Gopinath, A., and Jameson, A., 2005. "Time spectral method for periodic unsteady computations over two-and three-dimensional bodies". AIAA paper, 1220, pp. 10-13.
Ferri, A., 1986. "On the equivalence of the incremental harmonic balance method and the harmonic balance-Newton Raphson method". Journal of Applied Mechanics, 53, p. 455.
Jameson, A., and Caughey, D., 2001. "How many steps are required to solve the Euler equations of steady, compressible flow: in search of a fast solution algorithm". AIAA paper, 2673, p. 2001.
Sicot, F., Puigt, G., and Montagnac, M., 2008. "Block-Jacobi Implicit Algorithms for the Time Spectral Method". AIAA Journal, 46(12), pp. 3080-3089.
Salles, L., Blanc, L., Thouverez, F., and Gouskov, A.M. ans Jean, P., 2009. "Dynamic Analysis of a Bladed Disk With Friction ans Fretting-Wear in Blade Attachments". In Proceedings of ASME Turbo Expo, 2009.
Salles, L., Blanc, L., Thouverez, F., and Gouskov, A. M., 2010. "Dynamic analysis of fretting-wear in friction contact interfaces". Journal of Engineering for Gas Turbines and Power, 132(1), p. 012503.
Salles, L., Gouskov, A., Blanc, L., Thouverez, F., and Jean, P., 2010. "Dynamic Analysis of Fretting-Wear in Joint Interface by a Multiscale Harmonic Balance Method coupled with Explicit or Implicit Integration Scheme". In Proceedings of ASME Turbo Expo, 2010.
Nacivet, S., Pierre, C., Thouverez, F., and Jezequel, L., 2003. "A dynamic Lagrangian frequency-time method for the vibration of dry-friction-damped systems". Journal of Sound and Vibration, 265(1), pp. 201-219.
Petrov, E. P., and Ewins, D. J., 2004. "Analysis of essentially non-linear vibration of large-scale models for bladed discs with variable contact and friction at root joints". Vibrations in Rotating Machinery, 623, p. 163.
Laxalde, D., Thouverez, F., Sinou, J. J., and Lombard, J. P., 2007. "Qualitative analysis of forced response of blisks with friction ring dampers". European Journal of Mechanics/A Solids, 26(4), pp. 676-687.
Laxalde, D., Legrand, M., and Pierre, C., 2009. "Nonlinear Modal Analysis of Mechanical Systems with Frictionless Contact Interfaces". In Proceedings of ASME IDETC/CIE 2009 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, pp. DETC2009-87387.
LaBryer, A., and Attar, P., 2009. "High dimensional harmonic balance dealiasing techniques for a duffing oscillator". Journal of Sound and Vibration, 324(3-5), pp. 1016-1038.
LaBryer, A., 2009. "A Filtered High-dimensional Harmonic Balance Method for Problems in Nonlinear Dynamics". Master's thesis, University of Oklahoma.
Hall, K., Thomas, J., and Clark, W., 2002. "Computation of unsteady nonlinear flows in cascades using a harmonic balance technique". AIAA journal, 40(5), pp. 879-886.
Liu, L., Thomas, J., Dowell, E., Attar, P., and Hall, K., 2006. "A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator". Journal of Computational Physics, 215(1), pp. 298-320.
Liu, L., Dowell, E., and Thomas, J., 2007. "A high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring forces". Journal of Fluids and Structures, 23(3), pp. 351-363.
LaBryer, A., and Attar, P., 2010. "A harmonic balance approach for large-scale problems in nonlinear structural dynamics". Computers & Structures, 88(17-18), pp. 1002-1014.
Powell, M., 1970. "A hybrid method for nonlinear equations". Numerical methods for nonlinear algebraic equations, 7, pp. 87-114.
McMullen, M., and Jameson, A., 2006. "The computational efficiency of non-linear frequency domain methods". Journal of Computational Physics, 212(2), pp. 637-661.
Shampine, L. F., and Reichelt, M. W., 1997. "The matlab ode suite". SIAM J. Sci. Comput., 18, January, pp. 1-22.