Abdulrahman, H. (2015). The dynamic cone penetration test: a review and applications. International Conference on Advances in Civil and Environmental Engineering 2015. DOI: 10.13140/RG.2.2.13275.46882
Alabduljabbar, H., Benjeddou, O., Soussi, C., Khadimallah, M.A., Alyousef, R. (2021). Effects of incorporating wood sawdust on the firing program and the physical and mechanical properties of fired clay bricks. Journal of Building Engineering, 35,102106. https://doi.org/10.1016/j.jobe.2020.102106
Andji, J., Abba Toure, A., Kra, G., Jumas, J., Yvon, J., Blanchart, P. (2009). Iron role on mechanical properties of ceramics with clays from Ivory Coast. Ceram. Int. 35 571.577.
Arianpour, A.C., Arianpour, F. (2022). Characterization, technological properties, and ceramic applications of Kastamonu alluvial clays (Northern Turkey) in building materials. Construction and Building Materials, 356, 129304. https://doi.org/10.1016/j.conbuildmat.2022.129304
Bain, J.A. & Highley D.E. (1978) Regional appraisal of clay resources: a challenge to the clay mineralogist. In: International Clay Conference, 1978, (MM. Mortland & V.C. Farmer eds). Developments in Sedimentology, 27, Elsevier, Amsterdam, pp. 437-446.
Baran B., Ertürk T., Sarikaya Y., Alemdaroglu T. (2001). Workability test method for metals applied to examine a workability measure (plastic limit) for clays. Appl. Clay Sci., 20, 53-63.
BIA-Bricks Industry Association (2017). Specifications for and classification of brick. Technical Notes, 9A, Reston, Virginia, pp 1-13.
Boussen S., Sghaier D., Chaabani F., Jamoussi J., Bennour A. (2016). Characteristics and industrial application of the Lower Cretaceous clay deposits (Bouhedma Formation), Southeast Tunisia: potential use for the manufacturing of ceramic tiles and bricks. Appl. Clay Sci., 123 (2016), pp. 210-221. https://doi.org/10.1016/j.clay.2016.01.027
Carretero, M.I., Dondi, M., Fabbri, B., Raimondo, M. (2002). The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic-chloritic clays. Appl. Clay Sci. 20, 301-306. https://doi.org/10.1016/S0169-1317(01)00076-X
Christidis G.E. (2011) Advances in the Characterization of Industrial Clays. EMU Notes in Mineralogy, 9, European Mineralogical Union, Mineralogical Society of Great Britain and Ireland. 341 pp. https://doi.org/10.1180/EMU-notes.9.9
Dondi, M., Fabbri, B., Guarini, G. (1998). Grain-size distribution of Italian raw materials for building clay products: are appraisal of the Winkler diagram. Clay Miner. 33,435-442. https://doi.org/10.1180/000985598545732
Dondi, M., Guarini, G., Ligas, P., Palomba, M., Raimondo, M. (2001). Chemical, mineralogical and ceramic properties of kaolinitic materials from the Tresnuraghes mining district. Western Sardinia, Italy. Appl. Clay Sci.18,145-155. https://doi.org/10.1016/S0169-1317(00)00042-9
El Boudour El Idrissi H., Daoudi L., El Ouahabi M., Collin F., Fagel N. (2018). The influence of clay composition and lithology on the industrial potential of earthenware. Construction and Building Materials, 172, 650-659. https://doi.org/10.1016/j.conbuildmat.2018.04.019
El Idrissi H., Wafaa B., L. Daoudi, N. Fagel, R. Hakkou, Y. Taha, Y.Tamraoui (2022). An Easy Way for Ceramic Bricks Elaboration to Carry out Basic Technical Measurements. Advanced Materials Research, Vol. 1174, pp 3-14. https://doi.org/10.4028/p-e218c0
Elimbi, A., Njopwouo, D. (2002). Firing characteristics of ceramics from the Bomkoul kaolinite clay deposit (Cameroon). Tile and Brick International, 18 (6), 364-369. https://doi.org/10.3390/min14090869
Elimbi A., Dika J.M., Djangang C.N. (2014). Effects of Alkaline Additives on the Thermal Behavior and Properties of Cameroonian Poorly Fluxing Clay Ceramics. Journal of Minerals and Materials Characterization and Engineering, 2, 484-501. DOI: 10.4236/jmmce.2014.25049
El Ouahabi M., El Boudour El Idrissi H, Daoudi L., El Halima M., Fagel N. (2019). Moroccan clay deposits: Physico-chemical properties in view of provenance studies on ancient ceramics. https://doi.org/10.1016/j.clay.2019.02.019
Fagel N. (2024a). Climatic significance of clay minerals in Cenozoic marine and lacustrine sediments. Clay Minerals,1-30. doi:10.1180/clm.2024.17
Fagel N., Israde-Alcantara I., Safaierad R., Rantala M., Schmidt S., Lepoint G., Pellenard P., Mattielli N., Metcalfe S. (2024b). Environmental significance of kaolinite variability over the last centuries in crater lake sediments from Central Mexico. Applied Clay Science, 247,107211. https://doi.org/10.1016/j.clay.2023.107211
Glover P.W.J., Baud P., Darot M., Meredith P.G., Boon S.A., LeRavalec M., Zoussi S., Reuschlé T. (1995). α/β phase transition in quartz monitored using acoustic emissions. Geophysical Journal International, Vol. 120 (3) 775-782. https://doi.org/10.1111/j.1365-246X.1995.tb01852.x
Kakali G, Perraki T, Tsivilis S, Badogiannis E. (2001). Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science 20, 73-80. https://doi.org/10.1016/S0169-1317(01)00040-0
Kankao, O.O., Ngon Ngon, G.F., Tehna, N., Bayiga, E.C., Mbog, M.B., Mbaï, J.S., Etame, J. (2022). Physicochemical and Mineralogical Characterization of Clay Materials in the Douala Coastal Sedimentary Sub-basin (Cameroon, Central Africa). Journal of Geosciences and Geomatics, 10, (3), 126-138. https://doi.org/10.1016/j.conbuildmat.2020.118097
Konta, J. and Künher, R.A., (1997). Integrated exploration of clay deposits: some changes of strategy. Appl. Clay Sci. 11,273-283. https://doi.org/10.1016/S0169-1317(96)00027-0
Lemougna N. Patrick, Arnold Ismailov, Erkki Levanen, Pekka Tanskanen, Juho Yliniemi, Katja Kilpimaa, Mirja Illikainen, (2024). Upcycling glass wool and spodumene tailings in building ceramics from kaolinitic and illitic clay. Journal of Building Engineering, vol 81,108122. https://doi.org/10.1016/j.jobe.2023.108122
Jeridi, K., Hachani, M., Hajjaji, W., Moussi, B., Medhioub, M., Lopez-Galindo, A., Kooli, F., Zargouni, F., Labrincha, J., Jamoussi, F. (2008). Technological behaviour of some Tunisian clays prepared by dry ceramic processing. Clay Minerals, 43, 339-350. https://doi.org/10.1180/claymin.2008.043.3.01
Manning, D.A.C. (1995). Introduction to industrial minerals. Chapman & Hall Ed., London, 275. ISBN-10: 0-412-55550-6.
Miall, A.D. (1996). The Geology of Fluvial Deposits: Sedimentary Facies Basin Analysis, and Petroleum Geology. Springer-Verlag, 582 p.
Moore, D.M., Reynolds, R.C., 1989. X-Ray Diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, 332 pp.
NC 23-2010: Spécifications techniques pour briques de terre cuite, 8p.
Ngon Ngon G.F., Yongue Fouateu R., Lecomte Nana G.L., Bitom L.D., Bilong P., Lecomte G. (2012a). Study of physical and mechanical applications on ceramics of the lateritic and alluvial clayey mixtures of the Yaoundé region (Cameroon). Construction and Building Materials, 31, 294-299. doi:10.1016/j.conbuildmat.2011.12.108
Ngon Ngon, G.F., Etame, J. Ntamak-Nida, M.J. Mbog, M.B. Mpondo, A.M M. Gerard, M. Yongue Fouateu R., Bilong P. (2012b). Geological study of sedimentary clayey materials of the Bomkoul area in the Douala region (Douala sub-basin, Cameroon) for the ceramic industry. C.R. Geoscience, 344, 366-376. https://doi.org/10.1016/j.crte.2012.05.004
Nguene, F.R., Tamfu, S., Loule, J.P., Ngassa, C. (1992). Paleoenvironment of the Douala and Kribi/Campo subasins in Cameroon West Africa. In Curnelle, R. ed., Géologie Africaine, 1er Coll. de stratigraphie et paléogéographie des bassins sédimentaires ouest africains, 2ème coll. africain de micropaléont, Libreville, 1001, Boussens, Elf Aquitaine, 129-139.
Nzeukou Nzeugang A, Medjo Eko R, Fagel N, Kamgang Kabeyene V, Njoya A, Balo Madi A, Mache J-R, Melo Chinje U. Characterization of clay deposits of Nanga-Eboko (Central Cameroon): Suitability in the production of building materials. Clay Min. 2013;48: 655-662. https://doi.org/10.1180/claymin.2013.048.4.18
Pialy P., Nkoumbou C., Villiéras F., Razaftianamaharavo A., Barres O., Pelletier M., Ollivier G., Bihannic I., Njopwouo D., Yvon J., Bonnet J.P. (2008) Characterization for the industrial applications of clays from Lembo deposit, Mount Bana (Cameroon). Clay Minerals, 43:415-436. https://doi.org/10.1180/claymin.2008.043.3.07
Regnoult, J.M. (1986). Synthèse Géologique du Cameroun DMG. Yaoundé, 199 p.
Reeves, G.M., Sims, I., Cripps, J.C. (2006). Clay Materials Used in Construction. Geological Society, London (525pp.).
Saikia B.J., Parthasarathy G. (2010). Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India, J. Mod. Phys. 1, 206-210. DOI: 10.4236/jmp.2010.14031.
SNH/UD, (2005). Stratigraphie séquentielle et tectonique des dépôts mésozoïques synrifts du Bassin de Kribi/Campo. M.J. Ntamak-Nida, B. Ketchemen-Tandia, J.E. Mpesse, S. Ndong Ondo, P. Courville, F. Baudin, Rapport inédit, 2005, 134p, 11 planches, 02 Rap. Annexes d’analyses.
Sobdjou, C.K., Mfayakouo, BC, Ngueutchoua, G., Kenfack, RGN, Ngoss, III S. (2023). Paleoenvironment of the Albian-Cenomanian Mundeck Formation in the Douala Basin (SW, Cameroon): Evidence from facies analysis and geochemistry. Geological Journal, 1-21. https://doi.org/10.1002/gj.4710
Tchakoute H.K., Mbey J.A., Elimbi A., Kenne D.B.B., Njopwouo D. (2013). Synthesis of volcanic ash-based geopolymer mortars by fusion method: Effects of adding metakaolin to fused volcanic ash. Ceramics International 39, 1613-1621. https://doi.org/10.1016/j.ceramint.2012.08.003
Thibault, P.M., Le Berre, P. (1985). Les argiles pour brique. BRGM.CRMO-85. MIMEE, Yaoundé Cameroun, 65p.
Tsozué, Désiré, Nzeukou Nzeugang, Aubin; Mache, Jacques Richard, Fagel Nathalie (2017). Mineralogical, physico-chemical and technological characterization of clays from Maroua (Far-North, Cameroon) for use in ceramic bricks production. Journal of Building Engineering, 11, p. 17-24. https://doi.org/10.1016/j.jobe.2017.03.008
Walker R.G. (2006). Facies models revisited. in Henry W. Posamentier & Roger G. Walker Editor(s), Doi:https://doi.org/10.2110/pec.06.84.0001; SEPM Society for Sedimentary Geology, Vol. 84, ISBN print: 9781565763302.
Wang S., Gainey L., Mackinnon I.D.R., Allen C., Gu Y., Xi Y. (2023). Thermal behaviors of clay minerals as key components and additives for fired brick properties: A review. Journal of Building Engineering, 66,105802. https://doi.org/10.1016/j.jobe.2022.105802