Electrochemical genosensors; Microfluidics; Nucleic acid biosensors; Pathogen detection; Point-of-care diagnostics; Early diagnosis; Electrochemical systems; High sensitivity; Low-costs; Nucleic acid biosensor; Point of care; Point of care diagnostic; Rapid response time; Electronic, Optical and Magnetic Materials; Computer Science (miscellaneous); Atomic and Molecular Physics, and Optics; Instrumentation; Electrical and Electronic Engineering
Abstract :
[en] Electrochemical genosensors have emerged as a powerful tool for the early diagnosis of pathogens, offering advantages such as high sensitivity, rapid response times, low cost, and easy adaptability for point-of-care applications. This review highlights recent advancements in CRISPR-Cas-integrated electrochemical systems, novel nanomaterial architectures, and label-free detection mechanisms. Key innovations include anisotropic gold nanostructures, MXene composites with exceptional conductivity, and poly(ortho-aminophenol) films, which enable attomolar detection limits for pathogens such as bacteria and parasites. We evaluate DNA hybridization-based approaches, emphasizing innovations in signal amplification strategies such as saltatory rolling circle amplification and self-assembled monolayers, which address specificity challenges in complex matrices. Additionally, we highlight the integration of electrochemical genosensors with microfluidic platforms, including automated sample-to-answer workflows and multiplexed detection architectures, which address traditional laboratory bottlenecks. By cataloging advancements in material science, bioreceptor design, and microfluidic automation, this work provides a comprehensive yet focused resource for researchers advancing the frontiers of rapid, portable pathogen diagnostics. Furthermore, we explore the commercial potential of these technologies, providing insights that could guide the development of highly sensitive, field-deployable biosensors for clinical and environmental applications.
Precision for document type :
Review article
Disciplines :
Biotechnology
Author, co-author :
Dehghan, A.; School of Mechanical Engineering, Iran University of Science and Technology, Iran
Kiani, M.J.; School of Mechanical Engineering, Iran University of Science and Technology, Iran
Gholizadeh, Ali ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; School of Mechanical Engineering, Iran University of Science and Technology, Iran
Aminizadeh, J.; Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Iran
Rahi, A.; Pathology and Stem cell Research Center, Kerman University of Medical Sciences, Iran
Zare, I.; Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz, Iran
Pishbin, E.; Bio-microfluidics Laboratory, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Iran
Heli, H.; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
Language :
English
Title :
Electrochemical genosensors on-a-chip: Applications in early diagnosis of pathogens
We would like to thank the Research Councils of Shiraz University of Medical Sciences (31737) and Kerman University of Medical Sciences for supporting this research. The authors would also like to thank Center for Development of Clinical Research of Nemazee Hospital and, Dr. Nasrin Shokrpour for editorial assistance.
Geneva. Global Health Estimates 2016: Disease Burden by Cause, Age, Sex, by Country, and by Region, 2000-2016. 2018, World Heal. Organ.
Kaya, H.O., Cetin, A.E., Azimzadeh, M., Topkaya, S.N., Pathogen detection with electrochemical biosensors: advantages, challenges and future perspectives. J. Electroanal. Chem., 882, 2021, 114989, 10.1016/j.jelechem.2021.114989.
Rodovalho, V., Alves, L., Castro, A., Madurro, J., Brito-Madurro, A., Santos, A., Biosensors applied to diagnosis of infectious diseases - an update. Austin J. Biosens. Bioelectron. 1 (2015), 1–12.
Datta, M., Desai, D., Kumar, A., Gene specific DNA sensors for diagnosis of pathogenic infections. Indian J. Microbiol. 57 (2017), 139–147, 10.1007/s12088-017-0650-8.
T.S. Warfade, A.P. Dhoke, M.D. Kitukale, Biosensors in healthcare: overcoming challenges and pioneering innovations for disease management, (2025).
Gupta, U., Yadav, S., Saini, K., Woollam, M., Agarwal, M., Maity, D., Chapter 4: a comparative study of the application of biosensors in Human health. Biosens. Technol. Hum. Health, 2024, 70–107, 10.1039/9781837676323-00070.
Menon, S., Mathew, M.R., Sam, S., Keerthi, K., Kumar, K.G., Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. J. Electroanal. Chem., 878, 2020, 114596, 10.1016/j.jelechem.2020.114596.
Wasiewska, L.A., Diaz, F.G., Shao, H., Burgess, C.M., Duffy, G., O'Riordan, A., Highly sensitive electrochemical sensor for the detection of Shiga toxin-producing E. coli (STEC) using interdigitated micro-electrodes selectively modified with a chitosan-gold nanocomposite. Electrochim. Acta, 426, 2022, 140748, 10.1016/j.electActa2022.140748.
Bialas, K., Moschou, D., Marken, F., Estrela, P., Electrochemical sensors based on metal nanoparticles with biocatalytic activity. Microchim. Acta, 189, 2022, 172, 10.1007/s00604-022-05252-2.
Zhang, Y., Zhang, K., Ma, H., Electrochemical DNA biosensor based on silver nanoparticles/poly(3-(3-pyridyl) acrylic acid)/carbon nanotubes modified electrode. Anal. Biochem. 387 (2009), 13–19, 10.1016/j.ab.2008.10.043.
Bukkitgar, S.D., Kumar, S., Pratibha, S.Singh, Singh, V., Reddy, K.R., Sadhu, V., Bagihalli, G.B., Shetti, N.P., Reddy, C.V., Ravindranadh, K., Naveen, S., Functional nanostructured metal oxides and its hybrid electrodes – recent advancements in electrochemical biosensing applications. Microchem. J., 159, 2020, 105522, 10.1016/j.microc.2020.105522.
Beitollahi, H., Tajik, S., Nejad, F.G., Safaei, M., Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. J. Mater. Chem. B 8 (2020), 5826–5844.
B.V. Salvi, P. Shende, Coordination bond- based nanosystems for manipulating niche framework in biomedical applications, (2025). https://doi.org/10.1002/aoc.7978.
Gao, D., Ma, Z., Jiang, Y., Recent advances in microfluidic devices for foodborne pathogens detection. TrAC Trends Anal. Chem., 157, 2022, 116788, 10.1016/j.trac.2022.116788.
Chen, Y., Liu, Y., Shi, Y., Ping, J., Wu, J., Chen, H., Magnetic particles for integrated nucleic acid purification, amplification and detection without pipetting. TrAC Trends Anal. Chem., 127, 2020, 115912, 10.1016/j.trac.2020.115912.
Chen, Y., Zong, N., Ye, F., Mei, Y., Qu, J., Jiang, X., Dual-CRISPR/Cas12a-assisted RT-RAA for ultrasensitive SARS-CoV-2 detection on automated centrifugal microfluidics. Anal. Chem. 94 (2022), 9603–9609, 10.1021/acs.analchem.2c00638.
Chen, Y., Mei, Y., Jiang, X., Universal and high-fidelity DNA single nucleotide polymorphism detection based on a CRISPR/Cas12a biochip. Chem. Sci. 12 (2021), 4455–4462, 10.1039/d0sc05717g.
Zong, N., Gao, Y., Chen, Y., Luo, X., Jiang, X., Automated centrifugal microfluidic chip integrating pretreatment and molecular diagnosis for hepatitis B virus genotyping from whole blood. Anal. Chem. 94 (2022), 5196–5203, 10.1021/acs.analchem.2c00337.
Chen, Y., Mei, Y., Zhao, X., Jiang, X., Reagents-loaded, automated assay that integrates recombinase-aided amplification and Cas12a nucleic acid detection for a point-of-care test. Anal. Chem. 92 (2020), 14846–14852, 10.1021/acs.analchem.0c03883.
Zai, Y., Min, C., Wang, Z., Ding, Y., Zhao, H., Su, E., He, N., A sample-to-answer, quantitative real-time PCR system with low-cost, gravity-driven microfluidic cartridge for rapid detection of SARS-CoV-2, influenza A/B, and human papillomavirus 16/18. Lab Chip 22 (2022), 3436–3452, 10.1039/d2lc00434h.
Li, Z., Xu, X., Wang, D., Jiang, X., Recent advancements in nucleic acid detection with microfluidic chip for molecular diagnostics. TrAC Trends Anal. Chem., 158, 2023, 116871, 10.1016/j.trac.2022.116871.
Parihar, A., Yadav, S., Sadique, M.A., Ranjan, P., Kumar, N., Singhal, A., Khare, V., Khan, R., Natarajan, S., Srivastava, A.K., Internet-of-medical-things integrated point-of-care biosensing devices for infectious diseases: toward better preparedness for futuristic pandemics. Bioeng. Transl. Med., 8, 2023, e10481, 10.1002/btm2.10481 PMID: 37206204.
Whitesides, G.M., The origins and the future of microfluidics. Nature 442 (2006), 368–373, 10.1038/nature05058.
Lum, J., Wang, R., Hargis, B., Tung, S., Bottje, W., Lu, H., Li, Y., An impedance aptasensor with microfluidic chips for specific detection of H5N1 avian influenza virus. Sensors 15 (2015), 18565–18578, 10.3390/s150818565.
Sassolas, A., Leca-Bouvier, B.D., Blum, L.J., DNA biosensors and microarrays. Chem. Rev. 108 (2008), 109–139, 10.1021/cr0684467.
Moustakim, H., Mohammadi, H., Amine, A., Electrochemical DNA biosensor based on immobilization of a non-modified ssDNA using phosphoramidate-bonding strategy and pencil graphite electrode modified with AuNPs/CB and self-assembled cysteamine monolayer. Sensors, 22, 2022, 9420, 10.3390/s22239420.
Mantz, A., Rosenthal, A., Farris, E., Kozisek, T., Bittrich, E., Nazari, S., Schubert, E., Schubert, M., Stamm, M., Uhlmann, P., Pannier, A.K., Free polyethylenimine enhances substrate-mediated gene delivery on titanium substrates modified with RGD-functionalized poly(acrylic acid) brushes. Front. Chem., 7, 2019, 51, 10.3389/fchem.2019.00051.
Wittmann, C., DNA immobilization. Meyers, R.A., (eds.) Encyclopedia of Analytical Chemistry, 2022, Wiley, 1–38, 10.1002/9780470027318.a9210.pub2.
Campos, R., Kotlyar, A., Ferapontova, E.E., DNA-mediated electron transfer in DNA duplexes tethered to gold electrodes via phosphorothioated dA tags. Langmuir 30 (2014), 11853–11857, 10.1021/la502766g.
Meng, X., O'Hare, D., Ladame, S., Surface immobilization strategies for the development of electrochemical nucleic acid sensors. Biosens. Bioelectron., 237, 2023, 115440, 10.1016/j.bios.2023.115440.
Qiu, J., Tang, J., Shen, J., Wu, C., Qian, M., He, Z., Chen, J., Shuang, S., Preparation of a silver electrode with a three-dimensional surface and its performance in the electrochemical reduction of carbon dioxide. Electrochim. Acta 203 (2016), 99–108.
Zhang, L., Li, Z., Zhou, X., Yang, G., Yang, J., Wang, H., Wang, M., Liang, C., Wen, Y., Lu, Y., Hybridization performance of DNA/mercaptohexanol mixed monolayers on electrodeposited nanoAu and rough Au surfaces. J. Electroanal. Chem. 757 (2015), 203–209.
Campuzano, S., Kuralay, F., Wang, J., Ternary monolayer interfaces for ultrasensitive and direct bioelectronic detection of nucleic acids in complex matrices. Electroanalysis 24 (2012), 483–493.
Wu, J., Campuzano, S., Halford, C., Haake, D.A., Wang, J., Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification. Anal. Chem. 82 (2010), 8830–8837, 10.1021/ac101474k.
Booth, M.A., Kannappan, K., Hosseini, A., Partridge, A., In-depth electrochemical investigation of surface attachment chemistry via carbodiimide coupling. Langmuir 31 (2015), 8033–8041, 10.1021/acs.langmuir.5b01863.
Lakard, B., Electrochemical biosensors based on conducting polymers: a review. Appl. Sci., 10, 2020, 6614, 10.3390/app10186614.
Wang, G., Morrin, A., Li, M., Liu, N., Luo, X., Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. J. Mater. Chem. B 6 (2018), 4173–4190, 10.1039/c8tb00817e.
Liu, C., Jiang, D., Xiang, G., Liu, L., Liu, F., Pu, X., An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite. Analyst 139 (2014), 5460–5465, 10.1039/c4an00976b.
Voccia, D., Sosnowska, M., Bettazzi, F., Roscigno, G., Fratini, E., De Franciscis, V., Condorelli, G., Chitta, R., D'Souza, F., Kutner, W., Palchetti, I., Direct determination of small RNAs using a biotinylated polythiophene impedimetric genosensor. Biosens. Bioelectron. 87 (2017), 1012–1019, 10.1016/j.bios.2016.09.058.
Castro, A.C.H., Franca, E.G., de Paula, L.F., Soares, M.M.C.N., Goulart, L.R., Madurro, J.M., Brito-Madurro, A.G., Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus. Appl. Surf. Sci. 314 (2014), 273–279, 10.1016/j.apsusc.2014.06.084.
Balvedi, R.P.A., Castro, A.C.H., Madurro, J.M., Brito-Madurro, A.G., Detection of a specific biomarker for epstein-barr virus using a polymer-based genosensor. Int. J. Mol. Sci. 15 (2014), 9051–9066.
Mohan, S., Nigam, P., Kundu, S., Prakash, R., A label-free genosensor for BRCA1 related sequence based on impedance spectroscopy. Analyst 135 (2010), 2887–2893, 10.1039/c0an00258e.
Peng, H., Zhang, L., Spires, J., Soeller, C., Travas-Sejdic, J., Synthesis of a functionalized polythiophene as an active substrate for a label-free electrochemical genosensor. Polymer 48 (2007), 3413–3419.
Shoaie, N., Forouzandeh, M., Omidfar, K., Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles. Microchim. Acta, 185, 2018, 217, 10.1007/s00604-018-2749-y.
Nguyet, N.T., Thu, V.V., Lan, H., Trung, T., Le, A.T., Pham, V.H., Simple label-free DNA sensor based on CeO2 nanorods decorated with ppy nanoparticles. J. Electron. Mater. 48 (2019), 6231–6239, 10.1007/s11664-019-07414-0.
Khoder, E.R., Korri-Youssoufi, H., E-DNA biosensors of M. tuberculosis based on nanostructured polypyrrole. Mater. Sci. Eng. C, 108, 2020, 110371.
Jiang, Y., Wu, J., Recent development in chitosan nanocomposites for surface-based biosensor applications. Electrophoresis 40 (2019), 2084–2097, 10.1002/elps.201900066.
Singh, A., Sinsinbar, G., Choudhary, M., Kumar, V., Pasricha, R., Verma, H.N., Singh, S.P., Arora, K., Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens. Actuat. B 185 (2013), 675–684, 10.1016/j.snb.2013.05.014.
Tiwari, I., Singh, M., Pandey, C.M., Sumana, G., Electrochemical detection of a pathogenic Escherichia coli specific DNA sequence based on a graphene oxide-chitosan composite decorated with nickel ferrite nanoparticles. RSC Adv. 5 (2015), 67115–67124, 10.1039/c5ra07298k.
Juska, V.B., Pemble, M.E., A dual-enzyme, micro-band array biosensor based on the electrodeposition of carbon nanotubes embedded in chitosan and nanostructured Au-foams on microfabricated gold band electrodes. Analyst 145 (2020), 402–414, 10.1039/c9an01664c.
Tian, L., Qi, J., Ma, X., Wang, X., Yao, C., Song, W., Wang, Y., A facile DNA strand displacement reaction sensing strategy of electrochemical biosensor based on N-carboxymethyl chitosan/molybdenum carbide nanocomposite for microRNA-21 detection. Biosens. Bioelectron. 122 (2018), 43–50, 10.1016/j.bios.2018.09.037.
Coatrini-Soares, A., Soares, J.C., Popolin-Neto, M., de Mello, S.S., Sanches, E.A., Paulovich, F.V., Oliveira Jr, O.N., Mattoso, L.H.C., Multidimensional calibration spaces in Staphylococcus Aureus detection using chitosan-based genosensors and electronic tongue. Int. J. Biol. Macromol., 271, 2024, 132460, 10.1016/j.ijbiomac.2024.132460.
Fernandes, A.M., Abdalhai, M.H., Ji, J., Xi, B.W., Xie, J., Sun, J., Noeline, R., Lee, B.H., Sun, X., Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Biosens. Bioelectron. 63 (2015), 399–406, 10.1016/j.bios.2014.07.054.
Tiwari, I., Singh, M., Pandey, C.M., Sumana, G., Electrochemical genosensor based on graphene oxide modified iron oxide–chitosan hybrid nanocomposite for pathogen detection. Sens. Actuat. B 206 (2015), 276–283, 10.1016/j.snb.2014.09.056.
Huang, Z., Ge, C., Li, S., Cai, M., Hui, Y., Liao, X., Zeng, Q., Biomimetic pyrolytic MXene-based multifunctional films with multi-level structure for wearable piezoresistive devices and bioelectronics. Adv. Funct. Mater. 2422374 (2024), 1–14, 10.1002/adfm.202422374.
Ketabi, K., Soleimanjahi, H., Teimoori, A., Hatamluyi, B., Rezayi, M., Meshkat, Z., Diagnostic genosensor for detection of rotavirus based on HFGNs/MXene/PPY signal amplification. Microchim. Acta, 190, 2023, 10.1007/s00604-023-05871-3.
Shishegari, N., Tadjarodi, A., Omidinia, E., Talanta an electrochemical nano-genosensor for SARS-CoV-2 detection utilizing Ce-metal organic framework, dendritic palladium nano-structure, and sulfur-doped graphene oxide. Talanta, 287, 2025, 127662, 10.1016/j.talanta.2025.127662.
Huang, L., Yuan, N., Guo, W., Zhang, Y., Zhang, W., An electrochemical biosensor for the highly sensitive detection of Staphylococcus aureus based on SRCA-CRISPR/Cas12a. Talanta, 252, 2022, 123821, 10.1016/j.talanta.2022.123821.
He, Y., Jia, F., Sun, Y., Fang, W., Li, Y., Chen, J., Fu, Y., An electrochemical sensing method based on CRISPR/Cas12a system and hairpin DNA probe for rapid and sensitive detection of Salmonella typhimurium. Sens. Actuat. B, 369, 2022, 132301, 10.1016/j.snb.2022.132301.
Li, C., Liang, Y., Feng, Q., An electrochemical biosensor utilizing CRISPR/Cas12a amplification for the detection of E. coli. Anal., 2025, 1158–1166, 10.1039/d4an01441c.
Nguyen, H.V., Hwang, S., Lee, S.W., Jin, E., Lee, M.H., Detection of HPV 16 and 18 L1 genes by a nucleic acid amplification-free electrochemical biosensor powered by CRISPR/Cas9. Bioelectrochemistry, 162, 2025, 10.1016/j.bioelechem.2024.108861.
Fan, T., Zhang, S., Meng, C., Gao, L., Yan, L., Wang, H., Shi, X., Ge, Y., Zhang, H., Hu, J., Ultrasensitive detection of nucleic acid with a CRISPR/Cas12a empowered electrochemical sensor based on antimonene. FlatChem, 45, 2024, 10.1016/j.flatc.2024.100633.
Wang, J., Xia, Q., Wu, J., Lin, Y., Ju, H., A sensitive electrochemical method for rapid detection of dengue virus by CRISPR/Cas13a-assisted catalytic hairpin assembly. Anal. Chim. Acta, 1187, 2021, 10.1016/j.aca.2021.339131.
Barreda-Garcia, S., Miranda-Castro, R., de-los-Santos-Alvarez, N., Lobo-Castanon, M.J., Sequence-specific electrochemical detection of enzymatic amplification products of Salmonella genome on ITO electrodes improves pathogen detection to the single copy level. Sens. Actuat. B 268 (2018), 438–445, 10.1016/j.snb.2018.04.133.
Jaroenram, W., Kampeera, J., Arunrut, N., Karuwan, C., Sappat, A., Khumwan, P., Jaitrong, S., Boonnak, K., Prammananan, T., Chaiprasert, A., Tuantranont, A., Kiatpathomchai, W., Graphene-based electrochemical genosensor incorporated loop-mediated isothermal amplification for rapid on-site detection of mycobacterium tuberculosis. J. Pharm. Biomed. Anal., 186, 2020, 113333, 10.1016/j.jpba.2020.113333.
Li, Q., Li, Y., Gao, Q., Jiang, C., Tian, Q., Ma, C., Shi, C., Real-time monitoring of isothermal nucleic acid amplification on a smartphone by using a portable electrochemical device for home-testing of SARS-CoV-2: a portable device for home-testing of SARS-CoV-2 via the electrochemical method. Anal. Chim. Acta, 1229, 2022, 340343, 10.1016/j.aca.2022.340343.
Marchlewicz, K., Ostrowska, I., Oszwałdowski, S., Zasada, A., Ziolkowski, R., Malinowska, E., Molecular diagnostic of toxigenic Corynebacterium diphtheriae strain by DNA sensor potentially suitable for electrochemical point-of-care diagnostic. Talanta, 227, 2021, 122161, 10.1016/j.talanta.2021.122161.
Ye, Y., Yan, W., Liu, Y., He, S., Cao, X., Xu, X., Zheng, H., Gunasekaran, S., Electrochemical detection of Salmonella using an invA genosensor on polypyrrole-reduced graphene oxide modifi ed glassy carbon electrode and AuNPs-horseradish peroxidase-streptavidin as nanotag. Anal. Chim. Acta 1074 (2019), 80–88, 10.1016/j.aca.2019.05.012.
Sappat, A., Jaroenram, W., Puthawibool, T., Lomas, T., Tuantranont, A., Kiatpathomchai, W., Detection of shrimp Taura syndrome virus by loop-mediated isothermal amplification using a designed portable multi-channel turbidimeter. J. Virol. Methods 175 (2011), 141–148, 10.1016/j.jviromet.2011.05.013.
Ben Aissa, A., Madaboosi, N., Nilsson, M., Pividori, M.I., Electrochemical genosensing of E. coli based on padlock probes and rolling circle amplification. Sensors, 21, 2021, 1749, 10.3390/s21051749.
Mobed, A., Hasanzadeh, M., Hassanpour, S., Saadati, A., Agazadeh, M., Mokhtarzadeh, A., An innovative nucleic acid based biosensor toward detection of Legionella pneumophila using DNA immobilization and hybridization: a novel genosensor. Microchem. J. 148 (2019), 708–716, 10.1016/j.microc.2019.05.027.
Bacchu, M.S., Ali, M.R., Das, S., Akter, S., Sakamoto, H., Suye, S.I., Rahman, M.M., Campbell, K., Khan, M.Z.H., A DNA functionalized advanced electrochemical biosensor for identification of the foodborne pathogen Salmonella enterica serovar Typhi in real samples. Anal. Chim. Acta, 1192, 2022, 339332, 10.1016/j.aca.2021.339332.
Li, J., Jiang, J., Su, Y., Liang, Y., Zhang, C., A novel cloth-based supersandwich electrochemical aptasensor for direct, sensitive detection of pathogens. Anal. Chim. Acta, 1188, 2021, 339176, 10.1016/j.aca.2021.339176.
Eksin, E., An electrochemical assay for sensitive detection of Acinetobacter baumannii gene. Talanta, 249, 2022, 123696, 10.1016/j.talanta.2022.123696.
Rizi, K.S., Hatamluyi, B., Darroudi, M., Meshkat, Z., Aryan, E., Soleimanpour, S., Rezayi, M., PCR-free electrochemical genosensor for Mycobacterium tuberculosis complex detection based on two-dimensional Ti3C2 Mxene-polypyrrole signal amplification. Microchem. J., 179, 2022, 107467, 10.1016/j.microc.2022.107467.
Cheng, L., He, Y., Yang, Y., Chen, J., He, H., Liu, Y., Lin, Z., Hong, G., Highly reproducible and sensitive electrochemical biosensor for Chlamydia trachomatis detection based on duplex-specific nuclease-assisted target-responsive DNA hydrogels and bovine serum albumin carrier platform. Anal. Chim. Acta, 1197, 2022, 339496, 10.1016/j.aca.2022.339496.
Flauzino, J.M.R., Peres, R.C.S., Alves, L.M., Vieira, J.G., Julia, G., Brito-madurro, A.G., Madurro, J.M., DNA electrochemical biosensor for detection of alicyclobacillus acidoterrestris utilizing Hoechst 33258 as indicator. Bioelectrochemistry, 140, 2021, 107801, 10.1016/j.bioelechem.2021.107801.
Shi, F., Wang, B., Yan, L., Wang, B., Niu, Y., Wang, L., Sun, W., In-situ growth of nitrogen-doped carbonized polymer dots on black phosphorus for electrochemical DNA biosensor of Escherichia coli O157: H7. Bioelectrochemistry, 148, 2022, 108226, 10.1016/j.bioelechem.2022.108226.
Ariffin, E.Y., Lee, Y.H., Futra, D., Tan, L.L., Huda, N., Karim, A., Nuraznida, N., Ibrahim, N., Ahmad, A., An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection. Ana. Bioanal. Chem., 2018, 2363–2375.
Nazari-Vanani, R., Sattarahmady, N., Yadegari, H., Heli, H., A novel and ultrasensitive electrochemical DNA biosensor based on an ice crystals-like gold nanostructure for the detection of Enterococcus faecalis gene sequence. Colloids Surf. B 166 (2018), 245–253, 10.1016/j.colsurfb.2018.03.025.
Nazari-Vanani, R., Sattarahmady, N., Yadegari, H., Khatami, M., Heli, H., Electrochemical biosensing of 16s rRNA gene sequence of Enterococcus faecalis. Biosens. Bioelectron., 142, 2019, 111541, 10.1016/j.bios.2019.111541.
Rahi, A., Sattarahmady, N., Heli, H., An ultrasensitive electrochemical genosensor for Brucella based on palladium nanoparticles. Anal. Biochem. 510 (2016), 11–17, 10.1016/j.ab.2016.07.012.
Rahi, A., Sattarahmady, N., Heli, H., Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms. Sci. Rep., 5, 2015, 18060, 10.1038/srep18060.
Delshadi-Jahromi, N., Nazari-Vanani, R., Yadegari, H., Sattarahmady, N., Hatam, G.R., Label-free ultrasensitive electrochemical genosensing of Trichomonas vaginalis using anisotropic-shaped gold nanoparticles as a platform, a repeated sequence of the parasite DNA as a probe, and toluidine blue as a redo. Sens. Actuat. B 273 (2018), 234–241, 10.1016/j.snb.2018.06.051.
Vais, R.Dehdari, Heli, H., Sattarahmady, N., Label-free electrochemical DNA biosensing of MR TV 29 18s ribosomal RNA gene of Trichomonas vaginalis by signalization of non-spherical gold nanoparticles. Mater. Today Commun., 34, 2023, 105123, 10.1016/j.mtcomm.2022.105123.
Vais, R.Dehdari, Heli, H., Sattarahmady, N., Barazesh, A., A novel and ultrasensitive label-free electrochemical DNA biosensor for trichomonas vaginalis detection based on a nanostructured film of poly(ortho-aminophenol). Synth. Met., 287, 2022, 117082, 10.1016/j.synthmet.2022.117082.
Nazari-Vanani, R., Heli, H., Sattarahmady, N., An impedimetric genosensor for Leishmania infantum based on electrodeposited cadmium sulfide nanosheets. Talanta, 217, 2020, 121080, 10.1016/j.talanta.2020.121080.
Nazari-Vanani, R., Sattarahmady, N., Yadegari, H., Delshadi, N., Hatam, G.R., Heli, H., Electrochemical quantitation of Leishmania infantum based on detection of its kDNA genome and transduction of non-spherical gold nanoparticles. Anal. Chim. Acta 1041 (2018), 40–49, 10.1016/j.aca.2018.08.036.
Delshadi-Jahromi, N., Nazari-Vanani, R., Yadegari, H., Sattarahmady, N., Hatam, G.R., Heli, H., Label-free ultrasensitive electrochemical genosensing of Trichomonas vaginalis using anisotropic-shaped gold nanoparticles as a platform, a repeated sequence of the parasite DNA as a probe, and toluidine blue as a redox marker. Sens. Actuat. B 273 (2018), 234–241, 10.1016/j.snb.2018.06.051.
Moradi, M., Sattarahmady, N., Rahi, A., Hatam, G.R., Sorkhabadi, S.M.R., Heli, H., A label-free, PCR-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves. Talanta 161 (2016), 48–53, 10.1016/j.talanta.2016.08.030.
Moradi, M., Sattarahmady, N., Hatam, G.R., Heli, H., Electrochemical genosensing of leishmania major using gold hierarchical nanoleaflets. J. Biol. Today's World 5 (2016), 128–136, 10.15412/J.JBTW.01050801.
Heli, H., Sattarahmady, N., Hatam, G.R., Reisi, F., Vais, R.Dehdari, An electrochemical genosensor for Leishmania major detection based on dual effect of immobilization and electrocatalysis of cobalt-zinc ferrite quantum dots. Talanta 156–157 (2016), 172–179, 10.1016/j.talanta.2016.04.065.
Liu, Y.H., Deng, H.H., Li, H.N., Shi, T.F., Peng, H.P., Liu, A.L., Chen, W., Hong, G.L., A DNA electrochemical biosensor based on homogeneous hybridization for the determination of Cryptococcus neoformans. J. Electroanal. Chem. 827 (2018), 27–33, 10.1016/j.jelechem.2018.09.001.
Guedes, P.H.G., Brussasco, G., Moço, A.C.R., Moraes, D.D., Flauzino, R., Luz, L.F.G., Almeida, M.T.G., Soares, M.M.C.N., Oliveira, R.J., Madurro, M., Brito-Madurro, A.G., Ninhydrin as a novel DNA hybridization indicator applied to a highly reusable electrochemical genosensor for Candida auris. Talanta, 235, 2021, 122694, 10.1016/j.talanta.2021.122694.
Rana, K., Mittal, J., Narang, J., Mishra, A., Pudake, R.N., Graphene based electrochemical DNA biosensor for detection of false smut of rice (Ustilaginoidea virens). Plant Pathol. J. 37 (2021), 291–298, 10.5423/PPJ.OA.11.2020.0207.
Yahyavi, I., Edalat, F., Pirbonyeh, N., Letafati, A., Sattarahmady, N., Heli, H., Moattari, A., Nucleic acid-based electrochemical biosensor for detection of influenza B by gold nanoparticles. J. Mol. Recognit., 37, 2024, e3073, 10.1002/jmr.3073.
Mohammadi, J., Moattari, A., Sattarahmady, N., Pirbonyeh, N., Yadegari, H., Heli, H., Electrochemical biosensing of influenza A subtype genome based on meso/macroporous cobalt (II) oxide nanoflakes-applied to human samples. Anal. Chim. Acta 979 (2017), 51–57, 10.1016/j.aca.2017.05.010.
Lv, S., Tang, Y., Zhang, K., Tang, D., Wet NH3-triggered NH2-MIL-125(Ti) structural switch for visible fluorescence immunoassay impregnated on paper. Anal. Chem. 90 (2018), 14121–14125, 10.1021/acs.analchem.8b04981.
Qiu, Z., Shu, J., Tang, D., Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Anal. Chem. 89 (2017), 5152–5160, 10.1021/acs.analchem.7b00989.
Lv, S., Zhang, K., Zhu, L., Tang, D., Niessner, R., Knopp, D., H2-based electrochemical biosensor with Pd nanowires@ZIF-67 molecular sieve bilayered sensing interface for immunoassay. Anal. Chem. 91 (2019), 12055–12062, 10.1021/acs.analchem.9b03177.
Pishbin, E., Sadri, F., Dehghan, A., Kiani, M.J., Hashemi, N., Zare, I., Mousavi, P., Rahi, A., Recent advances in isolation and detection of exosomal microRNAs related to Alzheimer's disease. Environ. Res., 227, 2023, 115705, 10.1016/j.envres.2023.115705.
Ansari, M.I.H., Hassan, S., Qurashi, A., Khanday, F.A., Microfluidic-integrated DNA nanobiosensors. Biosens. Bioelectron. 85 (2016), 247–260, 10.1016/j.bios.2016.05.009.
Kudr, J., Zitka, O., Klimanek, M., Vrba, R., Adam, V., Microfluidic electrochemical devices for pollution analysis-a review. Sens. Actuat. B 246 (2017), 578–590, 10.1016/j.snb.2017.02.052.
Kim, J., Johnson, M., Hill, P., Gale, B.K., Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr. Biol. 1 (2009), 574–586, 10.1039/b905844c.
Obino, D., Vassalli, M., Franceschi, A., Alessandrini, A., Facci, P., Viti, F., An overview on microfluidic systems for nucleic acids extraction from human raw samples. Sensors, 21, 2021, 3058, 10.3390/s21093058.
Islam, M.S., Aryasomayajula, A., Selvaganapathy, P.R., A review on macroscale and microscale cell lysis methods. Micromachines, 8, 2017, 83, 10.3390/mi8030083.
Kotlowski, R., Martin, A., Ablordey, A., Chemlal, K., Fonteyne, P.A., Portaels, F., One-tube cell lysis and DNA extraction procedure for PCR-based detection of Mycobacterium ulcerans in aquatic insects, molluscs and fish. J. Med. Microbiol. 53 (2004), 927–933, 10.1099/jmm.0.45593-0.
Fradique, R., Azevedo, A.M., Chu, V., Conde, J.P., Aires-Barros, M.R., Microfluidic platform for rapid screening of bacterial cell lysis. J. Chromatogr. A., 1610, 2020, 460539, 10.1016/j.chroma.2019.460539.
Sharma, R., Dill, B.D., Chourey, K., Shah, M., Verberkmoes, N.C., Hettich, R.L., Coupling a detergent lysis/cleanup methodology with intact protein fractionation for enhanced proteome characterization. J. Proteome Res. 11 (2012), 6008–6018, 10.1021/pr300709k.
Brown, R.B., Audet, J., Current techniques for single-cell lysis. J. R. Soc. Interface 5 (2008), S131–S138, 10.1098/rsif.2008.0009.focus.
Ward, K., Fan, Z.H., Mixing in microfluidic devices and enhancement methods. J. Micromech. Microeng., 25, 2015, 094001, 10.1088/0960-1317/25/9/094001.
Gorgannezhad, L., Stratton, H., Nguyen, N.T., Microfluidic-based nucleic acid amplification systems in microbiology. Micromachines, 10, 2019, 408, 10.3390/mi10060408.
Lee, C.Y., Bin Lee, G., Lin, J.L., Huang, F.C., Liao, C.S., Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification. J. Micromech. Microeng. 15 (2005), 1215–1223, 10.1088/0960-1317/15/6/011.
Packard, M.M., Wheeler, E.K., Alocilja, E.C., Shusteff, M., Performance evaluation of fast microfluidic thermal lysis of bacteria for diagnostic sample preparation. Diagnostics 3 (2013), 105–116, 10.3390/diagnostics3010105.
Jiang, F., Chen, J., Yu, J., Design and application of a microfluidic cell lysis microelectrode chip. Instrum. Sci. Technol. 44 (2016), 223–232, 10.1080/10739149.2015.1076839.
Geng, T., Lu, C., Microfluidic electroporation for cellular analysis and delivery. Lab Chip 13 (2013), 3803–3821, 10.1039/c3lc50566a.
Pandian, K., Ajanth Praveen, M., Hoque, S.Z., Sudeepthi, A., Sen, A.K., Continuous electrical lysis of cancer cells in a microfluidic device with passivated interdigitated electrodes. Biomicrofluidics, 14, 2020, 064101, 10.1063/5.0026046.
Sedgwick, H., Caron, F., Monaghan, P.B., Kolch, W., Cooper, J.M., Lab-on-a-chip technologies for proteomic analysis from isolated cells. J. R. Soc. Interface 5 (2008), S123–S130, 10.1098/rsif.2008.0169.focus.
Islam, M.S., Kuryllo, K., Selvaganapathy, P.R., Li, Y., Deen, M.J., A microfluidic sample preparation device for pre-concentration and cell lysis using a nanoporous membrane. 17th Int. Conf. Miniaturized Syst. Chem. Life Sci. MicroTAS 2013, 2013, 1105–1107.
Jeon, H., Kim, S., Lim, G., Electrical force-based continuous cell lysis and sample separation techniques for development of integrated microfluidic cell analysis system: a review. Microelectron. Eng. 198 (2018), 55–72, 10.1016/j.mee.2018.06.010.
Mernier, G., Piacentini, N., Braschler, T., Demierre, N., Renaud, P., Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting. Lab Chip 10 (2010), 2077–2082, 10.1039/c000977f.
Ziv, R., Steinhardt, Y., Pelled, G., Gazit, D., Rubinsky, B., Micro-electroporation of mesenchymal stem cells with alternating electrical current pulses. Biomed. Microdevices 11 (2009), 95–101, 10.1007/s10544-008-9213-4.
Sang, K.K., Jae, H.K., Kwang, P.K., Taek, D.C., Continuous low-voltage de electroporation on a microfluidic chip with polyelectrolytic salt bridges. Anal. Chem. 79 (2007), 7761–7766, 10.1021/ac071197h.
Lo, Y.J., Lei, U., A continuous flow-through microfluidic device for electrical lysis of cells. Micromachines, 10, 2019, 247, 10.3390/mi10040247.
Olanrewaju, A., Beaugrand, M., Yafia, M., Juncker, D., Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18 (2018), 2323–2347, 10.1039/c8lc00458g.
Dehghan, A., Gholizadeh, A., Navidbakhsh, M., Sadeghi, H., Pishbin, E., Integrated microfluidic system for efficient DNA extraction using on-disk magnetic stirrer micromixer. Sens. Actuat. B, 351, 2022, 130919, 10.1016/j.snb.2021.130919.
Kido, H., Micic, M., Smith, D., Zoval, J., Norton, J., Madou, M., A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization. Colloids Surf. B 58 (2007), 44–51, 10.1016/j.colsurfb.2007.03.015.
Marentis, T.C., Kusler, B., Yaralioglu, G.G., Liu, S., Hæggstrom, E.O., Khuri-Yakub, B.T., Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis. Ultrasound Med. Biol. 31 (2005), 1265–1277, 10.1016/j.ultrasmedbio.2005.05.005.
Di Carlo, D., Jeong, K.H., Lee, L.P., Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip 3 (2003), 287–291, 10.1039/b305162e.
Han, J.Y., Wiederoder, M., DeVoe, D.L., Isolation of intact bacteria from blood by selective cell lysis in a microfluidic porous silica monolith. Microsyst. Nanoeng., 5, 2019, 30, 10.1038/s41378-019-0063-4.
Xia, L., Li, G., Recent progress of microfluidics in surface-enhanced raman spectroscopic analysis. J. Sep. Sci. 44 (2021), 1752–1768, 10.1002/jssc.202001196.
Xia, L., Li, G., Recent progress of microfluidic sample preparation techniques. J. Sep. Sci., 46, 2023, e2300327, 10.1002/jssc.202300327.
Hess, J.F., Hess, M.E., Zengerle, R., Paust, N., Boerries, M., Hutzenlaub, T., Automated library preparation for whole genome sequencing by centrifugal microfluidics. Anal. Chim. Acta, 1182, 2021, 338954, 10.1016/j.aca.2021.338954.
Ouyang, W., Han, J., One-step nucleic acid purification and noise-resistant polymerase chain reaction by electrokinetic concentration for ultralow-abundance nucleic acid detection. Angew. Chemie 59 (2020), 10981–10988, 10.1002/anie.201915788.
Conde, A.J., Keraite, I., Ongaro, A.E., Kersaudy-Kerhoas, M., Versatile hybrid acoustic micromixer with demonstration of circulating cell-free DNA extraction from sub-ml plasma samples. Lab Chip 20 (2020), 741–748, 10.1039/c9lc01130g.
Yin, J., Zou, Z., Hu, Z., Zhang, S., Zhang, F., Wang, B., Lv, S., Mu, Y., A “sample-in-multiplex-digital-answer-out” chip for fast detection of pathogens. Lab Chip 20 (2020), 979–986, 10.1039/c9lc01143a.
Lee, K., Tripathi, A., Parallel DNA extraction from whole blood for rapid sample generation in genetic epidemiological studies. Front. Genet., 11, 2020, 374, 10.3389/fgene.2020.00374.
Abafogi, A.T., Kim, J., Lee, J., Mohammed, M.O., van Noort, D., Park, S., 3D-printed modular microfluidic device enabling preconcentrating bacteria and purifying bacterial DNA in blood for improving the sensitivity of molecular diagnostics. Sensors, 20, 2020, 1202, 10.3390/s20041202.
Kwon, S., Oh, J., Lee, M.S., Um, E., Jeong, J., Kang, J.H., Enhanced diamagnetic repulsion of blood cells enables versatile plasma separation for biomarker analysis in blood. Small, 17, 2021, e2100797, 10.1002/smll.202100797.
Jagannath, A., Li, Y., Cong, H., Hassan, J., Gonzalez, G., Wang, W., Zhang, N., Gilchrist, M.D., UV-assisted hyperbranched poly(β-amino ester) modification of a silica membrane for two-step microfluidic dna extraction from blood. ACS Appl. Mater. Interfaces 15 (2023), 31159–31172, 10.1021/acsami.3c03523.
Lee, H., Park, C., Na, W., Park, K.H., Shin, S., Precision cell-free DNA extraction for liquid biopsy by integrated microfluidics. NPJ Precis. Oncol., 4, 2020, 3, 10.1038/s41698-019-0107-0.
Thang, L.T.H., Han, W., Shin, J., Shin, J.H., Disposable, pressure-driven, and self-contained cartridge with pre-stored reagents for automated nucleic acid extraction. Sens. Actuat. B, 375, 2023, 132948, 10.1016/j.snb.2022.132948.
Berensmeier, S., Magnetic particles for the separation and purification of nucleic acids. Appl. Microbiol. Biotechnol. 73 (2006), 495–504, 10.1007/s00253-006-0675-0.
Azimi, S.M., Nixon, G., Ahern, J., Balachandran, W., A magnetic bead-based DNA extraction and purification microfluidic device. Microfluid. Nanofluid. 11 (2011), 157–165, 10.1007/s10404-011-0782-9.
Wang, Y., Qi, W., Wang, L., Lin, J., Liu, Y., Magnetic bead chain-based continuous-flow dna extraction for microfluidic pcr detection of salmonella. Micromachines, 12, 2021, 384, 10.3390/mi12040384.
Kye, H.G., Ahrberg, C.D., Park, B.S., Lee, J.M., Chung, B.G., Separation, purification, and detection of cfDNA in a microfluidic device. Biochip J. 14 (2020), 195–203, 10.1007/s13206-020-4208-1.
Kim, C.H., Park, J., Kim, S.J., Ko, D.H., Lee, S.H., Lee, S.J., Park, J.K., Lee, M.K., On-site extraction and purification of bacterial nucleic acids from blood samples using an unpowered microfluidic device. Sens. Actuat. B, 320, 2020, 128346, 10.1016/j.snb.2020.128346.
Ben-Yoav, H., Dykstra, P.H., Bentley, W.E., Ghodssi, R., A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis. Biosens. Bioelectron. 64 (2015), 579–585, 10.1016/j.bios.2014.09.069.
Thiha, A., Ibrahim, F., Muniandy, S., Dinshaw, I.J., Teh, S.J., Thong, K.L., Leo, B.F., Madou, M., All-carbon suspended nanowire sensors as a rapid highly-sensitive label-free chemiresistive biosensing platform. Biosens. Bioelectron. 107 (2018), 145–152, 10.1016/j.bios.2018.02.024.
Duan, N., Xu, B., Wu, S., Wang, Z., Magnetic nanoparticles-based aptasensor using gold nanoparticles as colorimetric probes for the detection of Salmonella typhimurium. Anal. Sci. 32 (2016), 431–436, 10.2116/analsci.32.431.
Sackmann, E.K., Fulton, A.L., Beebe, D.J., The present and future role of microfluidics in biomedical research. Nature 507 (2014), 181–189, 10.1038/nature13118.
Sfragano, P.S., Reynoso, E.C., Rojas-Ruíz, N.E., Laschi, S., Rossi, G., Buchinger, M., Torres, E., Palchetti, I., A microfluidic card-based electrochemical assay for the detection of sulfonamide resistance genes. Talanta, 271, 2024, 125718, 10.1016/j.talanta.2024.125718.
Parthasarathy, P., Venkatesh, M., Developments in microfluidic integrated lab-on-chip devices for DNA biosensing towards unifying the emergence of nanobiosensor. Biomed. Mater. Devices, 2024, 10.1007/s44174-024-00257-2.
Abouhagger, A., Celiešiūtė-Germanienė, R., Bakute, N., Stirke, A., Melo, W.C.M.A., Electrochemical biosensors on microfluidic chips as promising tools to study microbial biofilms: a review. Front. Cell. Infect. Microbiol., 14, 2024, 1419570, 10.3389/fcimb.2024.1419570.
Akhlaghi, A.A., Kaur, H., Adhikari, B.R., Soleymani, L., Editors’ choice—challenges and opportunities for developing electrochemical biosensors with commercialization potential in the point-of-care diagnostics market. ECS Sens. Plus, 3, 2024, 10.1149/2754-2726/ad304a.
S. Devrani, D. Tietze, A.A. Tietze, Automated microfluidic platform for high-throughput biosensor development, 2400116 (2025) 1–20. https://doi.org/10.1002/adsr.202400116.
Zhang, T., Dong, X., Gao, X., Yang, Y., Song, W., Song, J., Bi, H., Guo, Y., Song, J., Applications of metals and metal compounds in improving the sensitivity of microfluidic biosensors – a review. Chem. - A Eur. J., 30, 2024, 10.1002/chem.202400578.
Tsai, S.L., Wey, J.J., Lai, S.C., Huang, Y.Y., A novel microfluidic chip based on an impedance-enhanced electrochemical immunoassay. Phys. Fluids, 37, 2025, 10.1063/5.0251565.
Cheng, Y.H., Kargupta, R., Ghoshal, D., Li, Z., Chande, C., Feng, L., Chatterjee, S., Koratkar, N., Motkuri, R.K., Basuray, S., ESSENCE - a rapid, shear-enhanced, flow-through, capacitive electrochemical platform for rapid detection of biomolecules. Biosens. Bioelectron., 182, 2021, 113163, 10.1016/j.bios.2021.113163.
Khaliliazar, S., Oberg Mansson, I., Piper, A., Ouyang, L., Reu, P., Hamedi, M.M., Woven electroanalytical biosensor for nucleic acid amplification tests. Adv. Healthc. Mater., 10, 2021, e2100034, 10.1002/adhm.202100034.
Najjar, D., Rainbow, J., Sharma Timilsina, S., Jolly, P., de Puig, H., Yafia, M., Durr, N., Sallum, H., Alter, G., Li, J.Z., Yu, X.G., Walt, D.R., Paradiso, J.A., Estrela, P., Collins, J.J., Ingber, D.E., A lab-on-a-chip for the concurrent electrochemical detection of SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies in saliva and plasma. Nat. Biomed. Eng. 6 (2022), 968–978, 10.1038/s41551-022-00919-w.
Park, Y.M., Lim, S.Y., Shin, S.J., Kim, C.H., Jeong, S.W., Shin, S.Y., Bae, N.H., Lee, S.J., Na, J., Jung, G.Y., Lee, T.J., A film-based integrated chip for gene amplification and electrochemical detection of pathogens causing foodborne illnesses. Anal. Chim. Acta 1027 (2018), 57–66, 10.1016/j.aca.2018.03.061.
Chand, R., Ramalingam, S., Neethirajan, S., A 2D transition-metal dichalcogenide MoS2 based novel nanocomposite and nanocarrier for multiplex miRNA detection. Nanoscale 10 (2018), 8217–8225, 10.1039/c8nr00697k.
Keyvani, F., Debnath, N., Ayman Saleh, M., Poudineh, M., An integrated microfluidic electrochemical assay for cervical cancer detection at point-of-care testing. Nanoscale 14 (2022), 6761–6770, 10.1039/d1nr08252c.
Srisomwat, C., Yakoh, A., Chuaypen, N., Tangkijvanich, P., Vilaivan, T., Chailapakul, O., Amplification-free DNA sensor for the one-step detection of the hepatitis B Virus using an automated paper-based lateral flow electrochemical device. Anal. Chem. 93 (2021), 2879–2887, 10.1021/acs.analchem.0c04283.
Ben-Yoav, H., Dykstra, P.H., Bentley, W.E., Ghodssi, R., A microfluidic-based electrochemical biochip for label-free diffusion-restricted DNA hybridization analysis. Biosens. Bioelectron. 38 (2012), 114–120, 10.1016/j.bios.2012.05.009.
Kutluk, H., Bruch, R., Urban, G.A., Dincer, C., Impact of assay format on miRNA sensing: electrochemical microfluidic biosensor for miRNA-197 detection. Biosens. Bioelectron., 148, 2020, 111824, 10.1016/j.bios.2019.111824.
Shiddiky, M.J.A., Shim, Y.B., Trace analysis of DNA: preconcentration, separation, and electrochemical detection in microchip electrophoresis using Au nanoparticles. Anal. Chem. 79 (2007), 3724–3733, 10.1021/ac0701177.
Bhushan, B., (eds.) Springer Handbook of Nanotechnology, 2010, Springer.
Zainuddin, A.A., Mansor, A.F.M., Rahim, R.A., Nordin, A.N., Optimization of printing techniques for electrochemical biosensors. AIP Conf. Proc., 2017, 10.1063/1.4975299.
Hussain, A., Abbas, N., Ali, A., Inkjet printing: a viable technology for biosensor fabrication. Chemosensors, 10, 2022, 10.3390/chemosensors10030103.
Gavina, K., Franco, L.C., Khan, H., Lavik, J.P., Relich, R.F., Molecular point-of-care devices for the diagnosis of infectious diseases in resource-limited settings – A review of the current landscape, technical challenges, and clinical impact. J. Clin. Virol., 169, 2023, 10.1016/j.jcv.2023.105613.
Vijian, D., Chinni, S.V., Yin, L.S., Lertanantawong, B., Surareungchai, W., Non-protein coding RNA-based genosensor with quantum dots as electrochemical labels for attomolar detection of multiple pathogens. Biosens. Bioelectron. 77 (2016), 805–811, 10.1016/j.bios.2015.10.057.
Chen, L., Chen, D., Lian, M., Progress in the development of antifouling electrochemical biosensors. Curr. Anal. Chem., 20, 2024, 10.2174/0115734110320891240823065902.