Steindl A. Troger H. Methods for dimension reduction and their applications in nonlinear dynamics Int. J. Solids Struct. 2001 38 2131 2147 10.1016/S0020-7683(00)00157-8
Rega G. Troger H. Dimension reduction of dynamical systems: Methods, models, applications Nonlinear Dyn. 2005 41 1 15 10.1007/s11071-005-2790-3
Nayfeh A.H. Mook D.T. Nonlinear Oscillations John Wiley & Sons New York, NY, USA 1979
Amabili M. Nonlinear Vibrations and Stability of Shells and Plates Cambridge University Press Cambridge, UK 2008
Awrejcewicz J. Krysko V.A. Narkaitis G. Bifurcations of a Thin Plate-Strip Excited Transversally and Axially Nonlinear Dyn. 2003 32 187 209 10.1023/A:1024458814785
Nayfeh A.H. Balachandran B. Modal interactions in dynamical and structural systems ASME Appl. Mech. Rev. 1989 42 175 201 10.1115/1.3152389
Nayfeh A.H. Nonlinear Interactions: Analytical, Computational and Experimental Methods Wiley Series in Nonlinear Science John Wiley & Sons Hoboken, NJ, USA 2000
Thomas O. Touzé C. Luminais E. Non-linear vibrations of free-edge thin spherical shells: Experiments on a 1:1:2 internal resonance Nonlinear Dyn. 2007 49 259 284 10.1007/s11071-006-9132-y
Monteil M. Touzé C. Thomas O. Benacchio S. Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: The cases of 1:2:4 and 1:2:2 internal resonances Nonlinear Dyn. 2014 75 175 200 10.1007/s11071-013-1057-7
Vizzaccaro A. Givois A. Longobardi P. Shen Y. Deü J.F. Salles L. Touzé C. Thomas O. Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements Comput. Mech. 2020 accepted for publication 10.1007/s00466-020-01902-5
Awrejcewicz J. Krysko V.A. Saveleva N. Routes to chaos exhibited by closed flexible cylindrical shells ASME J. Comput. Nonlinear Dyn. 2007 2 1 9 10.1115/1.2402923
Touzé C. Thomas O. Amabili M. Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates Int. J. Non-Linear Mech. 2011 46 234 246 10.1016/j.ijnonlinmec.2010.09.004
Cadot O. Ducceschi M. Humbert T. Miquel B. Mordant N. Josserand C. Touzé C. Wave turbulence in vibrating plates Handbook of Applications of Chaos Theory Skiadas C. Chapman and Hall/CRC Boca Raton, FL, USA 2016
Kapania R.K. Byun C. Reduction methods based on eigenvectors and Ritz vectors for nonlinear transient analysis Comput. Mech. 1993 11 65 82 10.1007/BF00370072
Krysl P. Lall S. Marsden J. Dimensional model reduction in non-linear finite element dynamics of solids and structures Int. J. Numer. Methods Eng. 2001 51 479 504 10.1002/nme.167
Kerschen G. Golinval J. Physical interpretation of the proper orthogonal modes using the singular value decomposition J. Sound Vib. 2002 249 849 865 10.1006/jsvi.2001.3930
Sampaio R. Soize C. Remarks on the efficiency of POD for model reduction in non-linear dynamics of continuous elastic systems Int. J. Numer. Methods Eng. 2007 72 22 45 10.1002/nme.1991
Amabili M. Sarkar A. Païdoussis M.P. Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method J. Sound Vib. 2006 290 736 762 10.1016/j.jsv.2005.04.034
Amabili M. Touzé C. Reduced-order models for non-linear vibrations of fluid-filled circular cylindrical shells: Comparison of POD and asymptotic non-linear normal modes methods J. Fluids Struct. 2007 23 885 903 10.1016/j.jfluidstructs.2006.12.004
Shaw S.W. Pierre C. Non-linear normal modes and invariant manifolds J. Sound Vib. 1991 150 170 173 10.1016/0022-460X(91)90412-D
Shaw S.W. Pierre C. Normal modes for non-linear vibratory systems J. Sound Vib. 1993 164 85 124 10.1006/jsvi.1993.1198
Carr J. Applications of Centre Manifold Theory Springer New York, NY, USA 1981
Guckenheimer J. Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields Springer New York, NY, USA 1983
Pesheck E. Boivin N. Pierre C. Shaw S.W. Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds Nonlinear Dyn. 2001 25 183 205 10.1023/A:1012910918498
Jiang D. Pierre C. Shaw S. Nonlinear normal modes for vibratory systems under harmonic excitation J. Sound Vib. 2005 288 791 812 10.1016/j.jsv.2005.01.009
Apiwattanalunggarn P. Pierre C. Jiang D. Finite-Element-based nonlinear modal reduction of a rotating beam with large-amplitude motion J. Vib. Control 2003 9 235 263 10.1177/107754603030751
Touzé C. Thomas O. Chaigne A. Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes J. Sound Vib. 2004 273 77 101 10.1016/j.jsv.2003.04.005
Touzé C. Amabili M. Non-linear normal modes for damped geometrically non-linear systems: Application to reduced-order modeling of harmonically forced structures J. Sound Vib. 2006 298 958 981 10.1016/j.jsv.2006.06.032
Touzé C. Normal form theory and nonlinear normal modes: Theoretical settings and applications Modal Analysis of Nonlinear Mechanical Systems Kerschen G. Springer Series CISM Courses and Lectures Springer New York, NY, USA 2014 Volume 555 75 160
Touzé C. Amabili M. Thomas O. Reduced-order models for large-amplitude vibrations of shells including in-plane inertia Comput. Methods Appl. Mech. Eng. 2008 197 2030 2045 10.1016/j.cma.2008.01.002
Haller G. Ponsioen S. Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction Nonlinear Dyn. 2016 86 1493 1534 10.1007/s11071-016-2974-z
Ponsioen S. Pedergnana T. Haller G. Automated computation of autonomous spectral submanifolds for nonlinear modal analysis J. Sound Vib. 2018 420 269 295 10.1016/j.jsv.2018.01.048
Breunung T. Haller G. Explicit backbone curves from spectral submanifolds of forced-damped nonlinear mechanical systems Proc. R. Soc. A Math. Phys. Eng. Sci. 2018 474 20180083 10.1098/rspa.2018.0083
Jain S. Tiso P. Haller G. Exact nonlinear model reduction for a von Kármán beam: Slow-fast decomposition and spectral submanifolds J. Sound Vib. 2018 423 195 211 10.1016/j.jsv.2018.01.049
Ponsioen S. Jain S. Haller G. Model reduction to spectral submanifolds and forced-response calculation in high-dimensional mechanical systems J. Sound Vib. 2020 488 115640 10.1016/j.jsv.2020.115640
Mignolet M.P. Przekop A. Rizzi S.A. Spottswood S.M. A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures J. Sound Vib. 2013 332 2437 2460 10.1016/j.jsv.2012.10.017
Muravyov A. Rizzi S. Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures Comput. Struct. 2003 81 1513 1523 10.1016/S0045-7949(03)00145-7
Perez R. Wang X.Q. Mignolet M.P. Nonintrusive Structural Dynamic Reduced Order Modeling for Large Deformations: Enhancements for Complex Structures J. Comput. Nonlinear Dyn. 2014 9 031008 10.1115/1.4026155
Ewan M.M. Wright J. Cooper J. Leung A. A finite element/modal technique for nonlinear plate and stiffened panel response prediction Proceedings of the 19th AIAA Applied Aerodynamics Conference Anaheim, CA, USA 11–14 June 2001
Ewan M.I.M. A Combined Modal/Finite Element Technique for the Non-Linear Dynamic Simulation of Aerospace Structures Ph.D. Thesis University of Manchester Manchester, UK 2001
Hollkamp J.J. Gordon R.W. Spottswood S.M. Non-linear modal models for sonic fatigue response prediction: A comparison of methods J. Sound Vib. 2005 284 1145 1163 10.1016/j.jsv.2004.08.036
Hollkamp J.J. Gordon R.W. Reduced-order models for non-linear response prediction: Implicit condensation and expansion J. Sound Vib. 2008 318 1139 1153 10.1016/j.jsv.2008.04.035
Frangi A. Gobat G. Reduced order modelling of the non-linear stiffness in MEMS resonators Int. J. Non-Linear Mech. 2019 116 211 218 10.1016/j.ijnonlinmec.2019.07.002
Kuether R.J. Deaner B.J. Hollkamp J.J. Allen M.S. Evaluation of Geometrically Nonlinear Reduced-Order Models with Nonlinear Normal Modes AIAA J. 2015 53 3273 3285 10.2514/1.J053838
Jain S. Tiso P. Rutzmoser J. Rixen D. A quadratic manifold for model order reduction of nonlinear structural dynamics Comput. Struct. 2017 188 80 94 10.1016/j.compstruc.2017.04.005
Rutzmoser J.B. Rixen D.J. Tiso P. Jain S. Generalization of quadratic manifolds for reduced order modeling of nonlinear structural dynamics Comput. Struct. 2017 192 196 209 10.1016/j.compstruc.2017.06.003
Veraszto Z. Ponsioen S. Haller G. Explicit third-order model reduction formulas for general nonlinear mechanical systems J. Sound Vib. 2020 468 115039 10.1016/j.jsv.2019.115039
Vizzaccaro A. Shen Y. Salles L. Blahos J. Touzé C. Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures Comput. Methods Appl. Mech. Eng. 2020 submitted for publication
Haller G. Ponsioen S. Exact model reduction by a slow–fast decomposition of nonlinear mechanical systems Nonlinear Dyn. 2017 90 617 647 10.1007/s11071-017-3685-9
Vizzaccaro A. Salles L. Touzé C. Comparison of nonlinear mappings for reduced-order modelling of vibrating structures: Normal form theory and quadratic manifold method with modal derivatives Nonlinear Dyn. 2020 accepted for publication 10.1007/s11071-020-05813-1
Shen Y. Béreux N. Frangi A. Touzé C. Reduced order models for geometrically nonlinear structures: Assessment of implicit condensation in comparison with invariant manifold approach Eur. J. Mech. A/Solids 2021 86 104165 10.1016/j.euromechsol.2020.104165
Fung Y.C. Tong P. Classical and Computational Solid Mechanics World Scientific River Edge, NJ, USA 2001
Holzapfel A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science John Wiley and Sons Hoboken, NJ, USA 2000
Touzé C. Vidrascu M. Chapelle D. Direct finite element computation of non-linear modal coupling coefficients for reduced-order shell models Comput. Mech. 2014 54 567 580 10.1007/s00466-014-1006-4
Givois A. Grolet A. Thomas O. Deü J.F. On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models Nonlinear Dyn. 2019 97 1747 1781 10.1007/s11071-019-05021-6
Idelsohn S. Cardona A. A reduction method for nonlinear structural dynamic analysis Comput. Methods Appl. Mech. Eng. 1985 49 253 279 10.1016/0045-7825(85)90125-2
Weeger O. Wever U. Simeon B. On the use of modal derivatives for nonlinear model order reduction Int. J. Numer. Methods Eng. 2016 108 1579 1602 10.1002/nme.5267
Sombroek C.S.M. Tiso P. Renson L. Kerschen G. Numerical computation of nonlinear normal modes in a modal derivative subspace Comput. Struct. 2018 195 34 46 10.1016/j.compstruc.2017.08.016
Touzé C. Thomas O. Non-linear behaviour of free-edge shallow spherical shells: Effect of the geometry Int. J. Non-Linear Mech. 2006 41 678 692 10.1016/j.ijnonlinmec.2005.12.004
Shen Y. Kesmia N. Touzé C. Vizzaccaro A. Salles L. Thomas O. Predicting the type of nonlinearity of shallow spherical shells: Comparison of direct normal form with modal derivatives Proceedings of the NODYCON 2021, Second International Nonlinear Dynamics Conference Rome, Italy 16–19 February 2021
Shaw S.W. An invariant manifold approach to nonlinear normal modes of oscillation J. Nonlinear Sci. 1994 4 419 448 10.1007/BF02430640
Nayfeh A.H. Lacarbonara W. On the discretization of distributed-parameter systems with quadratic and cubic non-linearities Nonlinear Dyn. 1997 13 203 220 10.1023/A:1008253901255
Touzé C. Thomas O. Huberdeau A. Asymptotic non-linear normal modes for large amplitude vibrations of continuous structures Comput. Struct. 2004 82 2671 2682 10.1016/j.compstruc.2004.09.003
Cochelin B. Vergez C. A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions J. Sound Vib. 2009 324 243 262 10.1016/j.jsv.2009.01.054
Guillot L. Cochelin B. Vergez C. A generic and efficient Taylor series–based continuation method using a quadratic recast of smooth nonlinear systems Int. J. Numer. Methods Eng. 2019 119 261 280 10.1002/nme.6049
Guillot L. Lazarus A. Thomas O. Vergez C. Cochelin B. A purely frequency based Floquet-Hill formulation for the efficient stability computation of periodic solutions of ordinary differential systems J. Comput. Phys. 2020 416 109477 10.1016/j.jcp.2020.109477
Électricité de France code_aster Available online: https://www.code-aster.org/ (accessed on 10 February 2020)
Blahoš J. Vizzaccaro A. El Haddad F. Salles L. Parallel harmonic balance method for analysis of nonlinear dynamical systems Proceedings of the Turbo Expo, ASME 2020 London, UK 21–25 September 2020 Volume GT2020-15392
Manevitch A.I. Manevitch L.I. Free oscillations in conservative and dissipative symmetric cubic two-degree-of-freedom systems with closed natural frequencies Meccanica 2003 38 335 348 10.1023/A:1023362112580
Givois A. Tan J. Touzé C. Thomas O. Backbone curves of coupled cubic oscillators in one-to-one internal resonance: Bifurcation scenario, measurements and parameter identification Meccanica 2020 55 481 503 10.1007/s11012-020-01132-2
Crespo da Silva M.R.M. Glynn C.C. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. Part 1: Equations of motion J. Struct. Mech. 1978 6 437 448 10.1080/03601217808907348
Pai P.F. Nayfeh A.H. Non-linear non-planar oscillations of a cantilever beam under lateral base excitations Int. J. Non-Linear Mech. 1990 25 455 474 10.1016/0020-7462(90)90012-X
Touzé C. Thomas O. Reduced-order modeling for a cantilever beam subjected to harmonic forcing Proceedings of the of EUROMECH Colloquium 457: Nonlinear modes of vibrating systems Frejus, France 7–9 June 2004 165 168
Thomas O. Sénéchal A. Deü J.F. Hardening/softening behaviour and reduced order modelling of nonlinear vibrations of rotating cantilever beams Nonlinear Dyn. 2016 86 1293 1318 10.1007/s11071-016-2965-0
Denis V. Jossic M. Giraud-Audine C. Chomette B. Renault A. Thomas O. Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form Mech. Syst. Signal Process. 2018 106 430 452 10.1016/j.ymssp.2018.01.014
Kim K. Khanna V. Wang X.Q. Mignolet M.P. Nonlinear reduced order modeling of flat cantilever structures Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Palm Springs, CA, USA 4–7 May 2009