Building blockes; Chiral molecule; DNA-proteins; Electron transfer; Electron transport; One-dimensional; Reconfigurable; Selectivity effects; Spin magnetization; Spin-polarization; Multidisciplinary
Abstract :
[en] The origin and function of chirality in DNA, proteins, and other building blocks of life represent a central question in biology. Observations of spin polarization and magnetization associated with electron transport through chiral molecules, known collectively as the chiral induced spin selectivity effect, suggest that chirality improves electron transfer. Using reconfigurable nanoscale control over conductivity at the LaAlO3/SrTiO3 interface, we create chiral electron potentials that explicitly lack mirror symmetry. Quantum transport measurements on these chiral nanowires reveal enhanced electron pairing persisting to high magnetic fields (up to 18 tesla) and oscillatory transmission resonances as functions of both magnetic field and chemical potential. We interpret these resonances as arising from an engineered axial spin-orbit interaction within the chiral region. The ability to create one-dimensional electron waveguides with this specificity creates opportunities to test, via analog quantum simulation, theories about chirality and spin-polarized electron transport in one-dimensional geometries.
Disciplines :
Physics
Author, co-author :
Briggeman, Megan ; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA ; Pittsburgh Quantum Institute, Pittsburgh, PA 15260, USA
Mansfield, Elliott; Department of Physics, University of Strathclyde, Glasgow G1 1XQ, UK
Kombe, Johannes ; Department of Physics, University of Strathclyde, Glasgow G1 1XQ, UK
Damanet, François ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Lee, Hyungwoo ; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
Tang, Yuhe; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA ; Pittsburgh Quantum Institute, Pittsburgh, PA 15260, USA
Yu, Muqing ; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA ; Pittsburgh Quantum Institute, Pittsburgh, PA 15260, USA
Biswas, Sayanwita ; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA ; Pittsburgh Quantum Institute, Pittsburgh, PA 15260, USA
Li, Jianan; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA ; Pittsburgh Quantum Institute, Pittsburgh, PA 15260, USA
Huang, Mengchen; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA ; Pittsburgh Quantum Institute, Pittsburgh, PA 15260, USA
Eom, Chang-Beom ; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
Irvin, Patrick ; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA ; Pittsburgh Quantum Institute, Pittsburgh, PA 15260, USA
Daley, Andrew J ; Department of Physics, University of Oxford, Oxford, UK
Levy, Jeremy ; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA ; Pittsburgh Quantum Institute, Pittsburgh, PA 15260, USA
Acknowledgments: We acknowledge helpful discussions with T. Giamarchi and D. Waldeck.We acknowledge financial support from AFOSR MURI FA9550-23-1-0368 (J.Le.); NSF PHY-1913034 and NSF DMR-2225888 (P.I. and J.Le.); Gordon and Betty Moore Foundation\u2019s EPiQS Initiative, grant 284, GBMF9065 (C.-B.E.); and a Vannevar Bush Faculty Fellowship N00014-20-1-2844 (C.-B.E). Transport measurement at the University of Wisconsin-Madison was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), under award number DE-FG02-06ER46327. Work at Strathclyde and Oxford was supported by UKRI through the EPSRC Programme grants DesOEQ (EP/P009565/1) and QQQS (EP/Y01510X/1).
K. Ray, S. P. Ananthavel, D. H. Waldeck, R. Naaman, Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).
K. Michaeli, N. Kantor-Uriel, R. Naaman, D. H. Waldeck, The electron’s spin and molecular chirality - How are they related and how do they affect life processes? Chem. Soc. Rev. 45, 6478–6487 (2016).
R. Naaman, Y. Paltiel, D. H. Waldeck, Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).
F. Evers, A. Aharony, N. Bar-Gill, O. Entin-Wohlman, P. Hedegård, O. Hod, P. Jelinek, G. Kamieniarz, M. Lemeshko, K. Michaeli, V. Mujica, R. Naaman, Y. Paltiel, S. Refaely-Abramson, O. Tal, J. Thijssen, M. Thoss, J. M. van Ruitenbeek, L. Venkataraman, D. H. Waldeck, B. Yan, L. Kronik, Theory of chirality induced spin selectivity: Progress and challenges. Adv. Mater. 34, e2106629 (2022).
Z. Zeng, M. Först, M. Fechner, M. Buzzi, E. B. Amuah, C. Putzke, P. J. W. Moll, D. Prabhakaran, P. G. Radaelli, A. Cavalleri, Photo-induced chirality in a nonchiral crystal. Science 387, 431–436 (2025).
R. P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).
E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler, C. Chin, B. De Marco, S. E. Economou, M. A. Eriksson, K.-M. C. Fu, M. Greiner, K. R. A. Hazzard, R. G. Hulet, A. J. Kollár, B. L. Lev, M. D. Lukin, R. Ma, X. Mi, S. Misra, C. Monroe, K. Murch, Z. Nazario, K.-K. Ni, A. C. Potter, P. Roushan, M. Saffman, M. Schleier-Smith, I. Siddiqi, R. Simmonds, M. Singh, I. B. Spielman, K. Temme, D. S. Weiss, J. Vučković, V. Vuletić, J. Ye, M. Zwierlein, Quantum simulators: Architectures and opportunities. PRX Quantum 2, 017003 (2021).
M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, I. Bloch, Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).
K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, J. E. Thomas, Observation of a strongly interacting degenerate fermi gas of atoms. Science 298, 2179–2182 (2002).
T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, C. Salomon, Experimental study of the BEC-BCS crossover region in lithium 6. Phys. Rev. Lett. 93, 050401 (2004).
A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M. Polini, G. Vignale, M. I. Katsnelson, A. Pinczuk, L. N. Pfeiffer, K. W. West, V. Pellegrini, Two-dimensional mott-hubbard electrons in an artificial honeycomb lattice. Science 332, 1176–1179 (2011).
J. R. Abo-Shaeer, C. Raman, J. M. Vogels, W. Ketterle, Observation of vortex lattices in bose-einstein condensates. Science 292, 476–479 (2001).
Y.-J. Lin, R. L. Compton, K. Jimenez-Garcia, J. V. Porto, I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).
S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, T. Esslinger, Observation of quantized conductance in neutral matter. Nature 517, 64–67 (2015).
P. Barthelemy, L. M. K. Vandersypen, Quantum dot systems: A versatile platform for quantum simulations. Ann. Phys. 525, 808–826 (2013).
W. Pouse, L. Peeters, C. L. Hsueh, U. Gennser, A. Cavanna, M. A. Kastner, A. K. Mitchell, D. Goldhaber-Gordon, Quantum simulation of an exotic quantum critical point in a two-site charge kondo circuit. Nat. Phys. 19, 492–499 (2023).
M. Briggeman, H. Lee, J.-W. Lee, K. Eom, F. Damanet, E. Mansfield, J. Li, M. Huang, A. J. Daley, C.-B. Eom, P. Irvin, J. Levy, One-dimensional Kronig–Penney superlattices at the LaAlO3/SrTiO3 interface. Nat. Phys. 17, 782–787 (2021).
M. Briggeman, J. Li, M. Huang, H. Lee, J.-W. Lee, K. Eom, C.-B. Eom, P. Irvin, J. Levy, Engineered spin-orbit interactions in LaAlO3/SrTiO3-based 1D serpentine electron waveguides. Sci. Adv. 6, eaba6337 (2020).
C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, J. Levy, Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008).
C. Cen, S. Thiel, J. Mannhart, J. Levy, Oxide nanoelectronics on demand. Science 323, 1026–1030 (2009).
A. Annadi, G. Cheng, H. Lee, J.-W. Lee, L. Shicheng, A. Tylan-Tyler, M. Briggeman, M. Tomczyk, M. Huang, D. Pekker, C.-B. Eom, P. Irvin, J. Levy, Quantized ballistic transport of electrons and electron pairs in LaAlO3/SrTiO3 nanowires. Nano Lett. 18, 4473–4481 (2018).
M. Briggeman, M. Tomczyk, B. Tian, H. Lee, J.-W. Lee, Y. He, A. Tylan-Tyler, M. Huang, C.-B. Eom, D. Pekker, R. S. K. Mong, P. Irvin, J. Levy, Pascal conductance series in ballistic one-dimensional LaAlO3/SrTiO3 channels. Science 367, 769–772 (2020).
L. I. Glazman, A. V. Khaetskii, Nonlinear quantum conductance of a lateral microconstraint in a heterostructure. Europhys. Lett. 9, 263–267 (1989).
N. K. Patel, L. Martin-Moreno, M. Pepper, R. Newbury, J. E. F. Frost, D. A. Ritchie, G. A. C. Jones, J. T. M. B. Janssen, J. Singleton, J. A. A. J. Perenboom, Ballistic transport in one dimension: Additional quantisation produced by an electric field. J. Phys. Condens. Matter 2, 7247–7254 (1990).
F. Damanet, E. Mansfield, M. Briggeman, P. Irvin, J. Levy, A. J. Daley, Spin-orbit-assisted electron pairing in one-dimensional waveguides. Phys. Rev. B 104, 125103 (2021).
E. Mikheev, I. T. Rosen, J. Kombe, F. Damanet, M. A. Kastner, D. Goldhaber-Gordon, A clean ballistic quantum point contact in strontium titanate. Nat. Electron. 6, 417–424 (2023).
R. Gutierrez, E. Diaz, R. Naaman, G. Cuniberti, Spin-selective transport through helical molecular systems. Phys. Rev. B Condens. Matter Mater. Phys. 85, 081404 (2012).
H. J. Eckvahl, N. A. Tcyrulnikov, A. Chiesa, J. M. Bradley, R. M. Young, S. Carretta, M. D. Krzyaniak, M. R. Wasielewski, Direct observation of chirality-induced spin selectivity in electron donor-acceptor molecules. Science 382, 197–201 (2023).
A. Gupta, A. Kumar, D. K. Bhowmick, C. Fontanesi, Y. Paltiel, J. Fransson, R. Naaman, Does coherence affect the multielectron oxygen reduction reaction? J. Phys. Chem. Lett. 14, 9377–9384 (2023).
G. Cheng, P. F. Siles, F. Bi, C. Cen, D. F. Bogorin, C. W. Bark, C. M. Folkman, J.-W. Park, C.-B. Eom, G. Medeiros-Ribeiro, J. Levy, Sketched oxide single-electron transistor. Nat. Nanotechnol. 6, 343–347 (2011).