter Steege, H., Liang, J., de-Miguel, S., Nabuurs, G. J., Reich, P. B., Abegg, M., & Adou Yao, C. Y. (2023). Evenness mediates the global relationship between forest productivity and richness. Journal of Ecology, 111(6), 1308–1326.
Huston, M. (1979). A general hypothesis of species diversity. The American Naturalist, 113(1), 81–101.
IUCN. (2021a). Mapping standards and data quality for the IUCN red list spatial data version 1.19. IUCN SSC Red List Technical Working Group.
IUCN. (2021b). The IUCN Red List of Threatened Species. Version 2021-1. https://www.iucnredlist.org
IUCN Standards and Petitions Committee. (2019). Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee.
Jonckheere, I., Muys, B., & Coppin, P. (2005). Allometry and evaluation of in situ optical LAI determination in scots pine: A case study in Belgium. Tree Physiology, 25(6), 723–732.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4, 170122.
Keddy, P. A. (2023). Competition. In Causal factors for wetland management and restoration: A concise guide (pp. 73–80). Springer International Publishing.
Koike, F. (2001). Plant traits as predictors of woody species dominance in climax forest communities. Journal of Vegetation Science, 12(3), 327–336.
Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592–599.
Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin, D. C., Poorter, L., Vanderwel, M., Vieilledent, G., Joseph Wright, S., Aiba, M., Baraloto, C., Caspersen, J., Cornelissen, J. H. C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., Kattge, J., Kurokawa, H., … Westoby, M. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529(7585), 204–207.
Laurance, S. G., Laurance, W. F., Andrade, A., Fearnside, P. M., Harms, K. E., Vicentini, A., & Luizão, R. C. (2010). Influence of soils and topography on Amazonian tree diversity: A landscape-scale study. Journal of Vegetation Science, 21(1), 96–106.
Leclère, D., Obersteiner, M., Barrett, M., Butchart, S. H., Chaudhary, A., De Palma, A., … Young, L. (2020). Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 585(7826), 551–556.
Li, W., Guo, W. Y., Pasgaard, M., Niu, Z., Wang, L., Chen, F., … Svenning, J. C. (2023). Human fingerprint on structural density of forests globally. Nature Sustainability, 6(4), 368–379.
Liang, J., Gamarra, J. G., Picard, N., Zhou, M., Pijanowski, B., Jacobs, D. F., Reich, P. B., Crowther, T. W., Nabuurs, G.-J., de-Miguel, S., Fang, J., Woodall, C. W., Svenning, J.-C., Jucker, T., Bastin, J.-F., Wiser, S. K., Slik, F., Hérault, B., Alberti, G., … Marcon, E. (2022). Co-limitation towards lower latitudes shapes global forest diversity gradients. Nature Ecology & Evolution, 6(10), 1423–1437.
Lynn, J. S., Kazenel, M. R., Kivlin, S. N., & Rudgers, J. A. (2019). Context-dependent biotic interactions control plant abundance across altitudinal environmental gradients. Ecography, 42(9), 1600–1612.
Magurran, A. E. (2004). Measuring biological diversity. Blackwell Science Ltd.
Magurran, A. E., & Henderson, P. A. (2003). Explaining the excess of rare species in natural species abundance distributions. Nature, 422(6933), 714–716.
Majumdar, K., Shankar, U., & Datta, B. K. (2014). Trends in tree diversity and stand structure during restoration: A case study in fragmented moist deciduous forest ecosystems of Northeast India. Journal of Ecosystems, 2014, 1–10.
Markham, J. (2015). Rare species occupy uncommon niches. Scientific Reports, 4(1), 6012.
Matthies, D., Bräuer, I., Maibom, W., & Tscharntke, T. (2004). Population size and the risk of local extinction: Empirical evidence from rare plants. Oikos, 105(3), 481–488.
McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J., Green, J. L., He, F., & Hurlbert, A. H. (2007). Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10, 995–1015.
McGill, B. J. (2003). Does mother nature really prefer rare species or are log-left-skewed SADs a sampling artefact? Ecology Letters, 6(8), 766–773.
Meier, E. S., Kienast, F., Pearman, P. B., Svenning, J. C., Thuiller, W., Araújo, M. B., Guisan, A., & Zimmermann, N. E. (2010). Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography, 33(6), 1038–1048.
Menges, E. S. (1991). The application of minimum viable population theory to plants. Genetics and Conservation of Rare Plants, 45, 158–164.
Meyer, C., Weigelt, P., & Kreft, H. (2016). Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecology Letters, 19(8), 992–1006.
Molina, N. (2013). Conservation of rare or little-known species: Biological, social, and economic considerations. Island Press.
Morris, R. J. (2010). Anthropogenic impacts on tropical forest biodiversity: A network structure and ecosystem functioning perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1558), 3709–3718.
Mouillot, D., Bellwood, D. R., Baraloto, C., Chave, J., & Galzin, R. (2013). Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biology, 11(5), 1001569. https://doi.org/10.1371/journal.pbio.1001569
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501
Myneni, R., Knyazikhin, Y., & Park, T. (2015). MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC.
Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50.
Paillet, Y., Bergès, L., Hjältén, J., Ódor, P., Avon, C., Bernhardt-Römermann, M., … Virtanen, R. (2010). Biodiversity differences between managed and unmanaged forests: Meta-analysis of species richness in Europe. Conservation Biology, 24(1), 101–112.
Pitman, N. C., Terborgh, J. W., Silman, M. R., Núñez, V., Neill, D. A., Cerón, C. E., Palacios, W. A., & Aulestia, M. (2001). Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology, 82(October 2000), 2101–2117.
Poulter, B., Aragão, L., Andela, N., Bellassen, V., Ciais, P., Kato, T., Lin, X., Nachin, B., Luyssaert, S., Pederson, N., Peylin, P., Piao, S., Pugh, T., Saatchi, S., Schepaschenko, D., Schelhaas, M., & Shivdenko, A. (2019). The global forest age dataset and its uncertainties (GFADv1.1). NASA National Aeronautics and Space Administration, PANGAEA.
Preston, F. W. (1962). The canonical distribution of commonness and rarity: Part I. Ecology, 43(2), 185–215.
Purvis, A., Gittleman, J. L., Cowlishaw, G., & Mace, G. M. (2000). Predicting extinction risk in declining species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1456), 1947–1952.
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Rabinowitz, D., Cairns, S., & Dillion, T. (1986). Seven forms of rarity and their frequency in the flora of the British Isles. In M. E. Soule (Ed.), Conservation biology: The science of scarcity and diversity (pp. 182–204). Sinauer Associates.
Rao, V. S., Ravi, B., & Rao, P. (2015). Carbon sequestration potential of tropical deciduous forests of Nallamalais, India. Pelagia Research Library Asian Journal of Plant Science and Research, 5(3), 24–33.
Ribeiro, E., Batjes, N., & Van Oostrum, A. (2018). World Soil Information Service (WoSIS)—Towards the standardization and harmonization of world soil data. Procedures Manual 2018. ISRIC report 2018/01, ISRIC—World Soil Information.
Richardson, D. M., & Rejmánek, M. (2011). Trees and shrubs as invasive alien species - a global review. Diversity and Distributions, 17(5), 788–809.
Riemann, R., Wilson, B. T., Lister, A. J., Cook, O., & Crane-Murdoch, S. (2018). Tree species distribution in the United States part 1. Journal of Maps, 14(2), 561–566.
Roughgarden, J., & Diamond, J. (1986). Overview: The role of species interactions in community ecology. In J. Diamond & T. J. Case (Eds.), Community ecology (pp. 333–343). Harper & Row Publishers.
Rozendaal, D. M. A., Bongers, F., Aide, T. M., Alvarez-Dávila, E., Ascarrunz, N., Balvanera, P., Becknell, J. M., Bentos, T. V., Brancalion, P. H. S., Cabral, G. A. L., Calvo-Rodriguez, S., Chave, J., César, R. G., Chazdon, R. L., Condit, R., Dallinga, J. S., De Almeida-Cortez, J. S., De Jong, B., De Oliveira, A., … Poorter, L. (2019). Biodiversity recovery of Neotropical secondary forests. Science. Advances, 5(3), eaau3114.
Running, S., Mu, Q., & Zhao, M. (2011). MOD17A3 MODIS/Terra Net Primary Production Yearly L4 Global 1km SIN Grid V055 [Data set]. NASA EOSDIS Land Processes DAAC.
Ryan, M. G., & Yoder, B. J. (1997). Hydraulic limits to tree height and tree growth. Bioscience, 47(4), 235–242.
Sabatini, F. M., Jiménez-Alfaro, B., Jandt, U., Chytrý, M., Field, R., Kessler, M., Lenoir, J., Schrodt, F., Wiser, S. K., Arfin Khan, M. A. S., Attorre, F., Cayuela, L., De Sanctis, M., Dengler, J., Haider, S., Hatim, M. Z., Indreica, A., Jansen, F., Pauchard, A., … Bruelheide, H. (2022). Global patterns of vascular plant alpha diversity. Nature Communications, 13(1), 4683.
Santoro, M., Cartus, O., Mermoz, S., Bouvet, A., Le Toan, T., Carvalhais, N., Rozendaal, D., Herold, M., Avitabile, V., Quegan, S., Carreiras, J., Rauste, Y., Balzter, H., Schmullius, C., & Seifert, F. M. (2018). A detailed portrait of the forest aboveground biomass pool for the year 2010 obtained from multiple remote sensing observations. Geophysical Research Abstracts, 20(1), 18932.
Schaaf, C., & Wang, Z. (2015). MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Ref Daily L3 Global—500 m V006 [Data set]. NASA EOSDIS Land Processes DAAC.
Scheiner, S. M., Cox, S. B., & Willig, M. R. (2000). Species richness, species–area curves and Simpson's paradox. Evolutionary Ecology Research, 2(6), 791–802.
Scheiner, S. M., & Rey-Benayas, J. M. (1994). Global patterns of plant diversity. Evolutionary Ecology, 8, 331–347.
Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society: Series B (Methodological), 13(2), 238–241.
Slik, J. W. F., Aiba, S., Brearley, F. Q., Cannon, C. H., Forshed, O., Kitayama, K., Nagamasu, H., Nilus, R., Payne, J., Paoli, G., Poulsen, A. D., Raes, N., Sheil, D., Sidiyasa, K., Suzuki, E., & van Valkenburg, J. L. C. H. (2010). Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo's tropical forests. Global Ecology and Biogeography, 19(1), 50–60.
Soininen, J., Passy, S., & Hillebrand, H. (2012). The relationship between species richness and evenness: A meta-analysis of studies across aquatic ecosystems. Oecologia, 169, 803–809.
Stevens, C. J., Dise, N. B., Mountford, J. O., Gowing, D. J., Hautier, Y., Hector, A., Harpole, W. S., O'Halloran, L. R., Grace, J. B., Anderson, T. M., Bakker, J. D., Biederman, L. A., Brown, C. S., Buckley, Y. M., Calabrese, L. B., Chu, C. J., Cleland, E. E., Collins, S. L., Cottingham, K. L., … Yang, L. H. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303(5665), 1876–1879.
Stirling, G., & Wilsey, B. (2001). Empirical relationships between species richness, evenness, and proportional diversity. The American Naturalist, 158(3), 286–299.
Stroud, J. T., Bush, M. R., Ladd, M. C., Nowicki, R. J., Shantz, A. A., & Sweatman, J. (2015). Is a community still a community? Reviewing definitions of key terms in community ecology. Ecology and Evolution, 5(21), 4757–4765.
Svenning, J.-C., Kinner, D. A., Stallard, R. F., Engelbrecht, B. M. J., & Wright, S. J. (2004). Ecological determinism in plant community structure across a tropical forest landscape. Ecology, 85(9), 2526–2538.
Swanson, H. A., Svenning, J. C., Saxena, A., Muscarella, R., Franklin, J., Garbelotto, M., Mathews, A. S., Saito, O., Schnitzler, A. E., Serra-Diaz, J. M., & Tsing, A. L. (2021). History as grounds for interdisciplinarity: Promoting sustainable woodlands via an integrative ecological and socio-cultural perspective. One Earth, 4(2), 226–237.
Ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., Phillips, O. L., Castilho, C. V., Magnusson, W. E., Molino, J. F., Monteagudo, A., Vargas, P. N., Montero, J. C., Feldpausch, T. R., Coronado, E. N. H., Killeen, T. J., Mostacedo, B., Vasquez, R., Assis, R. L., … Silman, M. R. (2013). Hyperdominance in the Amazonian tree flora. Science, 342(6156), 1243092-1–1243092-9.
Thakur, M., Schättin, E. W., & McShea, W. J. (2018). Globally common, locally rare: Revisiting disregarded genetic diversity for conservation planning of widespread species. Biodiversity and Conservation, 27(11), 3031–3035.
The Plant List. (2013). The Plant List (2013). Version 1.1. www.theplantlist.org/
Tuanmu, M.-N., & Jetz, W. (2014). A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 23(9), 1031–1045.
Tuanmu, M.-N., & Jetz, W. (2015). A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24(11), 1329–1339.
Ulrich, W., Kusumoto, B., Shiono, T., & Kubota, Y. (2016). Climatic and geographic correlates of global forest tree species-abundance distributions and community evenness. Journal of Vegetation Science, 27(2), 295–305.
Ulrich, W., Ollik, M., & Ugland, K. I. (2010). A meta-analysis of species–abundance distributions. Oikos, 119(7), 1149–1155.
University, C. for I. E. S. I. N.-C.-C. (2016). Gridded population of the world, version 4 (GPWv4): Population density adjusted to match 2015 revision UN WPP country totals. NASA Socioeconomic Data and Applications Center (SEDAC).
Urbieta, I. R., Zavala, M. A., & Marañón, T. (2008). Human and non-human determinants of forest composition in southern Spain: Evidence of shifts towards cork oak dominance as a result of management over the past century. Journal of Biogeography, 35(9), 1688–1700.
van de Peer, T., Verheyen, K., Kint, V., Van Cleemput, E., & Muys, B. (2017). Plasticity of tree architecture through interspecific and intraspecific competition in a young experimental plantation. Forest Ecology and Management, 385, 1–9.
van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., de Goede, R. G. M., Adams, B. J., Ahmad, W., Andriuzzi, W. S., Bardgett, R. D., Bonkowski, M., Campos-Herrera, R., Cares, J. E., Caruso, T., de Brito Caixeta, L., Chen, X., Costa, S. R., Creamer, R., … Crowther, T. W. (2019). Soil nematode abundance and functional group composition at a global scale. Nature, 572(7768), 194–198.
van den Hoogen, J., Robmann, N., Routh, D., Lauber, T., van Tiel, N., Danylo, O., & Crowther, T. W. (2021). A geospatial mapping pipeline for ecologists. BioRxiv, 2021.07.07.451145.
Venn, S. E., Green, K., Pickering, C. M., & Morgan, J. W. (2011). Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecology, 212(9), 1491–1499.
Vincent, H., Bornand, C. N., Kempel, A., & Fischer, M. (2020). Rare species perform worse than widespread species under changed climate. Biological Conservation, 246, 108586.
Volkov, I., Banavar, J. R., Hubbell, S. P., & Maritan, A. (2003). Neutral theory and relative species abundance. Nature, 424(13), 1035–1037.
Wan, J.-Z., Wang, C.-J., & Yu, F.-H. (2017). Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change. Climatic Change, 144(2), 303–316.
Weiher, E., & Keddy, P. A. (1999). Relative abundance and evenness patterns along diversity and biomass gradients. Oikos, 87(2), 355–361.
Wilsey, B. J., Teaschner, T. B., Daneshgar, P. P., Isbell, F. I., & Polley, H. W. (2009). Biodiversity maintenance mechanisms differ between native and novel exotic-dominated communities. Ecology Letters, 12(5), 432–442.
Wilson, J. B., Steel, J. B., King, W. M., & Gitay, H. (1999). The effect of spatial scale on evenness. Journal of Vegetation Science, 10(4), 463–468.
With, K. A., & King, A. W. (1999). Extinction thresholds for species in fractal landscapes. Conservation Biology, 13(2), 314–326.
Xu, Z., Shimizu, H., Ito, S., Yagasaki, Y., Zou, C., Zhou, G., & Zheng, Y. (2014). Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta, 239(2), 421–435.
Zhang, H., John, R., Peng, Z., Yuan, J., Chu, C., Du, G., & Zhou, S. (2012). The relationship between species richness and evenness in plant communities along a successional gradient: A study from sub-alpine meadows of the Eastern Qinghai-Tibetan Plateau, China. PLoS ONE, 7(11), e49024.
Zhang, J., Huang, S., & He, F. (2015). Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences, 112(13), 4009–4014.
Zilliox, C., & Gosselin, F. (2014). Tree species diversity and abundance as indicators of understory diversity in French mountain forests: Variations of the relationship in geographical and ecological space. Forest Ecology and Management, 321, 105–116.
Zizka, A., Steege, H. T., Pessoa, M. D. C. R., & Antonelli, A. (2018). Finding needles in the haystack: Where to look for rare species in the American tropics. Ecography, 41(2), 321–330.