Unpublished conference/Abstract (Scientific congresses and symposiums)
Enteric CH4 emissions predicted from milk MIR spectra: robustness as the key to a model that crosses borders​
Vanlierde, Amélie; Dehareng, Frédéric; Gengler, Nicolas et al.
2024ICAR FEED AND GAS WG WEBINAR “USING MIR TO PREDICT METHANE EMISSIONS” IN COLLABORATION WITH ICAR/IDF EXTRAMIR PROJECT
 

Files


Full Text
ICAR Webinar_Vanlierde_V3.pdf
Author postprint (2.33 MB) Creative Commons License - Public Domain Dedication
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
mid-infrared; methane; machine learning; milk; dairy; cow
Disciplines :
Animal production & animal husbandry
Author, co-author :
Vanlierde, Amélie
Dehareng, Frédéric;  CRA-W - Centre Wallon de Recherches agronomiques
Gengler, Nicolas  ;  Université de Liège - ULiège > Département GxABT > Animal Sciences (AS)
Leblois, Julie;  Association Wallonne de l'Elevage
Soyeurt, Hélène  ;  Université de Liège - ULiège > Département GxABT > Modélisation et développement
Language :
English
Title :
Enteric CH4 emissions predicted from milk MIR spectra: robustness as the key to a model that crosses borders​
Alternative titles :
[fr] Émissions entériques de CH₄ prédites à partir des spectres MIR du lait : la robustesse comme clé d’un modèle transfrontalier
Original title :
[en] Enteric CH4 emissions predicted from milk MIR spectra: robustness as the key to a model that crosses borders​
Publication date :
2024
Event name :
ICAR FEED AND GAS WG WEBINAR “USING MIR TO PREDICT METHANE EMISSIONS” IN COLLABORATION WITH ICAR/IDF EXTRAMIR PROJECT
Event organizer :
ICAR Feed and Gas working group
Event place :
Utrecht, Netherlands
Event date :
6 mars 2024
By request :
Yes
Audience :
International
Available on ORBi :
since 06 July 2025

Statistics


Number of views
17 (0 by ULiège)
Number of downloads
14 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi