Evapotranspiration; Maize; Multi-model averaging approaches; Multiple crop models; Yield; Agricultural system; Crop modeling; Maize yield; Model averaging; Multi-model averaging approach; Multi-modelling; Multiple crop model; System models; Water Science and Technology
Abstract :
[en] Combining multi-model simulations can reduce the uncertainty in model structure and increase the accuracy of agricultural systems modeling results. This improvement is essential for supporting better decision making in irrigation planning and climate change adaptation strategies. Besides the commonly used arithmetic mean and median, many multi-model averaging approaches (MAA), widely examined in groundwater and hydrological modeling, but these additional MAA have not been examined in agricultural system modeling to improve the simulation accuracy. Therefore, the objective of this study is to evaluate the performance of seven MAA: two equal weighted approaches (Simple Model Averaging (SMA) and Median) and five weighted approaches (Inverse Ranking (IR), Bates and Granger Averaging (BGA), and Granger Ramanathan A, B, and C (GRA, GRB, and GRC)) in combining results of multiple agricultural system models. The Granger Ramanathan methods differ in their constraints: GRA employs conventional least squares, GRB requires non-negative weights that total to one, and GRC reduces absolute errors for robustness against outliers. The evaluation was conducted using maize yield and daily ETa simulations for both blind (uncalibrated) and calibrated phases of data from two groups of maize sites (Group A and Group B) across North America. The modeling results from the blind and calibrated phases were combined for all maize models and group maize models. Overall, all MAA performed better than individual crop models for blind and calibration phases. Specifically, the GRB model averaging method provided the closest match to measured values for daily ETa, while GRA was the most accurate for maize yield in most cases across all sites and phases. GRB improved daily ETa estimation over the median by an average of 4 % and 8.5 % in terms of RRMSE, while GRA enhanced maize yield estimation over the median by 7.5 % and 10.9 % for Group A and Group B sites, respectively. Notably, the improvement was greater in the blind phase for both groups of maize sites. An ensemble of group maize models with varied structures performed nearly as well as an ensemble of all maize models in simulating daily ETa and yield for Group A and Group B sites. Based on the results, we recommend GRA for crop yield and GRB for ETa simulations for maize, but both methods require observed yield and ETa data for their application; however, in the absence of observed data, we recommend the SMA method as it performs better than the median. However, the performance of these MAA methods may differ for other crops (e.g., soybean, wheat, canola, potato, alfalfa) or regions, and it should be evaluated in future studies.
Disciplines :
Agriculture & agronomy
Author, co-author :
Nand, Viveka ; Department of Bioresource Engineering, McGill University, Canada
Qi, Zhiming ; Department of Bioresource Engineering, McGill University, Canada
Ma, Liwang; USDA-ARS Rangeland Resources and Systems Research Unit, Fort Collins, United States
Helmers, Matthew J.; Department of Agricultural & Biosystems Engineering, Iowa State University, Ames, United States
Madramootoo, Chandra A.; Department of Bioresource Engineering, McGill University, Canada
Smith, Ward N.; Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, Canada
Zhang, Tiequan ; Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Canada
Weber, Tobias K.D. ; Faculty of Organic Agricultural Sciences, University of Kassel, Germany
Pattey, Elizabeth; Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, Canada
Li, Ziwei; Department of Bioresource Engineering, McGill University, Canada
Wang, Jiaxin; Department of Bioresource Engineering, McGill University, Canada
Jin, Virginia L.; USDA-ARS Agroecosystem Management Research Unit, Lincoln, United States
Jiang, Qianjing; Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
Tenuta, Mario; Faculty of Agricultural and Food Sciences, University of Manitoba, Canada
Trout, Thomas J. ; USDA-ARS, Water Management Unit, Fort Collins, United States
Cheng, Haomiao; School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, China
Harmel, R. Daren; USDA-ARS, Center for Agricultural Resources Research, Fort Collins, United States
Kimball, Bruce A. ; U.S. Arid-Land Agricultural Research Center, USDA-ARS, Maricopa, United States
Thorp, Kelly R. ; U.S. Arid-Land Agricultural Research Center, USDA-ARS, Maricopa, United States
Boote, Kenneth J.; University of Florida, Agricultural and Biological Engineering, Frazier Rogers Hall, Gainesville, United States
Stockle, Claudio; Biological Systems Engineering, Washington State University, Pullman, United States
Suyker, Andrew E.; School of Natural Resources, University of Nebraska-Lincoln, Lincoln, United States
Evett, Steven R. ; Conservation and Production Research Laboratory, USDA-ARS, Bushland, United States
Brauer, David K.; Conservation and Production Research Laboratory, USDA-ARS, Bushland, United States
Coyle, Gwen G.; Conservation and Production Research Laboratory, USDA-ARS, Bushland, United States
Copeland, Karen S.; Conservation and Production Research Laboratory, USDA-ARS, Bushland, United States
Marek, Gary W. ; Conservation and Production Research Laboratory, USDA-ARS, Bushland, United States
Colaizzi, Paul D.; Conservation and Production Research Laboratory, USDA-ARS, Bushland, United States
Acutis, Marco; Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
Alimagham, Seyyed Majid; Agronomy Group, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iraq
Archontoulis, Sotirios; Iowa State University, Department of Agronomy, Ames, United States
Babacar, Faye; Institut de recherche pour le développement (IRD) ESPACE-DEV, Montpellier Cedex, France
Barcza, Zoltán; ELTE Eötvös Loránd University, Department of Meteorology, Budapest, Hungary ; Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Prague, Czech Republic
Basso, Bruno; Michigan State University, Department of Geological Sciences, W.K. Kellogg Biological Station, East Lansing, United States
Bertuzzi, Patrick; US1116 AgroClim, INRAE centre de recherche Provence-Alpes-Côte d'Azur, Avignon Cedex 9, France
Constantin, Julie; AGIR, Université de Toulouse, INRAE, INPT, INP-EI PURPAN, CastanetTolosan, France
De Antoni Migliorati, Massimiliano; Queensland Department of Environment and Science, Australia
Dumont, Benjamin ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Durand, Jean-Louis; Unité de Recherches Pluridisciplinaire Prairies et Plantes Fourragères, INRAE, Lusignan, France
Fodor, Nándor ; Agricultural Institute, Centre for Agricultural Research, Hungary
Gaiser, Thomas ; Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
Garofalo, Pasquale; Council for Agricultural Research and Economics, Agriculture and Environment Research Center, CREA-AA, Bari, Italy
Gayler, Sebastian ; Universitat Hohenheim, Institute of Soil Science and Land Evaluation, Biogeophysics, Stuttgart, Germany
Giglio, Luisa ; Council for Agricultural Research and Economics, Agriculture and Environment Research Center, CREA-AA, Bari, Italy
Grant, Robert; Department of Renewable Resources, University of Alberta, Edmonton, Canada
Guan, Kaiyu; College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Urbana, United States
Hoogenboom, Gerrit ; University of Florida, Agricultural and Biological Engineering, Frazier Rogers Hall, Gainesville, United States
Kim, Soo-Hyung; School of Environmental and Forest Sciences, University of Washington, Center for Urban Horticulture, Seattle, United States
Kisekka, Isaya ; Agricultural Water Management and Irrigation Engineering, University of California Davis, Agricultural Water Management and Irrigation Engineering, University of California Davis, Departments of Land, Air, and Water Resources and of Biological and Agricultural Engineering, Davis, United States
Lizaso, Jon; Technical University of Madrid (UPM), Dept. Producción Agraria-CEIGRAM, Madrid, Spain
Masia, Sara; Land and Water Management Department, IHE Delft Institute for Water Education, Delft, Netherlands
Meng, Huimin; China Agricultural University, Beijing, China
Mereu, Valentina; CMCC Foundation-Euro-Mediterranean Centre on Climate Change, Lecce, Italy
Mukhtar, Ahmed; Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, Pakistan ; Swedish University of Agricultural Sciences, Umea, Sweden
Perego, Alessia; Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
Peng, Bin; College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Urbana, United States
Priesack, Eckart; Helmholtz Center Munich, Institute of Biochemical Plant Pathology, Neuherberg, Germany
Shelia, Vakhtang ; University of Florida, Agricultural and Biological Engineering, Frazier Rogers Hall, Gainesville, United States
Snyder, Richard ; University of California Davis, United States
Soltani, Afshin; USDA-ARS Agroecosystem Management Research Unit, Lincoln, United States
Spano, Donatella; University of California Davis, United States
Srivastava, Amit ; Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
Thomson, Aimee; Department of Renewable Resources, University of Alberta, Edmonton, Canada
Timlin, Dennis; Crop Systems and Global Change Research Unit, USDA-ARS, Beltsville, United States
Trabucco, Antonio ; CMCC Foundation-Euro-Mediterranean Centre on Climate Change, Lecce, Italy
Webber, Heidi; Leibniz Centre for Agricultural Landscape Research (ZALF), Mucheberg, Germany
Willaume, Magali; AGIR, Université de Toulouse, INRAE, INPT, INP-EI PURPAN, CastanetTolosan, France
Williams, Karina ; Met Office Hadley Centre, Exeter, United Kingdom
van der Laan, Michael; Department of Renewable Resources, University of Alberta, Edmonton, Canada
Ventrella, Domenico; Iowa State University, Department of Agronomy, Ames, United States
Viswanathan, Michelle; University of Pretoria, Pretoria, South Africa
Xu, Xu ; China Agricultural University, Beijing, China
Zhou, Wang; College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Urbana, United States
We are grateful to the Ministry of Social Justice and Empowerment, Government of India (11015/48/2018-SCD-V), McGill University, and the Natural Sciences and Engineering Research Council of Canada (NSERC) for providing financial support for the first author to carry out this study.
Aiolfi, M., Timmermann, A., Persistence in forecasting performance and conditional combination strategies. J. Econom. 135:1 (2006), 31–53, 10.1016/j.jeconom.2005.07.015.
Ajami, N.K., Duan, Q., Gao, X., Sorooshian, S., Multimodel combination techniques for analysis of hydrological simulations: application to distributed model intercomparison project results. J. Hydrometeorol. 7:4 (2006), 755–768, 10.1175/JHM519.1.
Akaike, H., A new look at the statistical model identification. IEEE Trans. Autom. Control 19:6 (1974), 716–723, 10.1109/TAC.1974.1100705.
Albanito, F., McBey, D., Harrison, M., Smith, P., Ehrhardt, F., Bhatia, A., Bellocchi, G., Brilli, L., Carozzi, M., Christie, K., Doltra, J., How modelers model: the overlooked social and human dimensions in model intercomparison studies. Environ. Sci. Technol. 56:18 (2022), 13485–13498, 10.1021/acs.est.2c02023.
Arsenault, R., Gatien, P., Renaud, B., Brissette, F., Martel, J., A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation. J. Hydrol. 529 (2015), 754–767, 10.1016/j.jhydrol.2015.09.001.
Bassu, S., Brisson, N., Durand, J., Boote, K., Lizaso, J., Jones, J.W., Rosenzweig, C., Ruane, A.C., Adam, M., Baron, C., Basso, B., Biernath, C., Boogaard, H., Conijn, S., Corbeels, M., Deryng, D., De Sanctis, G., Gayler, S., Grassini, P., Hatfield, J., Hoek, S., Izaurralde, C., Jongschaap, R., Kemanian, A.R., Kersebaum, K.C., Kim, S., Kumar, N.S., Makowski, D., Müller, C., Nendel, C., Priesack, E., Pravia, M.V., Sau, F., Shcherbak, I., Tao, F., Teixeira, E., Timlin, D., Waha, K., How do various maize crop models vary in their responses to climate change factors?. Glob. Change Biol. 20:7 (2014), 2301–2320, 10.1111/gcb.12520.
Cheng, H., Shu, K., Qi, Z., Ma, L., Jin, V.L., Li, Y., Schmer, M.R., Wienhold, B.J., Feng, S., Effects of residue removal and tillage on greenhouse gas emissions in continuous corn systems as simulated with RZWQM2. J. Environ. Manag., 285, 2021, 112097, 10.1016/j.jenvman.2021.112097.
Couëdel, A., Falconnier, G.N., Adam, M., Cardinael, R., Boote, K., Justes, E., Smith, W.N., Whitbread, A.M., Affholder, F., Balkovic, J., Basso, B., Long-term soil organic carbon and crop yield feedbacks differ between 16 soil-crop models in sub-Saharan Africa. Eur. J. Agron., 155, 2024, 127109, 10.1016/j.eja.2024.127109.
Crépeau, M., Jégo, G., Morissette, R., Pattey, E., Morrison, M.J., Predictions of soybean harvest index evolution and evapotranspiration using STICS crop model. Agron. J. 113:4 (2021), 3281–3298, 10.1002/agj2.20765.
Deb, P., Moradkhani, H., Han, X., Abbaszadeh, P., Xu, L., Assessing irrigation mitigating drought impacts on crop yields with an integrated modeling framework. J. Hydrol., 609, 2022, 127760, 10.1016/j.jhydrol.2022.127760.
Diks, C.G., Vrugt, J.A., Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch. Environ. Res. Risk Assess. 24 (2010), 809–820, 10.1007/s00477-010-0378-z.
Fang, Q., Ma, L., Harmel, R.D., Yu, Q., Sima, M.W., Bartling, P.N.S., Malone, R.W., Nolan, B.T., Doherty, J., Uncertainty of CERES-Maize calibration under different irrigation strategies using PEST optimization algorithm. Agronomy 9:241 (2019), 1–17 https://www.mdpi.com/2073-4395/9/5/241.
Fletcher, D., Why Model Averaging?, 2018, Springer, Berlin Heidelberg, 1–29.
Gao, Y., Wallach, D., Hasegawa, T., Tang, L., Zhang, R., Asseng, S., Kahveci, T., Liu, L., He, J., Hoogenboom, G., Evaluation of crop model prediction and uncertainty using Bayesian parameter estimation and Bayesian model averaging. Agric. For. Meteorol., 311, 2021, 108686, 10.1016/j.agrformet.2021.108686.
Granger, C.W.J., Ramanathan, R., Improved methods of combining forecasts. J. Forecast. 3:2 (1984), 197–204, 10.1002/for.3980030207.
He, D., Wang, E., Wang, J., Robertson, M.J., Data requirement for effective calibration of process-based crop models. Agric. For. Meteorol. 234 (2017), 136–148, 10.1016/j.agrformet.2016.12.015.
Huang, X., Huang, G., Yu, C., Ni, S., Yu, L., A multiple crop model ensemble for improving broad-scale yield prediction using Bayesian model averaging. Field Crops Res. 211 (2017), 114–124, 10.1016/j.fcr.2017.06.011.
Jafarzadeh, A., Khashei-Siuki, A., Pourreza-Bilondi, M., Performance assessment of model averaging techniques to reduce structural uncertainty of groundwater modeling. Water Resour. Manag. 36:1 (2022), 353–377, 10.1007/s11269-021-03031-x.
Jamieson, P.D., Porter, J.R., Wilson, D.R., A test of the computer simulation model ARCWHEAT on wheat crops grown in New Zealand. Field Crops Res. 27:4 (1991), 337–350, 10.1016/0378-4290(91)90040-3.
Jiang, Q., Madramootoo, C.A., Qi, Z., Soil carbon and nitrous oxide dynamics in corn (Zea mays L.) production under different nitrogen, tillage and residue management practices. Field Crops Res., 277, 2022, 108421.
Jiang, Q., Qi, Z., Lu, C., Tan, C.S., Zhang, T., Prasher, S.O., Evaluating RZ-SHAW model for simulating surface runoff and subsurface tile drainage under regular and controlled drainage with subirrigation in southern Ontario. Agric. Water Manag., 237, 2020, 106179, 10.1016/j.agwat.2020.106179.
Kimball, B.A., Boote, K.J., Hatfield, J.L., Ahuja, L.R., Stockle, C., Archontoulis, S., Baron, C., Basso, B., Bertuzzi, P., Constantin, J., Deryng, D., Dumont, B., Durand, J.-L., Ewert, F., Gaiser, T., Gayler, S., Hoffmann, M.P., Jiang, Q., Kim, S.-H., Lizaso, J., Moulin, S., Nendel, C., Parker, P., Palosuo, T., Priesack, E., Qi, Z., Srivastava, A., Stella, T., Tao, F., Thorp, K.R., Timlin, D., Twine, T.E., Webber, H., Willaume, M., Williams, K., Simulation of maize evapotranspiration: an inter-comparison among 29 maize models. Agric. For. Meteorol. 271 (2019), 264–284, 10.1016/j.agrformet.2019.02.037.
Kimball, B.A., Thorp, K.R., Boote, K.J., Stockle, C., Suyker, A.E., Evett, S.R., Brauer, D.K., Coyle, G.G., Copeland, K.S., Marek, G.W., Colaizzi, P.D., Acutis, M., Alimagham, S., Archontoulis, S., Babacar, F., Barcza, Z., Basso, B., Bertuzzi, P., Constantin, J., De Antoni Migliorati, M., Dumont, B., Durand, J., Fodor, N., Gaiser, T., Garofalo, P., Gayler, S., Giglio, L., Grant, R., Guan, K., Hoogenboom, G., Jiang, Q., Kim, S., Kisekka, I., Lizaso, J., Masia, S., Meng, H., Mereu, V., Mukhtar, A., Perego, A., Peng, B., Priesack, E., Qi, Z., Shelia, V., Snyder, R., Soltani, A., Spano, D., Srivastava, A., Thomson, A., Timlin, D.J., Trabucco, A., Webber, H., Weber, T., Willaume, M., Williams, K., van der Laan, M., Ventrella, D., Viswanathan, M., Xu, X., Zhou, W., Simulation of evapotranspiration and yield of maize: an inter-comparison among 41 maize models. Agric. For. Meteorol., 333, 2023, 109396, 10.1016/j.agrformet.2023.109396.
Kothari, K., Battisti, R., Boote, K.J., Archontoulis, S.V., Confalone, A., Constantin, J., Cuadra, S.V., Debaeke, P., Faye, B., Grant, B., Hoogenboom, G., Jing, Q., van der Laan, M., da Silva, F.A.M., Marin, F.R., Nehbandani, A., Nendel, C., Purcell, L.C., Qian, B.D., Ruane, A.C., Schoving, C., Silva, E., Smith, W., Soltani, A., Srivastava, A., Vieira, N.A., Slone, S., Salmeron, M., Are soybean models ready for climate change food impact assessments?. Eur. J. Agron., 135, 2022, 15, 10.1016/j.eja.2022.126482.
Kumar, A., Singh, R., Jena, P.P., Chatterjee, C., Mishra, A., Identification of the best multi-model combination for simulating river discharge. J. Hydrol. 525 (2015), 313–325.
Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., Rotter, R.P., Boote, K.J., Ruane, A.C., Thorburn, P.J., CaMAAsrano, D., Hatfield, J.L., Rosenzweig, C., Aggarwal, P.K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R.F., Heng, L., Hooker, J., Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Kersebaum, K.C., Müller, C., Kumar, S.N., Nendel, C., O'Leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M.A., Shcherbak, I., Steduto, P., Stockle, C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., White, J.W., Wolf, J., Multimodel ensembles of wheat growth: many models are better than one. Glob. Change Biol. 21 (2015), 911–925, 10.1111/gcb.12768.
Motha, R.P., The impact of extreme weather events on agriculture in the United States. Sivakumar, M.V.K., Stefanski, R., (eds.) Challenges and Opportunities in Agrometeorology, 2011, Springer, Dordrecht, 397–407.
Neuman, S.P., Relationship between juxtaposed, overlapping, and fractal representations of multimodal spatial variability. Water Resour. Res. 39:8 (2003), 1–11, 10.1029/2002WR001755.
Qi, Z., Helmers, M.J., Malone, R.W., Thorp, K.R., Simulating long-term impacts of winter rye cover crop on hydrologic cycling and nitrogen dynamics for a corn-soybean crop system. Trans. ASABE 54:5 (2011), 1575–1588, 10.13031/2013.39836.
Qi, Z., Ma, L., Bausch, W.C., Trout, T.J., Ahuja, L.R., Flerchinger, G.N., Fang, Q., Simulating maize production, water and surface energy balance, canopy temperature, and water stress under full and deficit irrigation. Trans. ASABE 59:2 (2016), 623–633, 10.13031/trans.59.11067.
Sándor, R., Ehrhardt, F., Grace, P., Recous, S., Smith, P., Snow, V., Soussana, J.F., Basso, B., Bhatia, A., Brilli, L., Doltra, J., Residual correlation and ensemble modelling to improve crop and grassland models. Environ. Model. Softw., 161, 2023, 105625, 10.1016/j.envsoft.2023.105625.
Schwarz, G., Estimating the dimension of a model. Ann. Stat., 461–464, 1978, 10.1214/aos/1176344136.
Shuttleworth, W.J., Wallace, J.S., Evaporation from sparse crops – an energy combination theory. Q. J. R. Meteorol. Soc. 111 (1985), 839–855, 10.1002/qj.49711146910.
Singh, A.K., Water and Nitrogen use Efficiency of Corn (Zea mays L.) under Water Table Management. 2013, McGill University, Montreal, Canada (Ph.D. thesis).
Uzoma, K.C., Smith, W., Grant, B., Desjardins, R.L., Gao, X., Hanis, K., Tenuta, M., Goglio, P., Li, C., Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model. Agric. Ecosyst. Environ. 206 (2015), 71–83, 10.1016/j.agee.2015.03.014.
Wallach, D., Mearns, L.O., Ruane, A.C., Rötter, R.P., Asseng, S., Lessons from climate modeling on the design and use of ensembles for crop modeling. Clim. Change 139 (2016), 551–564, 10.1007/s10584-016-1803-1.
Wan, Y., Chen, J., Xu, C.-Y., Xie, P., Qi, W., Li, D., Zhang, S., Performance dependence of multi-model combination methods on hydrological model calibration strategy and ensemble size. J. Hydrol., 603, 2021, 127065, 10.1016/j.jhydrol.2021.127065.
Zaherpour, J., Mount, N., Gosling, S.N., Dankers, R., Eisner, S., Gerten, D., Liu, X., Masaki, Y., Schmied, H.M., Tang, Q., Wada, Y., Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models. Environ. Model. Softw. 114 (2019), 12–128, 10.1016/j.envsoft.2019.01.003.