[en] [en] BACKGROUND: Seed endophytes have a significant impact on plant health and fitness. They can be inherited and passed on to the next plant generation. However, the impact of breeding on their composition in seeds is less understood. Here, we studied the indigenous seed microbiome of a recently domesticated perennial grain crop (Intermediate wheatgrass, Thinopyrum intermedium L.) that promises great potential for harnessing microorganisms to enhance crop performance by a multiphasic approach, including amplicon and strain libraries, as well as molecular and physiological assays.
RESULTS: Intermediate wheatgrass seeds harvested from four field sites in Europe over three consecutive years were dominated by Proteobacteria (88%), followed by Firmicutes (10%). Pantoea was the most abundant genus and Pantoea agglomerans was identified as the only core taxon present in all samples. While bacterial diversity and species richness were similar across all accessions, the relative abundance varied especially in terms of low abundant and rare taxa. Seeds from four different breeding cycles (TLI C3, C5, C704, C801) showed significant differences in bacterial community composition and abundance. We found a decrease in the relative abundance of the functional genes nirK and nifH as well as a drop in bacterial diversity and richness. This was associated with a loss of amplicon sequence variants (ASVs) in Actinobacteria, Alphaproteobacteria, and Bacilli, which could be partially compensated in offspring seeds, which have been cultivated at a new site. Interestingly, only a subset assigned to potentially beneficial bacteria, e.g. Pantoea, Kosakonia, and Pseudomonas, was transmitted to the next plant generation or shared with offspring seeds.
CONCLUSION: Overall, this study advances our understanding of the assembly and transmission of endophytic seed microorganisms in perennial intermediate wheatgrass and highlights the importance of considering the plant microbiome in future breeding programs.
Disciplines :
Agriculture & agronomy
Author, co-author :
Michl, Kristina; Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
David, Christophe; Department of Agroecosystems, Environment and Production, ISARA, 23 rue Jean Baldassini, Lyon Cedex 07, 69364, France
Dumont, Benjamin ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Mårtensson, Linda-Maria Dimitrova; Department of Biosystems and Technology, Swedish University of Agricultural Sciences, P.O. Box 103, Lomma, Alnarp, Sweden
Rasche, Frank; Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70593, Stuttgart, Germany ; International Institute of Tropical Agriculture, P.O. Box 30772-00100, Nairobi, Kenya
Berg, Gabriele; Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria ; Leibnitz-Institute for Agricultural Engineering, 14469, Potsdam, Germany ; Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
Cernava, Tomislav; Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria. tomislav.cernava@tugraz.at ; School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO171BJ, UK. tomislav.cernava@tugraz.at
Language :
English
Title :
Determining the footprint of breeding in the seed microbiome of a perennial cereal.
We would like to thank the team at the SITES L\u00F6nnstorp Research Station at SLU, the perennial grain group from Agropole-ISARA, and Patrice Barrey for sustaining the perennial wheatgrass field trials. Specifically, we thank Camille Bathellier, Laura Fagnant, Pierre Aubry, and Ryan Davidson for their support in providing the seed material. Furthermore, we would like to express our gratitude for the seed material generously provided by Lee DeHaan from the Land Institute. In addition, we would like to thank Barbara Fetz for her help conducting the qPCR measurements.Open access funding provided by Graz University of Technology. This research was performed within the frame of the collaborative project NAPERDIV, which was funded through the 2019\u20132020 BiodivERsA joint call for research proposals, under the BiodivClim ERA-Net COFUND program, and the national funding organization Austrian Science Fund [FWF; grant no. I 5085]. The SITES L\u00F6nnstorp Research Station at SLU received funding through the Swedish Research Council under grant no 2017\u2009\u2212\u200900635. Additionally, the Fonds de la Recherche Scientifique (FNRS) provided partial funding for this work under grant number 549 R.8003.20.
Commentary :
Raw sequencing data for each sample used in this study was deposited at the European Nucleotide Archive (ENA) in the FASTQ format and is available under the Bioproject accession number PRJEB73380.
V. Cordovez F. Dini-Andreote V.J. Carrión J.M. Raaijmakers Ecology and evolution of plant microbiomes Annu Rev Microbiol 2019 73 69 88 1:CAS:528:DC%2BC1MXpslGls78%3D 31091418 10.1146/annurev-micro-090817-062524
M.G. Bakker D.K. Manter A.M. Sheflin T.L. Weir J.M. Vivanco Harnessing the rhizosphere microbiome through plant breeding and agricultural management Plant Soil 2012 360 1 13 1:CAS:528:DC%2BC38XhsFWisbzI 10.1007/s11104-012-1361-x
S. Marco M. Loredana V. Riccardo B. Raffaella C. Walter N. Luca Microbe-assisted crop improvement: a sustainable weapon to restore holobiont functionality and resilience Hortic Res 2022 9 uhac160 36204199 9531342 10.1093/hr/uhac160
E. Adam M. Bernhart H. Müller J. Winkler G. Berg The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding Plant Soil 2018 422 35 49 1:CAS:528:DC%2BC28XhvFCitbnF 10.1007/s11104-016-3113-9
M. Simonin M. Briand G. Chesneau A. Rochefort C. Marais A. Sarniguet M. Barret Seed microbiota revealed by a large-scale meta‐analysis including 50 plant species New Phytol 2022 234 1448 63 35175621 10.1111/nph.18037
A. Bergna T. Cernava M. Rändler R. Grosch C. Zachow G. Berg Tomato seeds preferably transmit plant beneficial endophytes Phytobiomes J 2018 2 183 93 10.1094/PBIOMES-06-18-0029-R
C.E. Rodríguez L. Antonielli B. Mitter F. Trognitz A. Sessitsch Heritability and functional importance of the Setaria viridis bacterial seed microbiome Phytobiomes J 2020 4 40 52 10.1094/PBIOMES-04-19-0023-R
C.M. Walsh I. Becker-Uncapher M. Carlson N. Fierer Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes ISME J 2021 15 2748 62 1:CAS:528:DC%2BB3MXhtlKnt7vP 33782567 8397733 10.1038/s41396-021-00967-1
Z.P. Morales Moreira B.L. Helgason J.J. Germida Crop, genotype, and field environmental conditions shape bacterial and fungal seed epiphytic microbiomes Can J Microbiol 2021 67 161 73 1:CAS:528:DC%2BB3cXisFGltrzK 32931717 10.1139/cjm-2020-0306
K. Michl G. Berg T. Cernava The microbiome of cereal plants: the current state of knowledge and the potential for future applications Environ Microbiome 2023 18 28 37004087 10064690 10.1186/s40793-023-00484-y
G. de Oliveira N.A. Brunsell T.E. Crews L.R. DeHaan G. Vico Carbon and water relations in perennial Kernza (Thinopyrum intermedium): an overview Plant Sci 2020 295 110279 32534616 10.1016/j.plantsci.2019.110279
P. Bajgain J.L. Crain D.J. Cattani S.R. Larson K.R. Altendorf J.A. Anderson et al. Breeding intermediate wheatgrass for grain production Plant Breed Reviews 2022 46 119 217 10.1002/9781119874157.ch3
F. Bak A. Lyhne-Kjærbye S. Tardif D.B. Dresbøll O. Nybroe M.H. Nicolaisen Deep-rooted plant species Recruit distinct bacterial communities in the Subsoil Phytobiomes J 2022 6 236 46 10.1094/PBIOMES-10-21-0064-R
A. Förster C. David B. Dumont L.-M.D. Mårtensson F. Rasche C. Emmerling Earthworm populations and diversity under annual and perennial wheat in a North to South gradient in Western Europe Eur J Soil Biol 2023 119 103561 10.1016/j.ejsobi.2023.103561
B. Wassermann T. Cernava H. Müller C. Berg G. Berg Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks Microbiome 2019 7 1 12 10.1186/s40168-019-0723-5
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:4516–22.
D.S. Lundberg S. Yourstone P. Mieczkowski C.D. Jones J.L. Dangl Practical innovations for high-throughput amplicon sequencing Nat Methods 2013 10 999 1002 1:CAS:528:DC%2BC3sXhtlGmurnN 23995388 10.1038/nmeth.2634
Wassermann B, Rybakova D, Adam E, Zachow C, Bernhard M, Müller M et al. Studying seed microbiomes. The Plant Microbiome: Methods and Protocols. 2021:1–21.
C. Rösch A. Mergel H. Bothe Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil Appl Environ Microbiol 2002 68 3818 29 12147477 124007 10.1128/AEM.68.8.3818-3829.2002
B. Wassermann A. Abdelfattah W.A. Wicaksono P. Kusstatscher H. Müller T. Cernava et al. The Brassica napus seed microbiota is cultivar-specific and transmitted via paternal breeding lines Microb Biotechnol 2022 15 2379 90 1:CAS:528:DC%2BB38XhvFGku7nL 35593114 9437892 10.1111/1751-7915.14077
M. Martin Cutadapt removes adapter sequences from high-throughput sequencing reads EMBnet J 2011 17 10 2 10.14806/ej.17.1.200
B.J. Callahan P.J. McMurdie M.J. Rosen A.W. Han A.J.A. Johnson S.P. Holmes DADA2: high-resolution sample inference from Illumina amplicon data Nat Methods 2016 13 581 3 1:CAS:528:DC%2BC28XosVWitb4%3D 27214047 4927377 10.1038/nmeth.3869
E. Bolyen J.R. Rideout M.R. Dillon N.A. Bokulich C.C. Abnet G.A. Al-Ghalith et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 Nat Biotechnol 2019 37 852 7 1:CAS:528:DC%2BC1MXhsVeksr%2FO 31341288 7015180 10.1038/s41587-019-0209-9
E. Pruesse C. Quast K. Knittel B.M. Fuchs W. Ludwig J. Peplies F.O. Glöckner SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB Nucleic Acids Res 2007 35 7188 96 1:CAS:528:DC%2BD1cXhtFGmtg%3D%3D 17947321 2175337 10.1093/nar/gkm864
T. Rognes T. Flouri B. Nichols C. Quince F. Mahé VSEARCH: a versatile open source tool for metagenomics PeerJ 2016 4 e2584 27781170 5075697 10.7717/peerj.2584
P.J. McMurdie S. Holmes Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data PLoS ONE 2013 8 e61217 1:CAS:528:DC%2BC3sXntVWht7w%3D 23630581 3632530 10.1371/journal.pone.0061217
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.; 2022.
RStudio Team RStudio: Integrated Development for R.: RStudio 2020 Boston, MA PBC
T.C.J. Hill K.A. Walsh J.A. Harris B.F. Moffett Using ecological diversity measures with bacterial communities FEMS Microbiol Ecol 2003 43 1 11 1:CAS:528:DC%2BD3sXhtVCqtr8%3D 19719691 10.1111/j.1574-6941.2003.tb01040.x
M. Roswell J. Dushoff R. Winfree A conceptual guide to measuring species diversity Oikos 2021 130 321 38 10.1111/oik.07202
Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P et al. _vegan: Community Ecology Package_; 2022.
J. Chong P. Liu G. Zhou J. Xia Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data Nat Protoc 2020 15 799 821 1:CAS:528:DC%2BB3cXislegsr8%3D 31942082 10.1038/s41596-019-0264-1
N. Segata J. Izard L. Waldron D. Gevers L. Miropolsky W.S. Garrett C. Huttenhower Metagenomic biomarker discovery and explanation Genome Biol 2011 12 1 18 10.1186/gb-2011-12-6-r60
L. Lahti S. Shetty T. Blake J. Salojarvi Tools for microbiome analysis in R Version 2017 1 28
R.C. Edgar MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res 2004 32 1792 7 1:CAS:528:DC%2BD2cXisF2ks7w%3D 15034147 390337 10.1093/nar/gkh340
K. Tamura G. Stecher S. Kumar MEGA11: molecular evolutionary genetics analysis version 11 Mol Biol Evol 2021 38 3022 7 1:CAS:528:DC%2BB3MXitlCktrfN 33892491 8233496 10.1093/molbev/msab120
I. Letunic P. Bork Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation Nucleic Acids Res 2021 49 W293 6 1:CAS:528:DC%2BB3MXhvV2isLvM 33885785 8265157 10.1093/nar/gkab301
F. Rasche E. Blagodatskaya C. Emmerling R. Belz M.K. Musyoki J. Zimmermann K. Martin A preview of perennial grain agriculture: knowledge gain from biotic interactions in natural and agricultural ecosystems Ecosphere 2017 8 e02048 10.1002/ecs2.2048
S.W. Culman S.S. Snapp M. Ollenburger B. Basso L.R. DeHaan Soil and water quality rapidly responds to the perennial grain Kernza wheatgrass Agron J 2013 105 735 44 10.2134/agronj2012.0273
J.D. Glover J.P. Reganold L.W. Bell J. Borevitz E.C. Brummer E.S. Buckler et al. Increased food and ecosystem security via perennial grains Science 2010 328 1638 9 1:CAS:528:DC%2BC3cXot1Oqsbw%3D 20576874 10.1126/science.1188761
A. Gutierrez M.A. Grillo Effects of Domestication on plant–microbiome interactions Plant Cell Physiol 2022 63 1654 66 1:CAS:528:DC%2BB3sXpt1Oiurc%3D 35876043 10.1093/pcp/pcac108
Y. Abdullaeva B.A. Manirajan B. Honermeier S. Schnell M. Cardinale Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota J Adv Res 2021 31 75 86 1:CAS:528:DC%2BB3MXhtFelt7jK 34194833 10.1016/j.jare.2020.12.008
H. Kim K.K. Lee J. Jeon W.A. Harris Y.-H. Lee Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed Microbiome 2020 8 1 17 10.1186/s40168-020-00805-0
E. Özkurt M.A. Hassani U. Sesiz S. Künzel T. Dagan H. Özkan E.H. Stukenbrock Seed-derived microbial colonization of wild emmer and domesticated bread wheat (Triticum dicoccoides and T. aestivum) seedlings shows pronounced differences in overall diversity and composition MBio 2020 11 10 1128 10.1128/mBio.02637-20
I. Zilber-Rosenberg E. Rosenberg Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution FEMS Microbiol Rev 2008 32 723 35 1:CAS:528:DC%2BD1cXhtFeiurnN 18549407 10.1111/j.1574-6976.2008.00123.x
H. Matsumoto X. Fan Y. Wang P. Kusstatscher J. Duan S. Wu et al. Bacterial seed endophyte shapes disease resistance in rice Nat Plants 2021 7 60 72 1:CAS:528:DC%2BB3MXitVSiurg%3D 33398157 10.1038/s41477-020-00826-5
Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J, Zhang W et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proceedings of the National Academy of Sciences. 2018;115:7368–73.
M.R. Wagner Prioritizing host phenotype to understand microbiome heritability in plants New Phytol 2021 232 502 9 34287929 10.1111/nph.17622
M. Hemapriya K.N. Nataraja T.S. Suryanarayanan R.U. Shaanker Threshing yards: graveyard of maternally borne seed microbiome? Trends Ecol Evol 2020 35 965 8 1:STN:280:DC%2BB3s%2FhslSktw%3D%3D 32958363 10.1016/j.tree.2020.08.010
P. Su H. Kang Q. Peng W.A. Wicaksono G. Berg Z. Liu et al. Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis Nat Commun 2024 15 23 1:CAS:528:DC%2BB2cXkt1ShsA%3D%3D 38167850 10762202 10.1038/s41467-023-44335-3
He X, Wang D, Jiang Y, Li M, Delgado-Baquerizo M, McLaughlin C et al. Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. Nat Plants. 2024:1–20.
A. Shade M.-A. Jacques M. Barret Ecological patterns of seed microbiome diversity, transmission, and assembly Curr Opin Microbiol 2017 37 15 22 28437661 10.1016/j.mib.2017.03.010
A. Chandel R. Mann J. Kaur S. Norton J. Edwards G. Spangenberg T. Sawbridge Implications of seed vault storage strategies for conservation of seed bacterial microbiomes Front Microbiol 2021 12 784796 34925291 8678515 10.3389/fmicb.2021.784796
J.E. Pérez-Jaramillo V.J. Carrión M. de Hollander J.M. Raaijmakers The wild side of plant microbiomes Microbiome 2018 6 1 6 10.1186/s40168-018-0519-z
Wassermann B, Cernava T, Goertz S, Zur J, Rietz S, Kögl I et al. Low nitrogen fertilization enriches nitrogen-fixing bacteria in the Brassica seed microbiome of subsequent generations. J Sustainable Agric Environ. 2023.
J. Shao Y. Miao K. Liu Y. Ren Z. Xu N. Zhang et al. Rhizosphere microbiome assembly involves seed-borne bacteria in compensatory phosphate solubilization Soil Biol Biochem 2021 159 108273 1:CAS:528:DC%2BB3MXhtVGitLrF 10.1016/j.soilbio.2021.108273
M.M.M. Kuypers H.K. Marchant B. Kartal The microbial nitrogen-cycling network Nat Rev Microbiol 2018 16 263 76 1:CAS:528:DC%2BC1cXitFGrs7w%3D 29398704 10.1038/nrmicro.2018.9
I. Nunes V. Hansen F. Bak L. Bonnichsen J. Su X. Hao et al. Succession of the wheat seed-associated microbiome as affected by soil fertility level and introduction of Penicillium and Bacillus inoculants in the field FEMS Microbiol Ecol 2022 98 fiac028 35285907 8951222 10.1093/femsec/fiac028
T. Větrovský P. Baldrian The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses PLoS ONE 2013 8 e57923 23460914 3583900 10.1371/journal.pone.0057923
C.R. Fitzpatrick P. Lu-Irving J. Copeland D.S. Guttman P.W. Wang D.A. Baltrus et al. Chloroplast sequence variation and the efficacy of peptide nucleic acids for blocking host amplification in plant microbiome studies Microbiome 2018 6 1 10 10.1186/s40168-018-0534-0
A. Kuźniar K. Włodarczyk J. Grządziel M. Woźniak K. Furtak A. Gałązka et al. New insight into the composition of wheat seed microbiota Int J Mol Sci 2020 21 4634 32629754 7370184 10.3390/ijms21134634
S.C. Verma J.K. Ladha A.K. Tripathi Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice J Biotechnol 2001 91 127 41 1:CAS:528:DC%2BD3MXmvVKltLo%3D 11566385 10.1016/S0168-1656(01)00333-9
N. Bziuk L. Maccario B. Straube G. Wehner S.J. Sørensen A. Schikora K. Smalla The treasure inside barley seeds: microbial diversity and plant beneficial bacteria Environ Microbiome 2021 16 1 21 10.1186/s40793-021-00389-8
A. Rochefort M. Briand C. Marais M.-H. Wagner A. Laperche P. Vallée et al. Influence of environment and host plant genotype on the structure and diversity of the Brassica napus seed microbiota Phytobiomes J 2019 3 326 36 10.1094/PBIOMES-06-19-0031-R
B. Mitter N. Pfaffenbichler R. Flavell S. Compant L. Antonielli A. Petric et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds Front Microbiol 2017 8 11 28167932 5253360 10.3389/fmicb.2017.00011
J. Taffner A. Bergna T. Cernava G. Berg Tomato-associated archaea show a cultivar-specific rhizosphere effect but an unspecific transmission by seeds Phytobiomes J 2020 4 133 41 10.1094/PBIOMES-01-20-0017-R
P. Kusstatscher E. Adam W.A. Wicaksono M. Bernhart E. Olimi H. Müller G. Berg Microbiome-assisted breeding to understand cultivar-dependent assembly in Cucurbita pepo Front Plant Sci 2021 12 642027 33897731 8063107 10.3389/fpls.2021.642027
Abdelfattah A, Tack AJM, Lobato C, Wassermann B, Berg G. From seed to seed: the role of microbial inheritance in the assembly of the plant microbiome. Trends Microbiol. 2023.