Water Science and Technology; Earth-Surface Processes
Abstract :
[en] Arctic sea ice has undergone significant changes over the past 50 years. Modern large-scale estimates of sea ice thickness and volume come from satellite observations. However, these estimates have limited accuracy, especially during the melt season, making it difficult to compare the Arctic sea ice state year to year. Uncertainties in sea ice density lead to high uncertainties in ice thickness retrieval from its freeboard. During the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) expedition, we observed a first-year ice (FYI) freeboard increase of 0.02 m, while its thickness decreased by 0.5 m during the Arctic melt season in June-July 2020. Over the same period, the FYI density decreased from 910 to 880 kg m-3, and the sea ice air fraction increased from 1 % to 6 %, due to air void expansion controlled by internal melt. This increase in air volume substantially affected FYI density and freeboard. Due to differences in sea ice thermodynamic state (such as salinity and temperature), the air volume expansion is less pronounced in second-year ice (SYI) and has a smaller impact on the density evolution of SYI and ridges. We validated our discrete measurements of FYI density from coring using co-located ice topography observations from underwater sonar and an airborne laser scanner. Despite decreasing ice thickness, a similar counterintuitive increasing ice freeboard was observed for the entire 0.9 km2 MOSAiC ice floe, with a stronger freeboard increase for FYI than for less saline SYI. The surrounding 50 km2 area experienced a slightly lower 0.01 m ice freeboard increase in July 2020, despite comparable 0.5 m melt rates obtained from ice mass balance buoys. The increasing sea ice air volume defines the rapid decrease in FYI density, complicates the retrieval of ice thickness from satellite altimeters during the melt season, and underlines the importance of considering air volume and density changes in retrieval algorithms.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Salganik, Evgenii ; Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Crabeck, Odile ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) ; Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
Fuchs, Niels ; Institute of Oceanography, University of Hamburg, Hamburg, Germany
Hutter, Nils; Geomar Helmholtz Centre for Ocean Research Kiel, Kiel, Germany ; Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Anhaus, Philipp ; Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany ; Institut für Den Schutz Maritimer Infrastrukturen, Deutsches Zentrum für Luft- und Raumfahrt E. V., Bremerhaven, Germany
Landy, Jack Christopher ; Department of Physics and Technology, UiT Arctic University of Norway, Tromsø, Norway
Language :
English
Title :
Impacts of air fraction increase on Arctic sea ice density, freeboard, and thickness estimation during the melt season
Norges Forskningsråd BMBF - Bundesministerium für Bildung und Forschung UW - University of Washington DFG - Deutsche Forschungsgemeinschaft F.R.S.-FNRS - Fonds de la Recherche Scientifique ERC - European Research Council
Funding text :
The work carried out and the data used in this paper are part of the international Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) with the tag MOSAiC20192020. We thank all persons involved in the expedition of the Research Vessel Polarstern (Alfred-Wegener- Institut Helmholtz-Zentrum f\u00FCr Polar- und Meeresforschung, 2017) during MOSAiC in 2019-2020 (Project_ID: AWI_PS122_00) as listed in Nixdorf et al. (2021). We especially acknowledge Mats A. Granskog, Marcel Nicolaus, and Donald Perovich for their efforts in coordinating the sea ice physics work during MOSAiC. We are also grateful to Marcel Nicolaus for his efforts in coordinating the ROV work during MOSAiC and to Christian Katlein for processing ROV multibeam sonar data. Evgenii Salganik and Jack Landy were supported by Research Council of Norway project INTERAAC (grant no. 328957). Odile Crabeck was supported by the FRS-FNRS (Research Credit MOSAiC J.0051.20 and Research Project Sea Ice Spray - T.0061.23). Odile Crabeck was also supported by the FRSFNRS Fellowship (grant 1.B.103.21F) and GreenFeedBack (Greenhouse gas fluxes and earth system feedbacks) funded by the European Union's HORIZON research and innovation program under grant agreement no. 101056921. ROV operations were jointly supported by the UKRI Natural Environment Research Council (NERC) and the German Federal Ministry of Education and Research (BMBF) through the Diatom ARCTIC project (BMBF grant no. 03F0810A). Data processing and the position of Nils Hutter were partly funded by German Federal Ministry of Education and Research (BMBF) project IceSense - Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties (03F0866A). Niels Fuchs acknowledges funding from the BMBF project Nice- LABpro (03F0867A) and from the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy (EXC 2037; CLICCS - Climate, Climatic Change, and Society; project no. 390683824). Philipp Anhaus was supported by the BMBF through the Diatom ARCTIC project (BMBF grant no. 03F0810A) and the IceScan project (BMBF grant no. 03F0916A). Jack Landy was additionally supported by the European Research Council project SI/3D (grant no. 101077496). The authors thank Harry Heorton and three anonymous reviewers for their constructive suggestions, which helped to improve the paper. This research has been supported by the Norges Forskningsr\u00E4d (grant no. 328957), the Bundesministerium f\u00FCr Bildung und Forschung (grant nos. 03F0810A, 03F0866A, 03F0867A, and 03F0916A), the Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington (grant no. NA20OAR4320271), the Deutsche Forschungsgemeinschaft (grant no. 390683824), the Fonds De La Recherche Scientifique - FNRS (grant nos. 1.B.103.21F, J.0051.20, and T.0061.23), and the HORIZON EUROPE European Research Council (grant no. 101056921).This research has been supported by the Norges Forskningsr\u00E5d (grant no. 328957), the Bundesministerium f\u00FCr Bildung und Forschung (grant nos. 03F0810A, 03F0866A, 03F0867A, and 03F0916A), the Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington (grant no. NA20OAR4320271), the Deutsche Forschungsgemeinschaft (grant no. 390683824), the Fonds De La Recherche Scientifique \u2013 FNRS (grant nos. 1.B.103.21F, J.0051.20, and T.0061.23), and the HORIZON EUROPE European Research Council (grant no. 101056921).Evgenii Salganik and Jack Landy were supported by Research Council of Norway project INTERAAC (grant no. 328957). Odile Crabeck was supported by the FRS-FNRS (Research Credit MOSAiC J.0051.20 and Research Project Sea Ice Spray \u2013 T.0061.23). Odile Crabeck was also supported by the FRS-FNRS Fellowship (grant 1.B.103.21F) and GreenFeedBack (Greenhouse gas fluxes and earth system feedbacks) funded by the European Union's HORIZON research and innovation program under grant agreement no. 101056921. ROV operations were jointly supported by the UKRI Natural Environment Research Council (NERC) and the German Federal Ministry of Education and Research (BMBF) through the Diatom ARCTIC project (BMBF grant no. 03F0810A). Data processing and the position of Nils Hutter were partly funded by German Federal Ministry of Education and Research (BMBF) project IceSense \u2013 Remote Sensing of the Seasonal Evolution of Climate-relevant Sea Ice Properties (03F0866A). Niels Fuchs acknowledges funding from the BMBF project NiceLABpro (03F0867A) and from the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy (EXC 2037; CLICCS \u2013 Climate, Climatic Change, and Society; project no. 390683824). Philipp Anhaus was supported by the BMBF through the Diatom ARCTIC project (BMBF grant no. 03F0810A) and the IceScan project (BMBF grant no. 03F0916A). Jack Landy was additionally supported by the European Research Council project SI/3D (grant no. 101077496).
Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373-380, https://doi.org/10.5194/tc-4-373-2010, 2010.
Anhaus, P., Katlein, C., Arndt, S., Krampe, D., Lange, B. A., Matero, I., Salganik, E., and Nicolaus, M.: Under-ice environment observations from a remotely operated vehicle during the MOSAiC expedition, Scientific Data, in review, 2025.
Cole, D. M., Eicken, H., Frey, K., and Shapiro, L. H.: Observations of banding in first-year Arctic sea ice, J. Geophys. Res.-Oceans, 109, C08012, https://doi.org/10.1029/2003jc001993, 2004.
Coppolaro, V.: Sea ice underside three-dimensional topography and draft measurements with an upward-looking multibeam sonar mounted on a remotely operated vehicle, MS thesis, University of Florence, https://doi.org/10.13140/RG.2.2.34572.95362, 2018.
Cottier, F., Eicken, H., and Wadhams, P.: Linkages between salinity and brine channel distribution in young sea ice, J. Geophys. Res.-Oceans, 104, 15859-15871, https://doi.org/10.1029/1999jc900128, 1999.
Cox, G. F. N. and Weeks, W. F.: Equations for Determining the Gas and Brine Volumes in Sea-Ice Samples, J. Glaciol., 29, 306-316, https://doi.org/10.3189/S0022143000008364, 1983.
Crabeck, O., Galley, R., Delille, B., Else, B., Geilfus, N.-X., Lemes, M., Des Roches, M., Francus, P., Tison, J.-L., and Rysgaard, S.: Imaging air volume fraction in sea ice using nondestructive X-ray tomography, The Cryosphere, 10, 1125-1145, https://doi.org/10.5194/tc-10-1125-2016, 2016.
Crabeck, O., Galley, R. J., Mercury, L., Delille, B., Tison, J.-L., and Rysgaard, S.: Evidence of Freezing Pressure in Sea Ice Discrete Brine Inclusions and Its Impact on Aqueous-Gaseous Equilibrium, J. Geophys. Res.-Oceans, 124, 1660-1678, https://doi.org/10.1029/2018JC014597, 2019.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020.
Dawson, G., Landy, J., Tsamados, M., Komarov, A. S., Howell, S., Heorton, H., and Krumpen, T.: A 10-year record of Arctic summer sea ice freeboard from CryoSat-2, Remote Sens. Environ., 268, 112744, https://doi.org/10.1016/j.rse.2021.112744, 2022.
Eicken, H., Krouse, H. R., Kadko, D., and Perovich, D. K.: Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice, J. Geophys. Res.-Oceans, 107, 8046, https://doi.org/10.1029/2000jc000583, 2002.
Fons, S., Kurtz, N., and Bagnardi, M.: A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting, The Cryosphere, 17, 2487-2508, https://doi.org/10.5194/tc-17-2487-2023, 2023.
Forsström, S., Gerland, S., and Pedersen, C. A.: Thickness and density of snow-covered sea ice and hydrostatic equilibrium assumption from in situ measurements in Fram Strait, the Barents Sea and the Svalbard coast, Ann. Glaciol., 52, 261-270, https://doi.org/10.3189/172756411795931598, 2011.
Frantz, C. M., Light, B., Farley, S. M., Carpenter, S., Lieblappen, R., Courville, Z., Orellana, M. V., and Junge, K.: Physical and optical characteristics of heavily melted "rotten" Arctic sea ice, The Cryosphere, 13, 775-793, https://doi.org/10.5194/tc-13-775-2019, 2019.
Fuchs, N. and Birnbaum, G.: Melt pond bathymetry of the MOSAiC floe derived by photogrammetry-spatially fully resolved pond depth maps of an Arctic sea ice floe, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.964520, 2024.
Fuchs, N., von Albedyll, L., Birnbaum, G., Linhardt, F., Oppelt, N., and Haas, C.: Sea ice melt pond bathymetry reconstructed from aerial photographs using photogrammetry: a new method applied to MOSAiC data, The Cryosphere, 18, 2991-3015, https://doi.org/10.5194/tc-18-2991-2024, 2024.
Golden, K. M., Ackley, S. F., and Lytle, V. I.: The Percolation Phase Transition in Sea Ice, Science, 282, 2238-2241, https://doi.org/10.1126/science.282.5397.2238, 1998.
Griewank, P. J. and Notz, D.: Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage, J. Geophys. Res.-Oceans, 118, 3370-3386, https://doi.org/10.1002/jgrc.20247, 2013.
Haas, C., Gerland, S., Eicken, H., and Miller, H.: Comparison of sea-ice thickness measurements under summer and winter conditions in the Arctic using a small electromagnetic induction device, Geophysics, 62, 749-757, https://doi.org/10.1190/1.1444184, 1997.
Hornnes, V., Salganik, E., and Høyland, K. V.: Relationship of physical and mechanical properties of sea ice during the freeze-up season in Nansen Basin, Cold Reg. Sci. Technol., 229, 104353, https://doi.org/10.1016/j.coldregions.2024.104353, 2025.
Hutchings, J. K., Heil, P., Lecomte, O., Stevens, R., Steer, A., and Lieser, J. L.: Comparing methods of measuring seaice density in the East Antarctic, Ann. Glaciol., 56, 77-82, https://doi.org/10.3189/2015aog69a814, 2015.
Hutter, N., Hendricks, S., Jutila, A., Birnbaum, G., von Albedyll, L., Ricker, R., and Haas, C.: Merged grids of sea-ice or snow freeboard from helicopter-borne laser scanner during the MOSAiC expedition, version 1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.950896, 2023a.
Hutter, N., Hendricks, S., Jutila, A., Ricker, R., von Albedyll, L., Birnbaum, G., and Haas, C.: Digital elevation models of the seaice surface from airborne laser scanning during MOSAiC, Scientific Data, 10, 729, https://doi.org/10.1038/s41597-023-02565-6, 2023b.
Itkin, P., Webster, M., Hendricks, S., Oggier, M., Jaggi, M., Ricker, R., Arndt, S., Divine, D. V., von Albedyll, L., Raphael, I., Rohde, J., and Liston, G. E.: Magnaprobe snow and melt pond depth measurements from the 2019-2020 MOSAiC expedition, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937781, 2021.
Itkin, P., Hendricks, S., Webster, M., von Albedyll, L., Arndt, S., Divine, D., Jaggi, M., Oggier, M., Raphael, I., Ricker, R., Rohde, J., Schneebeli, M., and Liston, G. E.: Sea ice and snow characteristics from year-long transects at the MOSAiC Central Observatory, Elementa: Science of the Anthropocene, 11, 00048, https://doi.org/10.1525/elementa.2022.00048, 2023.
Jackson, K., Wilkinson, J., Maksym, T., Meldrum, D., Beckers, J., Haas, C., and Mackenzie, D.: A Novel and Low-Cost Sea Ice Mass Balance Buoy, J. Atmos. Ocean. Tech., 30, 2676-2688, https://doi.org/10.1175/jtech-d-13-00058.1, 2013.
Jutila, A., Hendricks, S., Ricker, R., von Albedyll, L., Krumpen, T., and Haas, C.: Retrieval and parameterisation of sea-ice bulk density from airborne multi-sensor measurements, The Cryosphere, 16, 259-275, https://doi.org/10.5194/tc-16-259-2022, 2022.
Jutila, A., Hendricks, S., Ricker, R., von Albedyll, L., and Haas, C.: Airborne sea ice parameters during the IceBird Winter 2019 campaign in the Arctic Ocean, Version 2, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.966057, 2024.
Katlein, C., Schiller, M., Belter, H. J., Coppolaro, V., Wenslandt, D., and Nicolaus, M.: A New Remotely Operated Sensor Platform for Interdisciplinary Observations under Sea Ice, Frontiers in Marine Science, 4, 281, https://doi.org/10.3389/fmars.2017.00281, 2017.
Katlein, C., Anhaus, P., Arndt, S., Krampe, D., Lange, B. A., Matero, I., Regnery, J., Rohde, J., Schiller, M., and Nicolaus, M.: Sea-ice draft during the MOSAiC expedition 2019/20, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.945846, 2022.
Kern, S., Khvorostovsky, K., Skourup, H., Rinne, E., Parsakhoo, Z. S., Djepa, V.,Wadhams, P., and Sandven, S.: The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise, The Cryosphere, 9, 37-52, https://doi.org/10.5194/tc-9-37-2015, 2015.
Kortum, K., Singha, S., Spreen, G., Hutter, N., Jutila, A., and Haas, C.: SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition, The Cryosphere, 18, 2207-2222, https://doi.org/10.5194/tc-18-2207-2024, 2024.
Krumpen, T., Birrien, F., Kauker, F., Rackow, T., von Albedyll, L., Angelopoulos, M., Belter, H. J., Bessonov, V., Damm, E., Dethloff, K., Haapala, J., Haas, C., Harris, C., Hendricks, S., Hoelemann, J., Hoppmann, M., Kaleschke, L., Karcher, M., Kolabutin, N., Lei, R., Lenz, J., Morgenstern, A., Nicolaus, M., Nixdorf, U., Petrovsky, T., Rabe, B., Rabenstein, L., Rex, M., Ricker, R., Rohde, J., Shimanchuk, E., Singha, S., Smolyanitsky, V., Sokolov, V., Stanton, T., Timofeeva, A., Tsamados, M., and Watkins, D.: The MOSAiC ice floe: sediment-laden survivor from the Siberian shelf, The Cryosphere, 14, 2173-2187, https://doi.org/10.5194/tc-14-2173-2020, 2020.
Landy, J. and Dawson, G.: Year-round Arctic sea ice thickness from CryoSat-2 Baseline-D Level 1b observations 2010-2020, NERC EDS UK Polar Data Centre [data set], https://doi.org/10.5285/D8C66670-57AD-44FC-8FEF-942A46734ECB, 2022.
Landy, J., Ehn, J., Shields, M., and Barber, D.: Surface and melt pond evolution on landfast first-year sea ice in the Canadian Arctic Archipelago, J. Geophys. Res.-Oceans, 119, 3054-3075, https://doi.org/10.1002/2013jc009617, 2014.
Landy, J. C., Petty, A. A., Tsamados, M., and Stroeve, J. C.: Sea Ice Roughness Overlooked as a Key Source of Uncertainty in CryoSat-2 Ice Freeboard Retrievals, J. Geophys. Res.-Oceans, 125, e2019JC015820, https://doi.org/10.1029/2019jc015820, 2020.
Landy, J. C., Dawson, G. J., Tsamados, M., Bushuk, M., Stroeve, J. C., Howell, S. E. L., Krumpen, T., Babb, D. G., Komarov, A. S., Heorton, H. D. B. S., Belter, H. J., and Aksenov, Y.: A year-round satellite sea-ice thickness record from CryoSat-2, Nature, 609, 517-522, https://doi.org/10.1038/s41586-022-05058-5, 2022.
Lei, R., Cheng, B., Hoppmann, M., and Zuo, G.: Snow depth and sea ice thickness derived from the measurements of SIMBA buoys deployed in the Arctic Ocean during the Legs 1a, 1, and 3 of the MOSAiC campaign in 2019-2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.938244, 2021.
Lei, R., Cheng, B., Hoppmann, M., Zhang, F., Zuo, G., Hutchings, J. K., Lin, L., Lan, M., Wang, H., Regnery, J., Krumpen, T., Haapala, J., Rabe, B., Perovich, D. K., and Nicolaus, M.: Seasonality and timing of sea ice mass balance and heat fluxes in the Arctic transpolar drift during 2019-2020, Elementa: Science of the Anthropocene, 10, 000089, https://doi.org/10.1525/elementa.2021.000089, 2022.
Leppäranta, M. and Manninen, T.: The brine and gas content of sea ice with attention to low salinities and high temperatures, http: //hdl.handle.net/1834/23905 (last access: 10 March 2025), 1988.
Light, B., Maykut, G. A., and Grenfell, T. C.: Effects of temperature on the microstructure of first-year Arctic sea ice, J. Geophys. Res.-Oceans, 108, 3051, https://doi.org/10.1029/2001jc000887, 2003.
Lyon, W.: Division of oceanography and meteorology: ocean and sea-ice research in the arctic ocean via submarine, T. New York Acad. Sci., 23, 662-674, https://doi.org/10.1111/j.2164-0947.1961.tb01400.x, 1961.
Macfarlane, A. R., Schneebeli, M., Dadic, R., Wagner, D. N., Arndt, S., Clemens-Sewall, D., Hämmerle, S., Hannula, H.-R., Jaggi, M., Kolabutin, N., Krampe, D., Lehning, M., Matero, I., Nicolaus, M., Oggier, M., Pirazzini, R., Polashenski, C., Raphael, I., Regnery, J., Shimanchuck, E., Smith, M. M., and Tavri, A.: Snowpit raw data collected during the MOSAiC expedition, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.935934, 2021.
Macfarlane, A. R., Dadic, R., Smith, M. M., Light, B., Nicolaus, M., Henna-Reetta, H., Webster, M., Linhardt, F., Hämmerle, S., and Schneebeli, M.: Evolution of the microstructure and reflectance of the surface scattering layer on melting, level Arctic sea ice, Elementa: Science of the Anthropocene, 11, 00103, https://doi.org/10.1525/elementa.2022.00103, 2023a.
Macfarlane, A. R., Schneebeli, M., Dadic, R., Tavri, A., Immerz, A., Polashenski, C., Krampe, D., Clemens-Sewall, D., Wagner, D. N., Perovich, D. K., Henna-Reetta, H., Raphael, I., Matero, I., Regnery, J., Smith, M. M., Nicolaus, M., Jaggi, M., Oggier, M., Webster, M. A., Lehning, M., Kolabutin, N., Itkin, P., Naderpour, R., Pirazzini, R., Hämmerle, S., Arndt, S., and Fons, S.: A Database of Snow on Sea Ice in the Central Arctic Collected during the MOSAiC expedition, Scientific Data, 10, 398, https://doi.org/10.1038/s41597-023-02273-1, 2023b.
Melling, H. and Riedel, D. A.: Development of seasonal pack ice in the Beaufort Sea during the winter of 1991-1992: A view from below, J. Geophys. Res.-Oceans, 101, 11975-11991, https://doi.org/10.1029/96jc00284, 1996.
Moreau, S., Vancoppenolle, M., Zhou, J., Tison, J.-L., Delille, B., and Goosse, H.: Modelling argon dynamics in first-year sea ice, Ocean Model., 73, 1-18, https://doi.org/10.1016/j.ocemod.2013.10.004, 2014.
Nakawo, M.: Measurements on Air Porosity of Sea Ice, Ann. Glaciol., 4, 204-208, https://doi.org/10.3189/S0260305500005486, 1983.
National Geophysical Data Center: ETOPO2v2 2-minute Global Relief Model, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5J1012Q, 2006.
Neckel, N., Fuchs, N., Birnbaum, G., Hutter, N., Jutila, A., Buth, L., von Albedyll, L., Ricker, R., and Haas, C.: Helicopterborne RGB orthomosaics and photogrammetric Digital Elevation Models from the MOSAiC Expedition, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.949433, 2023.
Nicolaus, M., Perovich, D. K., Spreen, G., Granskog, M. A., von Albedyll, L., Angelopoulos, M., Anhaus, P., Arndt, S., Belter, H. J., Bessonov, V., Birnbaum, G., Brauchle, J., Calmer, R., Cardellach, E., Cheng, B., Clemens-Sewall, D., Dadic, R., Damm, E., de Boer, G., Demir, O., Dethloff, K., Divine, D. V., Fong, A. A., Fons, S., Frey, M. M., Fuchs, N., Gabarró, C., Gerland, S., Goessling, H. F., Gradinger, R., Haapala, J., Haas, C., Hamilton, J., Hannula, H.-R., Hendricks, S., Herber, A., Heuzé, C., Hoppmann, M., Høyland, K. V., Huntemann, M., Hutchings, J. K., Hwang, B., Itkin, P., Jacobi, H.-W., Jaggi, M., Jutila, A., Kaleschke, L., Katlein, C., Kolabutin, N., Krampe, D., Kristensen, S. S., Krumpen, T., Kurtz, N., Lampert, A., Lange, B. A., Lei, R., Light, B., Linhardt, F., Liston, G. E., Loose, B., Macfarlane, A. R., Mahmud, M., Matero, I. O., Maus, S., Morgenstern, A., Naderpour, R., Nandan, V., Niubom, A., Oggier, M., Oppelt, N., Pätzold, F., Perron, C., Petrovsky, T., Pirazzini, R., Polashenski, C., Rabe, B., Raphael, I. A., Regnery, J., Rex, M., Ricker, R., Riemann-Campe, K., Rinke, A., Rohde, J., Salganik, E., Scharien, R. K., Schiller, M., Schneebeli, M., Semmling, M., Shimanchuk, E., Shupe, M. D., Smith, M. M., Smolyanitsky, V., Sokolov, V., Stanton, T., Stroeve, J., Thielke, L., Timofeeva, A., Tonboe, R. T., Tavri, A., Tsamados, M., Wagner, D. N., Watkins, D., Webster, M., and Wendisch, M.: Overview of the MOSAiC expedition: snow and sea ice, Elementa: Science of the Anthropocene, 10, 000046, https://doi.org/10.1525/elementa.2021.000046, 000046, 2022.
Nixdorf, U., Dethloff, K., Rex, M., Shupe, M., Sommerfeld, A., Perovich, D. K., Nicolaus, M., Heuzé, C., Rabe, B., Loose, B., Damm, E., Gradinger, R., Fong, A., Maslowski, W., Rinke, A., Kwok, R., Spreen, G., Wendisch, M., Herber, A., Hirsekorn, M., Mohaupt, V., Frickenhaus, S., Immerz, A., Weiss-Tuider, K., König, B., Mengedoht, D., Regnery, J., Gerchow, P., Ransby, D., Krumpen, T., Morgenstern, A., Haas, C., Kanzow, T., Rack, F. R., Saitzev, V., Sokolov, V., Makarov, A., Schwarze, S., Wunderlich, T., Wurr, K., and Boetius, A.: MOSAiC Extended Acknowledgement, Zenodo [data set], https://doi.org/10.5281/ZENODO.5179739, 2021.
Notz, D.: Thermodynamic and fluid-dynamical processes in sea ice, PhD thesis, University of Cambridge, 2005.
Oggier, M., Salganik, E., Whitmore, L., Fong, A. A., Hoppe, C. J. M., Rember, R., Høyland, K. V., Divine, D. V., Gradinger, R., Fons, S. W., Abrahamsson, K., Aguilar-Islas, A. M., Angelopoulos, M., Arndt, S., Balmonte, J. P., Bozzato, D., Bowman, J. S., Castellani, G., Chamberlain, E., Creamean, J., D'Angelo, A., Damm, E., Dumitrascu, A., Eggers, S. L., Gardner, J., Grosfeld, L., Haapala, J., Immerz, A., Kolabutin, N., Lange, B. A., Lei, R., Marsay, C. M., Maus, S., Müller, O., Olsen, L. M., Nuibom, A., Ren, J., Rinke, A., Sheikin, I., Shimanchuk, E., Snoeijs-Leijonmalm, P., Spahic, S., Stefels, J., Torres-Valdés, S., Torstensson, A., Ulfsbo, A., Verdugo, J., Vortkamp, M., Wang, L., Webster, M., Wischnewski, L., and Granskog, M. A.: Firstyear sea-ice salinity, temperature, density, oxygen and hydrogen isotope composition from the main coring site (MCS-FYI) during MOSAiC legs 1 to 4 in 2019/2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.956732, 2023a.
Oggier, M., Salganik, E., Whitmore, L., Fong, A. A., Hoppe, C. J. M., Rember, R., Høyland, K. V., Gradinger, R., Divine, D. V., Fons, S. W., Abrahamsson, K., Aguilar-Islas, A. M., Angelopoulos, M., Arndt, S., Balmonte, J. P., Bozzato, D., Bowman, J. S., Castellani, G., Chamberlain, E., Creamean, J., D'Angelo, A., Damm, E., Dumitrascu, A., Eggers, L., Gardner, J., Grosfeld, L., Haapala, J., Immerz, A., Kolabutin, N., Lange, B. A., Lei, R., Marsay, C. M., Maus, S., Olsen, L. M., Müller, O., Nuibom, A., Ren, J., Rinke, A., Sheikin, I., Shimanchuk, E., Snoeijs-Leijonmalm, P., Spahic, S., Stefels, J., Torres-Valdés, S., Torstensson, A., Ulfsbo, A., Verdugo, J., Vortkamp, M., Wang, L.,Webster, M.,Wischnewski, L., and Granskog, M. A.: Secondyear sea-ice salinity, temperature, density, oxygen and hydrogen isotope composition from the main coring site (MCS-SYI) during MOSAiC legs 1 to 4 in 2019/2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.959830, 2023b.
Paul, S., Hendricks, S., Ricker, R., Kern, S., and Rinne, E.: Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative, The Cryosphere, 12, 2437-2460, https://doi.org/10.5194/tc-12-2437-2018, 2018.
Pawlowicz, R.: M_Map: A mapping package for MATLAB, https: //www-old.eoas.ubc.ca/rich/map.html (last access: 10 March 2025), 2023.
Perovich, D. K. and Gow, A. J.: A quantitative description of sea ice inclusions, J. Geophys. Res.-Oceans, 101, 18327-18343, https://doi.org/10.1029/96jc01688, 1996.
Pustogvar, A. and Kulyakhtin, A.: Sea ice density measurements. Methods and uncertainties, Cold Reg. Sci. Technol., 131, 46-52, https://doi.org/10.1016/j.coldregions.2016.09.001, 2016.
Ricker, R., Fons, S., Jutila, A., Hutter, N., Duncan, K., Farrell, S. L., Kurtz, N. T., and Fredensborg Hansen, R. M.: Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC, The Cryosphere, 17, 1411-1429, https://doi.org/10.5194/tc-17-1411-2023, 2023.
Salganik, E.: Summer sea ice density for MOSAiC, Zenodo [code], https://doi.org/10.5281/ZENODO.14712483, 2025.
Salganik, E., Hoppmann, M., Scholz, D., Arndt, S., Demir, O., Divine, D. V., Haapala, J., Hendricks, S., Itkin, P., Katlein, C., Kolabutin, N., Lei, R., Matero, I., Nicolaus, M., Raphael, I., Regnery, J., Oggier, M., Sheikin, I., Shimanchuk, E., and Spreen, G.: Temperature and heating induced temperature difference measurements from Digital Thermistor Chains (DTCs) during MOSAiC 2019/2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.964023, 2023a.
Salganik, E., Katlein, C., Lange, B., Matero, Ilkka nd Lei, R., Fong, A., Fons, S., Divine, D., Oggier, M., Castellani, G., Bozzato, D., Chamberlain, E., Hoppe, C., Muller, O., Gardner, J., Rinke, A., Pereira, P., Ulfsbo, A., Marsay, C., Webster, M., Maus, S., Høyland, K., and Granskog, M.: Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance, Elementa: Science of the Anthropocene, 11, 00035, https://doi.org/10.1525/elementa.2022.00035, 000089, 2023b.
Salganik, E., Lange, B. A., Høyland, K. V., Gardner, J., Müller, O., Tavri, A., Mahmud, M., and Granskog, M. A.: Ridge ice density data MOSAiC Leg 4 (PS122/4), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953865, 2023c.
Salganik, E., Lange, B. A., Itkin, P., Divine, D., Katlein, C., Nicolaus, M., Hoppmann, M., Neckel, N., Ricker, R., Høyland, K. V., and Granskog, M. A.: Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition, Elementa: Science of the Anthropocene, 11, 00008, https://doi.org/10.1525/elementa.2023.00008, 2023d.
Salganik, E., Lange, B. A., Katlein, C., Matero, I., Anhaus, P., Muilwijk, M., Høyland, K. V., and Granskog, M. A.: Observations of preferential summer melt of Arctic sea-ice ridge keels from repeated multibeam sonar surveys, The Cryosphere, 17, 4873-4887, https://doi.org/10.5194/tc-17-4873-2023, 2023e.
Salganik, E., Whitmore, L. M., Bauch, D., Chamberlain, E., Dietrich, U., Droste, E. S., Fong, A. A., Heitmann, L., Nicolaus, M., Kolabutin, N., Li, Y., Ludwichowski, K.-U., Marent, A., Mellat, M., Meyer, H., Nomura, D., Schmidt, K., Shimanchuk, E., Thielke, L., Torres-Valdés, S., Webb, A. L., Weiner, M., and Granskog, M. A.: Sea-ice salinity, temperature, density, nutrient, oxygen and hydrogen isotope composition from the coring sites during MOSAiC leg 5 in August-September 2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.971266, 2024.
Schulz, K., Koenig, Z., and Muilwijk, M.: The Eurasian Arctic Ocean along the MOSAiC drift (2019-2020): Core hydrographic parameters, Arctic Data Center [data set], https://doi.org/10.18739/A21J9790B, 2023.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008.
Strub-Klein, L. and Sudom, D.: A comprehensive analysis of the morphology of first-year sea ice ridges, Cold Reg. Sci. Technol., 82, 94-109, https://doi.org/10.1016/j.coldregions.2012.05.014, 2012.
Sumata, H., de Steur, L., Divine, D. V., Granskog, M. A., and Gerland, S.: Regime shift in Arctic Ocean sea ice thickness, Nature, 615, 443-449, https://doi.org/10.1038/s41586-022-05686-x, 2023.
Timco, G. and Frederking, R.: A review of sea ice density, Cold Reg. Sci. Technol., 24, 1-6, https://doi.org/10.1016/0165-232X(95)00007-X, 1996.
Tsurikov, V. L.: The Formation and Composition of the Gas Content of Sea Ice, J. Glaciol., 22, 67-81, https://doi.org/10.3189/s0022143000014064, 1979.
Wang, Q., Lu, P., Leppäranta, M., Cheng, B., Zhang, G., and Li, Z.: Physical Properties of Summer Sea Ice in the Pacific Sector of the Arctic During 2008-2018, J. Geophys. Res.-Oceans, 125, e2020JC016371, https://doi.org/10.1029/2020jc016371, 2020.
Webster, M. A., Holland, M., Wright, N. C., Hendricks, S., Hutter, N., Itkin, P., Light, B., Linhardt, F., Perovich, D. K., Raphael, I. A., Smith, M. M., von Albedyll, L., and Zhang, J.: Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results, Elementa: Science of the Anthropocene, 10, 000072, https://doi.org/10.1525/elementa.2021.000072, 2022.
Worby, A. P., Geiger, C. A., Paget, M. J., Van Woert, M. L., Ackley, S. F., and DeLiberty, T. L.: Thickness distribution of Antarctic sea ice, J. Geophys. Res.-Oceans, 113, C05S92, https://doi.org/10.1029/2007JC004254, 2008.
Zhou, J., Delille, B., Eicken, H., Vancoppenolle, M., Brabant, F., Carnat, G., Geilfus, N., Papakyriakou, T., Heinesch, B., and Tison, J.: Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights on brine and gas dynamics across seasons, J. Geophys. Res.-Oceans, 118, 3172-3189, https://doi.org/10.1002/jgrc.20232, 2013.