Critical Care; Digital Twins; ICU; Physiological Modeling; Virtual Cohort; Virtual Patient; Decision support systems; Manufacture; Productivity; Chronic disease; Critical care; Digital automation; Digital technologies; Model based optimization; Model-based OPC; Physiological modeling; Productivity gain; Virtual cohort; Virtual patients; Intensive care units
Geoffrey Chase, J.; Univ of Canterbury, Dept of Mechanical Eng, Christchurch, New Zealand
Zhou, C.; Univ of Canterbury, Dept of Mechanical Eng, Christchurch, New Zealand
Knopp, J.L.; Univ of Canterbury, Dept of Mechanical Eng, Christchurch, New Zealand
Shaw, G.M.; Christchurch Hospital, Dept of Intensive Care, Christchurch, New Zealand
Näswall, K.; Univ of Canterbury, School of Psychology, Speech and Hearing Christchurch, New Zealand
Wong, J.H.K.; Univ of Canterbury, School of Psychology, Speech and Hearing Christchurch, New Zealand
Malinen, S.; Univ of Canterbury, School of Business, Christchurch, New Zealand
Moeller, K.; Furtwangen University, Inst for Technical Medicine, V-S, Germany
Benyo, B.; Budapest Univ of Technology, Dept of Information Science, Budapest, Hungary
Chiew, Y.S.; Monash University Malaysia, Kuala Lumpur, Malaysia
Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Language :
English
Title :
Digital twins in critical care: What, when, how, where, why?
Publication date :
2021
Event name :
11th IFAC Symposium on Biological and Medical Systems BMS 2021
Baker, L., Egan-Lee, E., Martimianakis, M. A. and Reeves, S. 2011. Relationships of power: implications for interprofessional education. Journal of interprofessional care, 25, 98-104.
Baumol, W. J. and De Ferranti, D. M. 2012. The cost disease : why computers get cheaper and health care doesn't, New Haven, Yale University Press.
Blaha, J., Barteczko-Grajek, B., Berezowicz, P., Charvat, J., Chvojka, J., Grau, T., Holmgren, J., Jaschinski, U., Kopecky, P., Manak, J., Moehl, M., Paddle, J., Pasculli, M., Petersson, J., Petros, S., Radrizzani, D., Singh, V. and Starkopf, J. 2016. Space GlucoseControl system for blood glucose control in intensive care patients-A European multicentre observational study. BMC Anesthesiol, 16, 8.
Chase, J., Desaive, T. and Preiser, J. C. 2016. Virtual Patients and Virtual Cohorts: A New Way to Think About the Design and Implementation of Personalized ICU Treatments. In: VINCENT, J. L. (ed.) Annual Update in Intensive Care and Emergency Medicine.
Chase, J. G., Shaw, G. M., Lotz, T., Lecompte, A., Wong, J., Lin, J., Lonergan, T., Willacy, M. and Hann, C. E. 2007. Model-based insulin and nutrition administration for tight glycaemic control in critical care. Curr Drug Deliv, 4, 283-96.
Chase, J. G., Suhaimi, F., Penning, S., Preiser, J. C., Le Compte, A. J., Lin, J., Pretty, C. G., Shaw, G. M., Moorhead, K. T. and Desaive, T. 2010. Validation of a model-based virtual trials method for tight glycemic control in intensive care. Biomed Eng Online, 9, 84.
Chase, J. G., Le Compte, A. J., Suhaimi, F., Shaw, G. M., Lynn, A., Lin, J., Pretty, C. G., Razak, N., Parente, J. D. and Hann, C. E. 2011a. Tight glycemic control in critical care-The leading role of insulin sensitivity and patient variability: A review and model-based analysis. Computer Methods and Programs in Biomedicine, 102, 156-171.
Chase, J. G., Le Compte, A. J., Preiser, J. C., Shaw, G. M., Penning, S. and Desaive, T. 2011b. Physiological modeling, tight glycemic control, and the ICU clinician: what are models and how can they affect practice? Ann Intensive Care, 1, 11.
Chase, J. G., Desaive, T., Bohe, J., Cnop, M., De Block, C., Gunst, J., Hovorka, R., Kalfon, P., Krinsley, J., Renard, E. and Preiser, J. C. 2018a. Improving glycemic control in critically ill patients: personalized care to mimic the endocrine pancreas. Crit Care, 22, 182.
Chase, J. G., Preiser, J. C., Dickson, J. L., Pironet, A., Chiew, Y. S., Pretty, C. G., Shaw, G. M., Benyo, B., Moeller, K., Safaei, S., Tawhai, M., Hunter, P. and Desaive, T. 2018b. Next-generation, personalised, model-based critical care medicine: a state-of-The art review of in silico virtual patient models, methods, and cohorts, and how to validation them. Biomed Eng Online, 17, 24.
Chase, J. G., Benyo, B. and Desaive, T. 2019. Glycemic control in the intensive care unit: A control systems perspective. Annual Reviews in Control, 48, 359-368.
Chen, D. 2005. Enterprise-control system integration-an international standard. International journal of production research, 43, 4335-4357.
Cimino, C., Negri, E. and Fumagalli, L. 2019. Review of digital twin applications in manufacturing. Computers in Industry, 113, 103130.
Dasta, J. F., Mclaughlin, T. P., Mody, S. H. and Piech, C. T. 2005. Daily cost of an intensive care unit day: The contribution of mechanical ventilation. Crit Care Med, 33, 1266-1271.
Desaive, T., Horikawa, O., Ortiz, J. P. and Chase, J. G. 2019. Model-based management of cardiovascular failure: Where medicine and control systems converge. Annual Reviews in Control.
Dickson, J. L., Stewart, K. W., Pretty, C. G., Flechet, M., Desaive, T., Penning, S., Lambermont, B. C., Benyo, B., Shaw, G. M. and Chase, J. G. 2018. Generalisability of a Virtual Trials Method for Glycaemic Control in Intensive Care. IEEE Trans Biomed Eng, 65, 1543-1553.
Dombovy, M. L. 2002. U.S. health care in conflict-Part I. The challenges of balancing cost, quality and access. Physician Exec, 28, 43-7.
Economist, T. 2011. Patient, heal thyself. The Economist London, UK: The Economist.
Evans, A., Le Compte, A., Tan, C. S., Ward, L., Steel, J., Pretty, C. G., Penning, S., Suhaimi, F., Shaw, G. M. and Desaive, T. 2012. Stochastic Targeted (STAR) Glycemic Control: Design, Safety, and Performance. Journal of Diabetes Science and Technology, 6, 102-115.
Fisk, L., Lecompte, A., Penning, S., Desaive, T., Shaw, G. and Chase, G. 2012. STAR Development and Protocol Comparison. IEEE Trans Biomed Eng, 59, 3357-3364.
Gagnon, M.-P., Desmartis, M., Labrecque, M., Car, J., Pagliari, C., Pluye, P., Frémont, P., Gagnon, J., Tremblay, N. and Légaré, F. 2012. Systematic review of factors influencing the adoption of information and communication technologies by healthcare professionals. Journal of medical systems, 36, 241-277.
Garg, A. X., Adhikari, N. K., Mcdonald, H., Rosas-Arellano, M. P., Devereaux, P. J., Beyene, J., Sam, J. and Haynes, R. B. 2005. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA, 293, 1223-38.
Greenhalgh, T. and Stones, R. 2010. Theorising big IT programmes in healthcare: strong structuration theory meets actor-network theory. Social science & medicine, 70, 1285-1294.
Greenhalgh, T., Wherton, J., Papoutsi, C., Lynch, J., Hughes, G., Hinder, S., Fahy, N., Procter, R. and Shaw, S. 2017. Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. Journal of medical Internet research, 19, e367.
Grol, R. 2001. Successes and failures in the implementation of evidence-based guidelines for clinical practice. Med Care, 39, II46-54.
Halpern, N. A. 2009. Can the costs of critical care be controlled? Curr Opin Crit Care, 15, 591-6.
Halpern, S. D. 2011. ICU capacity strain and the quality and allocation of critical care. Curr Opin Crit Care, 17, 648-57.
Hovorka, R., Chassin, L. J., Ellmerer, M., Plank, J. and Wilinska, M. E. 2008. A simulation model of glucose regulation in the critically ill. Physiol Meas, 29, 959-78.
Hudson, F. and Clark, C. 2018. Wearables and medical interoperability: the evolving frontier. Computer, 51, 86-90.
Hughes, A. M., Gregory, M. E., Joseph, D. L., Sonesh, S. C., Marlow, S. L., Lacerenza, C. N., Benishek, L. E., King, H. B. and Salas, E. 2016. Saving Lives: A Meta-Analysis of Team Training in Healthcare. Journal of applied psychology, 101, 1266-1304.
Hunter, P., Coveney, P. V., De Bono, B., Diaz, V., Fenner, J., Frangi, A. F., Harris, P., Hose, R., Kohl, P., Lawford, P., Mccormack, K., Mendes, M., Omholt, S., Quarteroni, A., Skar, J., Tegner, J., Randall Thomas, S., Tollis, I., Tsamardinos, I., Van Beek, J. H. and Viceconti, M. 2010. A vision and strategy for the virtual physiological human in 2010 and beyond. Philos Transact A Math Phys Eng Sci, 368, 2595-614.
Ingebrigtsen, T., Georgiou, A., Clay-Williams, R., Magrabi, F., Hordern, A., Prgomet, M., Li, J., Westbrook, J. and Braithwaite, J. 2014. The impact of clinical leadership on health information technology adoption: systematic review. International journal of medical informatics, 83, 393-405.
Jaleel, A., Mahmood, T., Hassan, M. A., Bano, G. and Khurshid, S. K. 2020. Towards medical data interoperability through collaboration of healthcare devices. IEEE Access, 8, 132302- 132319.
Kim, K. T., Knopp, J., Dixon, B. and Chase, G. 2019. Quantifying neonatal pulmonary mechanics in mechanical ventilation. Biomedical Signal Processing and Control, 52, 206-217.
Kim, K. T., Knopp, J., Dixon, B. and Chase, J. G. 2020a. Mechanically ventilated premature babies have sex differences in specific elastance: A pilot study. Pediatric Pulmonology, 55, 177- 184.
Kim, K. T., Morton, S., Howe, S., Chiew, Y. S., Knopp, J. L., Docherty, P., Pretty, C., Desaive, T., Benyo, B. and Szlavecz, A. 2020b. Model-based PEEP titration versus standard practice in mechanical ventilation: a randomised controlled trial. Trials, 21, 130.
Knopp, J. L., Lynn, A. M., Shaw, G. M. and Chase, J. G. 2019. Safe and effective glycaemic control in premature infants: observational clinical results from the computerised STARGRYPHON protocol. Arch Dis Child Fetal Neonatal Ed, 104, F205-F211.
Ko, M., Wagner, L. and Spetz, J. 2018. Nursing home implementation of health information technology: Review of the literature finds inadequate investment in preparation, infrastructure, and training. INQUIRY: The Journal of Health Care Organization, Provision, and Financing, 55, 0046958018778902.
Koivunen, M. and Saranto, K. 2018. Nursing professionals' experiences of the facilitators and barriers to the use of telehealth applications: a systematic review of qualitative studies. Scandinavian journal of caring sciences, 32, 24-44.
Kritzinger, W., Karner, M., Traar, G., Henjes, J. and Sihn, W. 2018. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51, 1016-1022.
Kruse, C. S., Kristof, C., Jones, B., Mitchell, E. and Martinez, A. 2016. Barriers to electronic health record adoption: a systematic literature review. Journal of medical systems, 40, 1-7.
Le Compte, A., Chase, J., Lynn, A., Hann, C., Shaw, G., Wong, X. and Lin, J. 2009. Blood Glucose Controller for Neonatal Intensive Care: Virtual trials development and 1st clinical trials. Journal of Diabetes Science and Technology (JoDST), 3, 1066-1081.
Le Compte, A. J., Chase, J. G., Lynn, A., Hann, C. E., Shaw, G. M. and Lin, J. 2011. Development of blood glucose control for extremely premature infants. Comput Methods Programs Biomed, 102, 181-91.
Lin, J., Razak, N. N., Pretty, C. G., Le Compte, A., Docherty, P., Parente, J. D., Shaw, G. M., Hann, C. E. and Geoffrey Chase, J. 2011. A physiological Intensive Control Insulin-Nutrition- Glucose (ICING) model validated in critically ill patients. Comput Methods Programs Biomed, 102, 192-205.
Lluch, M. 2011. Healthcare professionals' organisational barriers to health information technologies-A literature review. International journal of medical informatics, 80, 849-862.
Lonergan, T., Lecompte, A., Willacy, M., Chase, J. G., Shaw, G. M., Wong, X. W., Lotz, T., Lin, J. and Hann, C. E. 2006. A Simple Insulin-Nutrition Protocol for Tight Glycemic Control in Critical Illness: Development and Protocol Comparison. Diabetes Technol Ther, 8, 191-206.
Mavrogiorgou, A., Kiourtis, A., Perakis, K., Pitsios, S. and Kyriazis, D. 2019. IoT in healthcare: achieving interoperability of highquality data acquired by IoT medical devices. Sensors, 19, 1978.
Mcginn, C. A., Grenier, S., Duplantie, J., Shaw, N., Sicotte, C., Mathieu, L., Leduc, Y., Légaré, F. and Gagnon, M.-P. 2011. Comparison of user groups' perspectives of barriers and facilitators to implementing electronic health records: a systematic review. BMC medicine, 9, 1-10.
Mesotten, D., Dubois, J., Van Herpe, T., Van Hooijdonk, R. T., Wouters, R., Coart, D., Wouters, P., Van Assche, A., Veraghtert, G., De Moor, B., Wauters, J., Wilmer, A., Schultz, M. J. and Van Den Berghe, G. 2017. Software-guided versus nurse-directed blood glucose control in critically ill patients: the LOGIC-2 multicenter randomized controlled clinical trial. Crit Care, 21, 212.
Micklethwait, J. 2011. Taming Leviathan. The Economist. London, UK: The Economist.
Morton, S. E., Knopp, J. L., Chase, J. G., Möller, K., Docherty, P., Shaw, G. M. and Tawhai, M. 2019a. Predictive virtual patient modelling of mechanical ventilation: impact of recruitment function. Annals of biomedical engineering, 47, 1626-1641.
Morton, S. E., Knopp, J. L., Chase, J. G., Docherty, P., Howe, S. L., Möller, K., Shaw, G. M. and Tawhai, M. 2019b. Optimising mechanical ventilation through model-based methods and automation. Annual Reviews in Control.
Morton, S. E., Knopp, J. L., Tawhai, M. H., Docherty, P., Heines, S. J., Bergmans, D. C., Möller, K. and Chase, J. G. 2020. Prediction of Lung Mechanics Throughout Recruitment Maneuvers in Pressure-Controlled Ventilation. Computer Methods and Programs in Biomedicine, 105696.
Murphy, L., Davidson, S., Chase, J. G., Knopp, J. L., Zhou, T. and Desaive, T. 2020a. Patient-Specific Monitoring and Trend Analysis of Model-Based Markers of Fluid Responsiveness in Sepsis: A Proof-of-Concept Animal Study. Annals of biomedical engineering, 48, 682-694.
Murphy, L., Chase, J., Davidson, S., Smith, R. and Desaive, T. Minimally Invasive Model Based Stressed Blood Volume as an Index of Fluid Responsiveness. In: HIRCHE, S., ed. Proceedings 21st IFAC World Congress, IFAC Papers-Online, 2020b Berlin, Germany. Elsevier, 6-pages.
Negri, E., Fumagalli, L. and Macchi, M. 2017. A review of the roles of digital twin in CPS-based production systems. Procedia Manufacturing, 11, 939-948.
Nickerson, D., Atalag, K., De Bono, B., Geiger, J., Goble, C., Hollmann, S., Lonien, J., Muller, W., Regierer, B., Stanford, N. J., Golebiewski, M. and Hunter, P. 2016. The Human Physiome: how standards, software and innovative service infrastructures are providing the building blocks to make it achievable. Interface Focus, 6, 20150103.
Oecd 2015. FOCUS on Health Spending @ OECD Health Statistics 2015. OECD Health Statistics 2015, July 2015, 1-8.
Orsini, J., Blaak, C., Yeh, A., Fonseca, X., Helm, T., Butala, A. and Morante, J. 2014. Triage of Patients Consulted for ICU Admission During Times of ICU-Bed Shortage. J Clin Med Res, 6, 463-8.
Panetta, K. 2019. Hyperautomation, blockchain, AI security, distributed cloud and autonomous things drive disruption and create opportunities in this year's strategic technology trends. Smarter with Gartner.[Accessed 27 April 2020].
Pielmeier, U., Andreassen, S., Juliussen, B., Chase, J. G., Nielsen, B. S. and Haure, P. 2010. The Glucosafe system for tight glycemic control in critical care: a pilot evaluation study. J Crit Care, 25, 97-104.
Pironet, A., Desaive, T., Geoffrey Chase, J., Morimont, P. and Dauby, P. C. 2015. Model-based computation of total stressed blood volume from a preload manoeuvre. Math Biosci, 265, 28-39.
Rudge, A., Chase, J., Shaw, G. and Lee, D. 2006. Physiological modelling of agitation-sedation dynamics including endogenous agitation reduction. Medical Engineering & Physics, 28, 629-638.
Safaei, S., Bradley, C. P., Suresh, V., Mithraratne, K., Muller, A., Ho, H., Ladd, D., Hellevik, L. R., Omholt, S. W., Chase, J. G., Muller, L. O., Watanabe, S. M., Blanco, P. J., De Bono, B. and Hunter, P. J. 2016. Roadmap for cardiovascular circulation model. J Physiol.
Schreiweis, B., Pobiruchin, M., Strotbaum, V., Suleder, J., Wiesner, M. and Bergh, B. 2019. Barriers and facilitators to the implementation of ehealth services: systematic literature analysis. Journal of medical Internet research, 21, e14197.
Schuster, M. A., Mcglynn, E. A. and Brook, R. H. 2005. How Good Is the Quality of Health Care in the United States? The Milbank quarterly, 83, 843-895.
Shorr, A. F. 2002. An update on cost-effectiveness analysis in critical care. Curr Opin Crit Care, 8, 337-43.
Smith, R., Balmer, J., Pretty, C. G., Mehta-Wilson, T., Desaive, T., Shaw, G. M. and Chase, J. G. 2020a. Incorporating pulse wave velocity into model-based pulse contour analysis method for estimation of cardiac stroke volume. Computer Methods and Programs in Biomedicine, 105553.
Smith, R., Balmer, J., Pretty, C., Shaw, G. and Chase, J. Clinical application of a model-based cardiac stroke volume estimation method. In: HIRCHE, S., ed. Proceedings 21st IFAC World Congress, IFAC Papers-Online, 2020b Berlin, Germany. 6-pages.
Smith, R., Murphy, L., Pretty, C. G., Desaive, T., Shaw, G. M. and Chase, J. G. 2021. Tube-load model: A clinically applicable pulse contour analysis method for estimation of cardiac stroke volume. Computer Methods and Programs in Biomedicine, 204, 10-pages.
Stewart, K. W., Pretty, C. G., Tomlinson, H., Thomas, F. L., Homlok, J., Noemi, S. N., Illyes, A., Shaw, G. M., Benyo, B. and Chase, J. G. 2016. Safety, efficacy and clinical generalization of the STAR protocol: a retrospective analysis. Ann Intensive Care, 6, 24.
Truog, R. D., Brock, D. W., Cook, D. J., Danis, M., Luce, J. M., Rubenfeld, G. D., Levy, M. M., Task Force on Values, E. and Rationing in Critical, C. 2006. Rationing in the intensive care unit. Crit Care Med, 34, 958-63; quiz 971.
Uyttendaele, V., Knopp, J. L., Pirotte, M., Guiot, J., Morimont, P., Lambermont, B., Shaw, G. M., Desaive, T. and Chase, J. G. 2018. Preliminary results from the STAR-Liège clinical trial: Virtual trials, safety, performance, and compliance analysis. IFAC-PapersOnLine, 51, 355-360.
Van Deen, W. K., Cho, E. S., Pustolski, K., Wixon, D., Lamb, S., Valente, T. W. and Menchine, M. 2019. Involving end-users in the design of an audit and feedback intervention in the emergency department setting-A mixed methods study. BMC health services research, 19, 1-13.
Van Exel, J., Baker, R., Mason, H., Donaldson, C., Brouwer, W. and Eurova, Q. T. 2015. Public views on principles for health care priority setting: findings of a European cross-country study using Q methodology. Soc Sci Med, 126, 128-37.
Van Herpe, T., Espinoza, M., Pluymers, B., Goethals, I., Wouters, P., Van Den Berghe, G. and De Moor, B. 2006. An adaptive input-output modeling approach for predicting the glycemia of critically ill patients. Physiol Meas, 27, 1057-69.
Van Herpe, T., Mesotten, D., Wouters, P. J., Herbots, J., Voets, E., Buyens, J., De Moor, B. and Van Den Berghe, G. 2013. LOGIC-Insulin Algorithm-Guided Versus Nurse-Directed Blood Glucose Control During Critical Illness: The LOGIC-1 single-center randomized, controlled clinical trial. Diabetes Care, 36, 189-194.
Viceconti, M. and Hunter, P. 2016. The Virtual Physiological Human: Ten Years After. Annu Rev Biomed Eng, 18, 103-23.
Wears, R. L. and Berg, M. 2005. Computer technology and clinical work: still waiting for Godot. JAMA, 293, 1261-3.
Wilinska, M. E., Chassin, L. and Hovorka, R. 2008. In Silico Testing-Impact on the Progress of the Closed Loop Insulin Infusion for Critically Ill Patients Project. Journal of Diabetes Science and Technology, 2, 417-423.
Wilinska, M. E., Blaha, J., Chassin, L. J., Cordingley, J. J., Dormand, N. C., Ellmerer, M., Haluzik, M., Plank, J., Vlasselaers, D., Wouters, P. J. and Hovorka, R. 2011. Evaluating glycemic control algorithms by computer simulations. Diabetes Technol Ther, 13, 713-22.
Zhou, C., Chase, J. G., Knopp, J., Sun, Q., Tawhai, M., Möller, K., Heines, S. J., Bergmans, D. C., Shaw, G. M. and Desaive, T. 2021. Virtual patients for mechanical ventilation in the intensive care unit. Computer Methods and Programs in Biomedicine, 199, Paper #105912, 24-pages.
Zhou, T., Dickson, J. L., Shaw, G. M. and Chase, J. G. 2018. Continuous Glucose Monitoring Measures Can Be Used for Glycemic Control in the ICU: An In-Silico Study. J Diabetes Sci Technol, 12, 7-19.
Zhou, T., Knopp, J. L. and Chase, J. G. 2019. The state of variability: A vision for descriptors of glycaemia. Annual Reviews in Control, 48, 472-484.