Agriculture; Belgium; Environmental Monitoring; Hydrology; Radar; Remote Sensing Technology; Soil; Triticum; Zea mays; Statistics and Probability; Information Systems; Education; Computer Science Applications; Statistics, Probability and Uncertainty; Library and Information Sciences
Abstract :
[en] The BELSAR dataset consists of high-resolution multitemporal airborne mono- and bistatic fully-polarimetric synthetic aperture radar (SAR) data in L-band, alongside concurrent measurements of vegetation and soil biogeophysical variables measured in maize and winter wheat fields during the summer of 2018 in Belgium. Its collection was funded by the European Space Agency (ESA) to address the lack of publicly-accessible experimental datasets combining multistatic SAR and in situ measurements. As such, it offers an opportunity to advance the development of SAR remote sensing science and applications for agricultural monitoring and hydrology. This paper aims to facilitate its adoption and exploration by offering comprehensive documentation and integrating its multiple data sources into a unified, analysis-ready dataset.
Disciplines :
Physics
Author, co-author :
Bouchat, Jean ; Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
This research was conducted in the framework of the BELSAR-Publication project funded by the STEREO III program of the Belgian Federal Science Policy Office (BELSPO) under contract SR/00/409. The authors would like to thank Quentin Vandersteen and Jeroen Claessen for the collection of the in situ data, Leila Guerriero, Nazzareno Pierdicca, and Hugh Griffiths, and Malcolm Davidson for their participation to the BELSAR steering committee, and the Service public de Wallonie for providing access to the Land Parcel Information System of Wallonia.
McNairn, H. & Shang, J. A Review of Multitemporal Synthetic Aperture Radar (SAR) for Crop Monitoring, 317–340 (Springer International Publishing, Cham, 2016).
A.K. Whitcraft E.F. Vermote I. Becker-Reshef C.O. Justice Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations Remote Sensing of Environment 2015 156 438 447 2015RSEnv.156.438W 10.1016/j.rse.2014.10.009
M. El Hajj N. Baghdadi H. Bazzi M. Zribi Penetration analysis of sar signals in the c and l bands for wheat, maize, and grasslands Remote Sensing 2018 11 31 2018RemS..11..31E 10.3390/rs11010031
M. Vreugdenhil et al. Sensitivity of sentinel-1 backscatter to vegetation dynamics: An austrian case study Remote Sensing 2018 10 1396 2018RemS..10.1396V 10.3390/rs10091396
L. Guerriero N. Pierdicca L. Pulvirenti P. Ferrazzoli Use of satellite radar bistatic measurements for crop monitoring: A simulation study on corn fields Remote Sensing 2013 5 864 890 2013RemS..5.864G 10.3390/rs5020864
N. Pierdicca M. Brogioni F. Fascetti J.D. Ouellette L. Guerriero Retrieval of biogeophysical parameters from bistatic observations of land at l-band: A theoretical study IEEE Transactions on Geoscience and Remote Sensing 2021 60 1 17 10.1109/TGRS.2021.3076051
Y.-Y. Zhang Z.-S. Wu Bistatic scattering characteristics of wheat and soybean by radiative transfer model in l band and c band Progress In Electromagnetics Research B 2016 67 121 136 10.2528/PIERB16011502
J. Zeng K.-S. Chen H. Bi Q. Chen X. Yang Radar response of off-specular bistatic scattering to soil moisture and surface roughness at l-band IEEE Geosci. Remote. Sens. Lett. 2016 13 1945 1949 2016IGRSL.13.1945Z 10.1109/LGRS.2016.2618884
Della Vecchia, A. Advances in modeling microwave interactions with vegetation for active and passive remote sensing. Ph.D. thesis, Ph. D. Thesis, Doctorate in Geoinformation, Tor Vergata University, Rome (2006).
Technical assistance for the deployment of a l-band sar system to perform bistatic and interferometric sar measurements during the esa belsar campaign, https://doi.org/10.5270/ESA-bccf2d9 (2020).
J. Bouchat E. Tronquo A. Orban N.E. Verhoest P. Defourny Assessing the potential of fully polarimetric mono-and bistatic sar acquisitions in l-band for crop and soil monitoring IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2022 10.1109/JSTARS.2022.3162911
Tronquo, E. et al. Soil moisture retrieval using multistatic l-band sar and effective roughness modeling. Remote Sensing14, https://doi.org/10.3390/rs14071650 (2022).
J. Bouchat et al. Green area index and soil moisture retrieval in maize fields using multi-polarized c-and l-band sar data and the water cloud model Remote Sensing 2022 14 2496 2022RemS..14.2496B 10.3390/rs14102496
L. Prevot I. Champion G. Guyot Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (c and x bands) scatterometer Remote Sensing of Environment 1993 46 331 339 1993RSEnv.46.331P 10.1016/0034-4257(93)90053-Z
J. Bouchat The belsar dataset: mono- and bistatic full-pol l-band sar for agriculture and hydrology 2024 10.6084/m9.figshare.c.6717786.v1 figshare
Gebert, N., Dominguez, B. C., Davidson, M. W., Martin, M. D. & Silvestrin, P. Saocom-cs-a passive companion to saocom for single-pass l-band sar interferometry. In EUSAR 2014; 10th European Conference on Synthetic Aperture Radar, 1–4 (VDE, 2014).
A.G. Fore et al. Uavsar polarimetric calibration IEEE Transactions on Geoscience and Remote Sensing 2015 53 3481 3491 2015ITGRS.53.3481F 10.1109/TGRS.2014.2377637
Weiss, M. & Baret, F. CAN_EYE V6.4.91 user manual. Guide utilisateur du logiciel CAN-EYE (2017).
G. Duveiller M. Weiss F. Baret P. Defourny Retrieving wheat green area index during the growing season from optical time series measurements based on neural network radiative transfer inversion Remote Sensing of Environment 2011 115 887 896 2011RSEnv.115.887D 10.1016/j.rse.2010.11.016
H. Fang F. Baret S. Plummer G. Schaepman-Strub An overview of global leaf area index (lai): Methods, products, validation, and applications Reviews of Geophysics 2019 57 739 799 2019RvGeo.57.739F 10.1029/2018RG000608
Meier, U. Growth stages of mono-and dicotyledonous plants (Blackwell Wissenschafts-Verlag, 1997).
M.W. Davidson et al. Joint statistical properties of rms height and correlation length derived from multisite 1-m roughness measurements IEEE Transactions on Geoscience and Remote Sensing 2003 41 1651 1658 2003ITGRS.41.1651D 10.1109/TGRS.2003.813361
MetaSAR-L NetCDF file format description: MS-CSL-BEL-FFD-002-12 (2018).
Camara de Macedo, K. A., Masalias, G., Coccia, A. & Meta, A. Data-driven clock drift compensation for airborne bistatic SAR. In EUSAR 2021; 13th European Conference on Synthetic Aperture Radar, 1–4 (2021).
Hosseini, M. et al. Soil moisture and vegetation measurement guideline. Tech. Rep., Joint Experiment for Crop Assessment and Monitoring (JECAM) (2018).
X. Blaes et al. C-band polarimetric indexes for maize monitoring based on a validated radiative transfer model IEEE transactions on geoscience and remote sensing 2006 44 791 800 2006ITGRS.44.791B 10.1109/TGRS.2005.860969
A. de Wit G. Duveiller P. Defourny Estimating regional winter wheat yield with wofost through the assimilation of green area index retrieved from modis observations Agricultural and forest meteorology 2012 164 39 52 2012AgFM.164..39D 10.1016/j.agrformet.2012.04.011
van der Bolt, F. et al. Bodemverdichting en slemp in vlaanderen. Tech. Rep., Vlaamse Overheid, Departement Omgeving (2020).
M. Choker et al. Evaluation of the oh, dubois and iem backscatter models using a large dataset of sar data and experimental soil measurements Water 2017 9 38 2017ATel.9943..1C 10.3390/w9010038
N.E. Verhoest et al. On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar Sensors 2008 8 4213 4248 2008Senso..8.4213V 10.3390/s8074213 27879932 3697171