Geophysics; Geochemistry and Petrology; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science
Abstract :
[en] Magnetic reconnection, an essential mechanism in plasma physics that changes magnetic topology and energizes charged particles, plays a vital role in the dynamic processes of the Jovian magnetosphere. The traditional Vasyliūnas cycle only considers the effect of magnetic reconnection at the nightside magnetodisk. Recently, magnetic reconnection has been identified at the dayside magnetodisk in Saturn's magnetosphere and can impact dayside auroral processes. In this study, we provide the first evidence that the dayside magnetodisk reconnection can also occur at Jupiter. Using data from the Galileo and Voyager 2 spacecraft, we have identified 18 dayside reconnection events with radial distances in the range of 30–60 Jupiter radii (RJ). We analyzed the particle (electron and ion) flux, energy spectra, and characteristic energy of these dayside events and compared them to the nightside events. The statistical results show that the energy spectra and characteristic energy of electrons/ions in dayside and nightside magnetic reconnection events are comparable. On average, the characteristic energy of ions on the dayside is higher than that on the nightside. Based on the limited data set, we speculate that the occurrence rate of dayside magnetodisk reconnection should be significant. The dayside Jovian magnetodisk reconnection seems to have a comparable effect on providing energetic particles as that at nightside and to be one of the key processes driving dynamics within the Jovian magnetosphere.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Zhao, Jinyan ; Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, School of Space Science and Physics, Shandong University, Weihai, China ; State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macao
Guo, Ruilong ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, School of Space Science and Physics, Shandong University, Weihai, China
Shi, Quanqi ; Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, School of Space Science and Physics, Shandong University, Weihai, China
Tang, Tao; Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, School of Space Science and Physics, Shandong University, Weihai, China
Degeling, Alexander William ; Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, School of Space Science and Physics, Shandong University, Weihai, China
Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Department of Earth Sciences, the University of Hong Kong, Pokfulam, China ; Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Bai, Shi-Chen ; Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, School of Space Science and Physics, Shandong University, Weihai, China
Park, Jong-Sun ; Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, School of Space Science and Physics, Shandong University, Weihai, China
Ma, Xiao ; Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, School of Space Science and Physics, Shandong University, Weihai, China
Chen, Junjie ; Department of Earth Sciences, the University of Hong Kong, Pokfulam, China
Zhang, Binzheng ; Department of Earth Sciences, the University of Hong Kong, Pokfulam, China
Wang, Huizi; Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, School of Space Science and Physics, Shandong University, Weihai, China
Tian, Anmin ; Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, School of Space Science and Physics, Shandong University, Weihai, China ; State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macao
Zong, Qiugang ; Institute of Space Physics and Applied Technology, Peking University, Beijing, China
NSCF - National Natural Science Foundation of China
Funding text :
This research is supported by the National Natural Science Foundation of China (NSFC) under Grant 42274220, 42225405, 42304185, 41974189, the Shandong Provincial Natural Science Foundation (project ZR2023JQ016, ZR2022QD135, ZR2023QD119), the Royal Society Newton Advanced Fellowship NAF/R1/191047, and the Science and Technology Development Fund, Macau SAR (File No. SKL\u2010LPS(MUST)\u20102021\u20102023).
Arridge, C. S., Eastwood, J. P., Jackman, C. M., Poh, G., Slavin, J. A., Thomsen, M. F., et al. (2016). Cassini in situ observations of long-duration magnetic reconnection in Saturn’s magnetotail. Nature Physics, 12(3), 268–271. https://doi.org/10.1038/NPHYS3565
Bagenal, F. (2007). The magnetosphere of Jupiter: Coupling the equator to the poles. Journal of Atmospheric and Solar-Terrestrial Physics, 69(3), 387–402. https://doi.org/10.1016/j.jastp.2006.08.012
Bagenal, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017). Magnetospheric science objectives of the Juno mission. Space Science Reviews, 213(1–4), 219–287. https://doi.org/10.1007/s11214-014-0036-8
Blöcker, A., Kronberg, E., Grigorenko, E., Clark, G., Vogt, M., & Roussos, E. (2022). Plasmoids in the Jovian magnetotail statistical survey of ion acceleration using Juno. Journal of Geophysical Research: Space Physics, 127(8), 1–17. https://doi.org/10.1029/2022JA030460
Bonfond, B., Yao, Z. H., Gladstone, G. R., Grodent, D., Gérard, J.-C., Matar, J., et al. (2021). Are dawn storms Jupiter’s auroral substorms? AGU Advances, 2(1), 1–14. https://doi.org/10.1029/2020AV000275
Clark, G., Tao, C., Mauk, B. H., Nichols, J., Saur, J., Bunce, E. J., et al. (2018). Precipitating electron energy flux and characteristic energies in Jupiter’s main auroral region as measured by Juno/JEDI. Journal of Geophysical Research: Space Physics, 123(9), 7554–7567. https://doi.org/10.1029/2018JA025639
Delamere, P. A., Otto, A., Ma, X., Bagenal, F., & Wilson, R. J. (2015). Magnetic flux circulation in the rotationally driven giant magnetospheres. Journal of Geophysical Research: Space Physics, 120(6), 4229–4245. https://doi.org/10.1002/2015JA021036
Frank, L. A., Ackerson, K. L., Lee, J. A., English, M. R., & Pickett, G. L. (1992). The plasma instrumentation for the Galileo mission. Space Science Reviews, 60(1–4), 283–304. https://doi.org/10.1007/BF00216858
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187(1–4), 23–50. https://doi.org/10.1007/s11214-014-0052-8
Guo, R., & Yao, Z. (2024). Magnetic reconnection in the magnetodisk of centrifugally dominated giant planets. In Reviews of modern plasma physics, (Vol. 8, pp. 1–33). Springer Nature. https://doi.org/10.1007/s41614-024-00162-7
Guo, R. L., Yao, Z. H., Dunn, W. R., Palmaerts, B., Sergis, N., Grodent, D., et al. (2021). A rotating azimuthally distributed auroral current system on Saturn revealed by the Cassini spacecraft. The Astrophysical Journal Letters, 919(2), 1–11. https://doi.org/10.3847/2041-8213/ac26b5
Guo, R. L., Yao, Z. H., Grodent, D., Bonfond, B., Clark, G., Dunn, W. R., et al. (2021). Jupiter’s double-arc aurora as a signature of magnetic reconnection: Simultaneous observations from HST and Juno. Geophysical Research Letters, 48(14), 1–11. https://doi.org/10.1029/2021GL093964
Guo, R. L., Yao, Z. H., Sergis, N., Wei, Y., Mitchell, D., Roussos, E., et al. (2018b). Reconnection acceleration in Saturn’s dayside magnetodisk: A multicase study with Cassini. The Astrophysical Journal, 868(2), 1–8. https://doi.org/10.3847/2041-8213/aaedab
Guo, R. L., Yao, Z. H., Sergis, N., Wei, Y., Xu, X. J., Coates, A. J., et al. (2019). Long-standing small-scale reconnection processes at Saturn revealed by Cassini. The Astrophysical Journal Letters, 884(1), 1–6. https://doi.org/10.3847/2041-8213/ab4429
Guo, R. L., Yao, Z. H., Wei, Y., Ray, L. C., Rae, I. J., Arridge, C. S., et al. (2018a). Rotationally driven magnetic reconnection in Saturn’s dayside. Nature Astronomy, 2(8), 640–645. https://doi.org/10.1038/s41550-018-0461-9
Hones, E. W., Jr. (1976). The magnetotail: Its generation and dissipation. In D. J. Williams (Ed.), Physics of solar planetary environments (pp. 559–571). AGU.
Hones, E. W., Jr. (1977). Substorm processes in the magnetotail: Comments on “On hot tenuous plasma, fireballs, and boundary layers in the Earth’s magnetotail”by L. A. Frank, K. L. Ackerson, & R. P. Lepping. Journal of Geophysical Research, 82(35), 5633–5640. https://doi.org/10.1029/JA082i035p05633
Jackman, C. M., Arridge, C. S., McAndrews, H. J., Henderson, M. G., & Wilson, R. J. (2009). Northward field excursions in Saturn’s magnetotail and their relationship to magnetospheric periodicities. Geophysical Research Letters, 36(L16101), 1–5. https://doi.org/10.1029/2009GL039149
Khurana, K. (1997). Euler potential models of Jupiter’s magnetospheric field. Journal of Geophysical Research, 102(A6), 11295–11306. https://doi.org/10.1029/97JA00563
Khurana, K. K., Kivelson, M. G., Vasyliunas, V. M., Krupp, N., Woch, J., Lagg, A., et al. (2004). The configuration of Jupiter’s magnetosphere. In F. Bagenal, T. E. Dowling, & W. B. Mckinnon (Eds.), Jupiter: The planet, satellites and magnetosphere (pp. 593–616). Cambridge University Press.
Kivelson, M. G. (2015). Planetary magnetodiscs: Some unanswered questions. Space Science Reviews, 187(1–4), 5–21. https://doi.org/10.1007/s11214-014-0046-6
Kivelson, M. G., Khurana, K. K., Means, J. D., Russell, C. T., & Snare, R. C. (1992). The Galileo magnetic field investigation. Space Science Reviews, 60(1–4), 357–383. https://doi.org/10.1007/BF00216862
Kivelson, M. G., & Southwood, D. J. (2005). Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. Journal of Geophysical Research, 110(A12), 1–13. https://doi.org/10.1029/2005JA011176
Krimigis, S. M., Armstrong, T. P., Axford, W. I., Bostrom, C. O., Fan, C. Y., Gloeckler, G., & Lanzerotti, L. J. (1977). The low energy charged particle (LECP) experiment on the Voyager spacecraft. Space Science Reviews, 21(3), 329–354. https://doi.org/10.1007/BF00211545
Kronberg, E. A., & Daly, P. W. (2013). Spectral analysis for wide energy channels. Geoscientific Instrumentation, Methods and Data Systems, 2(2), 257–261. https://doi.org/10.5194/gi-2-257-2013
Krupp, N., Vasyliunas, V. M., Woch, J., Lagg, A., Khurana, K. K., Kivelson, M. G., et al. (2004). The dynamics of the Jovian magnetosphere. In F. Bagenal, T. E. Dowling, & W. B. Mckinnon (Eds.), Jupiter: The planet, satellites and magnetosphere (pp. 617–638). Cambridge University Press.
Liu, Z.-Y., Zong, Q.-G., Blanc, M., Sun, Y.-X., Zhao, J.-T., Hao, Y.-X., & Mauk, B. H. (2021). Statistics on Jupiter’s current sheet with Juno data: Geometry, magnetic fields and energetic particles. Journal of Geophysical Research: Space Physics, 126(11), e2021JA029710. https://doi.org/10.1029/2021JA029710
Mauk, B. H., Mitchell, D. G., McEntire, R. W., Paranicas, C. P., Roelof, E. C., Williams, D. J., et al. (2004). Energetic ion characteristics and neutral gas interactions in Jupiter’s magnetosphere. Journal of Geophysical Research, 109(A9), 1–24. https://doi.org/10.1029/2003JA010270
Nakagawa, T., Nishida, A., & Saito, T. (1989). Planar magnetic structures in the solar wind. Journal of Geophysical Research, 94(A9), 11761–11775. https://doi.org/10.1029/JA094iA09p11761
Ness, N. F., Acuña, M. H., Behannon, K. W., Burlaga, L. F., Connerney, J. E. P., Lepping, R. P., & Neubauer, F. M. (1979). Magnetic field studies at Jupiter by Voyager 2: Preliminary results. Science, 206(4421), 966–972. https://doi.org/10.1126/science.206.4421.966
Palmaerts, B., Vogt, M. F., Krupp, N., Grodent, D., & Bonfond, B. (2017). Dawn-dusk asymmetries in Jupiter’s magnetosphere. In S. Haaland, A. Runov, & C. Forsyth (Eds.), Dawn-dusk asymmetries in planetary plasma Environment,Geophysical monograph 230, American geophysical union (1st ed., pp. 309–322). John Wiley & Sons, Inc.
Thomas, N., Bagenal, F., Hill, T. W., & Wilson, J. K. (2004). The Io neutral clouds and plasma Torus. In F. Bagenal, T. E. Dowling, & W. B. Mckinnon (Eds.), Jupiter: The tlanet, satellites and magnetosphere (pp. 561–591). Cambridge University Press.
Vasyliunas, V. M. (1983). Plasma distribution and flow. In A. J. Dessler (Ed.), Physics of the Jovian magnetosphere (pp. 395–453). Cambridge University Press. https://doi.org/10.1017/cbo9780511564574.013
Vogt, M. F., Connerney, J. E. P., DiBraccio, G. A., Wilson, R. J., Thomsen, M. F., Ebert, R. W., et al. (2020). Magnetotail reconnection at Jupiter: A survey of Juno magnetic field observations. Journal of Geophysical Research: Space Physics, 125(3), 1–15. https://doi.org/10.1029/2019JA027486
Vogt, M. F., Gyalay, S., Kronberg, E. A., Bunce, E. J., Kurth, W. S., Zieger, B., & Tao, C. (2019). Solar wind interaction with Jupiter’s magnetosphere: A statistical study of Galileo in situ data and modeled upstream solar wind conditions. Journal of Geophysical Research: Space Physics, 124(12), 10170–10199. https://doi.org/10.1029/2019JA026950
Vogt, M. F., Jackman, C. M., Slavin, J. A., Bunce, E. J., Cowley, S. W. H., Kivelson, M. G., & Khurana, K. K. (2014). Structure and statistical properties of plasmoids in Jupiter’s magnetotail. Journal of Geophysical Research: Space Physics, 119(2), 821–843. https://doi.org/10.1002/2013JA019393
Vogt, M. F., Kivelson, M. G., Khurana, K. K., Joy, S. P., & Walker, R. J. (2010). Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. Journal of Geophysical Research, 115(6), 1–19. https://doi.org/10.1029/2009JA015098
Williams, D. J., McEntire, R. W., Jaskulek, S., & Wilken, B. (1992). The Galileo energetic particles detector. Space Science Reviews, 60(1–4), 385–412. https://doi.org/10.1007/BF00216863
Yao, Z. H., Bonfond, B., Clark, G., Grodent, D., Dunn, W. R., Vogt, M. F., et al. (2020). Reconnection-and dipolarization-driven auroral dawn storms and injections. Journal of Geophysical Research: Space Physics, 125(8), e2019JA027663. https://doi.org/10.1029/2019JA027663
Yao, Z. H., Coates, A. J., Ray, L. C., Rae, I. J., Grodent, D., Jones, G. H., et al. (2017a). Corotating magnetic reconnection site in Saturn’s magnetosphere. The Astrophysical Journal, 846(2), 1–7. https://doi.org/10.3847/2041-8213/aa88af
Yao, Z. H., Grodent, D., Ray, L. C., Rae, I. J., Coates, A. J., Pu, Z. Y., et al. (2017b). Two fundamentally different drivers of dipolarizations at Saturn. Journal of Geophysical Research: Space Physics, 122(4), 4348–4356. https://doi.org/10.1002/2017JA024060
Zhang, B., Delamere, P. A., Yao, Z., Bonfond, B., Lin, D., Sorathia, K. A., et al. (2021). How Jupiter’s unusual magnetospheric topology structures its aurora. Science Advances, 7(15), 1–7. https://doi.org/10.1126/sciadv.abd1204
Zong, Q. G., Fritz, T. A., Pu, Z. Y., Fu, S. Y., Baker, D. N., Zhang, H., et al. (2004). Cluster observations of earthward flowing plasmoid in the tail. Geophysical Research Letters, 31(18), 1–4. https://doi.org/10.1029/2004GL020692