High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: application to large amplitude vibrations and uncovering of a folding point - 2022
High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: application to large amplitude vibrations and uncovering of a folding point
Finite element method; Geometric nonlinearities; Manifold folding; Model order reduction; Normal form; Foldings; Geometric non-linearity; High-order; Higher-order; Invariant manifolds; Large amplitude; Parametrizations; Control and Systems Engineering; Aerospace Engineering; Ocean Engineering; Mechanical Engineering; Electrical and Electronic Engineering; Applied Mathematics
Abstract :
[en] This paper investigates model-order reduction methods for geometrically nonlinear structures. The parametrisation method of invariant manifolds is used and adapted to the case of mechanical systems in oscillatory form expressed in the physical basis, so that the technique is directly applicable to mechanical problems discretised by the finite element method. Two nonlinear mappings, respectively related to displacement and velocity, are introduced, and the link between the two is made explicit at arbitrary order of expansion, under the assumption that the damping matrix is diagonalised by the conservative linear eigenvectors. The same development is performed on the reduced-order dynamics which is computed at generic order following different styles of parametrisation. More specifically, three different styles are introduced and commented: the graph style, the complex normal form style and the real normal form style. These developments allow making better connections with earlier works using these parametrisation methods. The technique is then applied to three different examples. A clamped-clamped arch with increasing curvature is first used to show an example of a system with a softening behaviour turning to hardening at larger amplitudes, which can be replicated with a single mode reduction. Secondly, the case of a cantilever beam is investigated. It is shown that invariant manifold of the first mode shows a folding point at large amplitudes. This exemplifies the failure of the graph style due to the folding point on a real structure, whereas the normal form style is able to pass over the folding. Finally, a MEMS (Micro Electro Mechanical System) micromirror undergoing large rotations is used to show the importance of using high-order expansions on an industrial example.
Disciplines :
Mechanical engineering
Author, co-author :
Vizzaccaro, Alessandra ; Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom ; Department of Mechanical Engineering, Imperial College London, London, United Kingdom
Opreni, Andrea; Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
Salles, Loïc ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Department of Mechanical Engineering, Imperial College London, London, United Kingdom
Frangi, Attilio; Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
Touzé, Cyril; Institute of Mechanical Sciences and Industrial Applications (IMSIA), ENSTA Paris - CNRS - EDF - CEA, Institut Polytechnique de Paris, Palaiseau cedex, France
Language :
English
Title :
High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: application to large amplitude vibrations and uncovering of a folding point
Kim, K., Radu, A.G., Wang, X.Q., Mignolet, M.P.: Nonlinear reduced order modeling of isotropic and functionally graded plates. Int. J. Non-Linear Mech. 49, 100–110 (2013)
Mignolet, M.P., Przekop, A., Rizzi, S.A., Spottswood, S.M.: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures. J. Sound Vib. 332, 2437–2460 (2013)
Perez, R., Wang, X.Q., Mignolet, M.P.: Non-intrusive structural dynamic reduced-order modeling for large deformations: enhancements for complex structures. J. Comput. Nonlinear Dyn. 9(3), (2014)
Hollkamp, J.J., Gordon, R.W., Spottswood, S.M.: Non-linear modal models for sonic fatigue response prediction: a comparison of methods. J. Sound Vib. 284, 1145–1163 (2005)
Hollkamp, J.J., Gordon, R.W.: Reduced-order models for non-linear response prediction: implicit condensation and expansion. J. Sound Vib. 318, 1139–1153 (2008)
Frangi, A., Gobat, G.: Reduced order modelling of the non-linear stiffness in MEMS resonators. Int. J. Non-Linear Mech. 116, 211–218 (2019)
Nicolaidou, E., Hill, T.L., Neild, S.A.: Indirect reduced-order modelling: using nonlinear manifolds to conserve kinetic energy. Proc. R. Soc. A. 476, 20200589 (2021)
Kim, E., Cho, M.: Equivalent model construction for a non-linear dynamic system based on an element-wise stiffness evaluation procedure and reduced analysis of the equivalent system. Comput. Mech. 60, 709–724 (2017)
Vizzaccaro, A., Givois, A., Longobardi, P., Shen, Y., Deü, J.-F., Salles, L., Touzé, C., Thomas, O.: Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements. Comput. Mech. 66, 1293–1319 (2020)
Givois, A., Deü, J.-F., Thomas, O.: Dynamics of piezoelectric structures with geometric nonlinearities: a non-intrusive reduced order modelling strategy. Comput. Struct. 253, 106575 (2021)
Idelsohn, S.R., Cardona, A.: A reduction method for nonlinear structural dynamic analysis. Comput. Methods Appl. Mech. Eng. 49(3), 253–279 (1985)
Idelsohn, S.R., Cardona, A.: A load-dependent basis for reduced nonlinear structural dynamics. Comput. Struct. 20, 203–210 (1985)
Weeger, O., Wever, U., Simeon, B.: On the use of modal derivatives for nonlinear model order reduction. Int. J. Numer. Methods Eng. 108(13), 1579–1602 (2016)
Jain, S., Tiso, P., Rutzmoser, J.B., Rixen, D.J.: A quadratic manifold for model order reduction of nonlinear structural dynamics. Comput. Struct. 188, 80–94 (2017)
Rutzmoser, J.B., Rixen, D.J., Tiso, P., Jain, S.: Generalization of quadratic manifolds for reduced order modeling of nonlinear structural dynamics. Comput. Struct. 192, 196–209 (2017)
Shaw, S.W., Pierre, C.: Non-linear normal modes and invariant manifolds. J. Sound Vib. 150(1), 170–173 (1991)
Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164(1), 85–124 (1993)
Pesheck, E., Pierre, C., Shaw, S.: A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds. J. Sound Vib. 249(5), 971–993 (2002)
Touzé, C., Thomas, O., Chaigne, A.: Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes. J. Sound Vib. 273(1–2), 77–101 (2004)
Touzé, C., Amabili, M.: Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures. J. Sound Vib. 298(4–5), 958–981 (2006)
Touzé, C.: Normal form theory and nonlinear normal modes: theoretical settings and applications. In: Kerschen, G. (ed), Modal Analysis of nonlinear Mechanical Systems, New York, NY Springer Series CISM courses and lectures, vol. 555, pp. 75–160 (2014)
Haller, G., Ponsioen, S.: Exact model reduction by a slow-fast decomposition of nonlinear mechanical systems. Nonlinear Dyn. 90, 617–647 (2017)
Veraszto, Z., Ponsioen, S., Haller, G.: Explicit third-order model reduction formulas for general nonlinear mechanical systems. J. Sound Vib. 468, 115039 (2020)
Vizzaccaro, A., Salles, L., Touzé, C.: Comparison of nonlinear mappings for reduced-order modeling of vibrating structures: normal form theory and quadratic manifold method with modal derivatives. Nonlinear Dyn. 103, 3335–3370 (2021)
Shen, Y., Béreux, N., Frangi, A., Touzé, C.: Reduced order models for geometrically nonlinear structures: assessment of implicit condensation in comparison with invariant manifold approach. Eur. J. Mech. A/Solids 86, 104165 (2021)
Shen, Y., Vizzaccaro, A., Kesmia, N., Yu, T., Salles, L., Thomas, O., Touzé, C.: Comparison of reduction methods for finite element geometrically nonlinear beam structures. Vibrations 4(1), 175–204 (2021)
Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52(2), 283–328 (2003)
Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. II. Regularity with respect to parameters. Indiana Univ. Math. J. 52(2), 329–360 (2003)
Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. III. Overview and applications. J. Differ. Equ. 218(2), 444–515 (2005)
Haro, A., Canadell, M., Figueras, J.-L., Luque, A., Mondelo, J.-M.: The parameterization method for invariant manifolds. From rigorous results to effective computations. Springer, Switzerland (2016)
Carr, J.: Applications of Centre Manifold Theory. Springer-Verlag, New-York (1981)
Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer-Verlag, New-York (1983)
Jézéquel, L., Lamarque, C.H.: Analysis of non-linear dynamical systems by the normal form theory. J. Sound Vib. 149(3), 429–459 (1991)
Haller, G., Ponsioen, S.: Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dyn. 86(3), 1493–1534 (2016)
Lyapunov, A.M.: Problème général de la stabilité du mouvement. Annales de la faculté des sciences de Toulouse, Série 2(9), 203–474 (1907)
Kelley, A.F.: Analytic two-dimensional subcenter manifolds for systems with an integral. Pac. J. Math. 29, 335–350 (1969)
Neild, S.A., Champneys, A.R., Wagg, D.J., Hill, T.L., Cammarano, A.: The use of normal forms for analysing nonlinear mechanical vibrations. Proc. R. Soc. A. 373, 20140404 (2015)
Cirillo, G.I., Mauroy, A., Renson, L., Kerschen, G., Sepulchre, R.: A spectral characterization of nonlinear normal modes. J. Sound Vib. 377, 284–301 (2016)
Ponsioen, S., Pedergnana, T., Haller, G.: Automated computation of autonomous spectral submanifolds for nonlinear modal analysis. J. Sound Vib. 420, 269–295 (2018)
de la Llave, R., Kogelbauer, F.: Global persistence of Lyapunov subcenter manifolds as spectral submanifolds under dissipative perturbations. SIAM J. Appl. Dyn. Syst. 18(4), 2099–2142 (2019)
Gonzalez, J., Mireles-James, J.D., Tuncer, N.: Finite element approximation of invariant manifolds by the parameterization method, (2022)
Vizzaccaro, A., Shen, Y., Salles, L., Blahoš, J., Touzé, C.: Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures. Comput. Methods Appl. Mech. Eng. 284, 113957 (2021)
Opreni, A., Vizzaccaro, A., Frangi, A., Touzé, C.: Model order reduction based on direct normal form: application to large finite element MEMS structures featuring internal resonance. Nonlinear Dyn. 105, 1237–1272 (2021)
Jain, S., Haller, G.: How to compute invariant manifolds and their reduced dynamics in high-dimensional finite-element models? Nonlinear Dyn. 107, 1417–1450 (2022)
Li, M., Jain, S., Haller, G.: Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds—part I: Periodic response and forced response curve. submitted to Nonlinear Dynamics, (2021)
Li, M., Haller, G.: Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds—part II: Bifurcation and quasi-periodic response. submitted to Nonlinear Dynamics, (2021)
Jain, S., Thurnher, T., Li, M., Haller, G.: SSMTool-2.0: computation of invariant manifolds and their reduced dynamics in high-dimensional mechanics problems, 10.5281/zenodo.4614202, (2021)
Touzé, C., Vizzaccaro, A., Thomas, O.: Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn. 105, 1141–1190 (2021)
Liu, X., Wagg, D.J.: Simultaneous normal form transformation and model-order reduction for systems of coupled nonlinear oscillators. Proc. R. Soc. A 475, 20190042 (2019)
Opreni, A., Vizzaccaro, A., Martin, A., Frangi, A., Touzé, C.: MORFEInvariantManifold.jl: nonlinear model order reduction of large dimensional finite element models using the direct parametrisation method for invariant manifolds, https://github.com/MORFEproject/MORFEInvariantManifold.jl, (2022)
Holzapfel, G.A.: Nonlinear Solid Mechanics. J. Wiley & sons, Chichester, England (2000)
Lazarus, A., Thomas, O., Deü, J.-F.: Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS. Finite Elem. Anal. Des. 49, 35–51 (2012)
Touzé, C., Vidrascu, M., Chapelle, D.: Direct finite element computation of non-linear modal coupling coefficients for reduced-order shell models. Comput. Mech. 54(2), 567–580 (2014)
Caughey, T.K.: Classical normal modes in damped linear dynamic systems. J. Appl. Mech. 27, 269–271 (1960)
Caughey, T.K., O’Kelly, M.E.J.: Classical normal modes in damped linear dynamic systems. J. Appl. Mech. 32(3), 583–588 (1965)
Adhikari, S.: Damping modelling using generalized proportional damping. J. Sound Vib. 293(1), 156–170 (2006)
Iooss, G., Adelmeyer, M.: Topics in Bifurcation Theory, 2nd edn. World scientific, New-York (1998)
Murdock, J.: Normal forms and unfoldings for local dynamical systems. Springer monographs in Mathematics, New-York (2003)
Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Gauthiers-Villars, Paris (1892)
Dulac, H.: Solutions d’un système d’équations différentielles dans le voisinage de valeurs singulières. Bull. de la Société Mathématique de France 40, 324–383 (1912)
Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer-Verlag, New-York (1998)
Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer-Verlag, New-York (2003)
Miles, J.W.: Resonantly forced motion of two quadratically coupled oscillators. Physica D 13, 247–260 (1984)
Nayfeh, A.H., Lacarbonara, W., Chin, C.-M.: Nonlinear normal modes of buckled beams: three-to-one and one-to-one internal resonances. Nonlinear Dyn. 18, 253–273 (1999)
Manevitch, A.I., Manevitch, L.I.: Free oscillations in conservative and dissipative symmetric cubic two-degree-of-freedom systems with closed natural frequencies. Meccanica 38(3), 335–348 (2003)
Givois, A., Tan, J.-J., Touzé, C., Thomas, O.: Backbone curves of coupled cubic oscillators in one-to-one internal resonance: bifurcation scenario, measurements and parameter identification. Meccanica 55, 581–503 (2020)
Gobat, G., Guillot, L., Frangi, A., Cochelin, B., Touzé, C.: Backbone curves, Neimark-Sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: application to 1:2 internal resonance and frequency combs in MEMS. Meccanica 56, 1937–1969 (2021)
Kahn, P.B., Zarmi, Y.: Nonlinear Dynamics: Exploration Through Normal Forms. Dover books on Physics, London (2014)
Neild, S.A., Wagg, D.J.: Applying the method of normal forms to second-order nonlinear vibration problems. Proc. R. Soc. A 467, 1141–1163 (2011)
Lamarque, C.H., Touzé, C., Thomas, O.: An upper bound for validity limits of asymptotic analytical approaches based on normal form theory. Nonlinear Dyn. 70(3), 1931–1949 (2012)
Haragus, M., Iooss, G.: Local bifurcations, center manifolds, and normal forms in infinite dimensional systems. EDP Science, (2009)
Pesheck, E., Boivin, N., Pierre, C., Shaw, S.: Nonlinear modal analysis of structural systems using multi-mode invariant manifolds. Nonlinear Dyn. 25, 183–205 (2001)
Pesheck, E.: Reduced-order modeling of nonlinear structural systems using nonlinear normal modes and invariant manifolds. PhD thesis, University of Michigan, (2000)
Leung, A.Y.T., Zhang, Q.C.: Complex normal form for strongly non-linear vibration system exemplified by Duffing–van der Pol equation. J. Sound Vib. 213(5), 907–914 (1998)
Leung, A.Y.T., Zhang, Q.C.: Higher order normal form and period averaging. J. Sound Vib. 217(5), 795–806 (1998)
Opreni, A., Boni, N., Carminati, R., Frangi, A.: Analysis of the nonlinear response of piezo-micromirrors with the harmonic balance method. Actuators 10(2), 21 (2021)
Dhooge, A., Govaerts, W., Kuznetsov, Yu.A.: Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw. 29(2), 141–164 (2003)
Touzé, C., Amabili, M., Thomas, O.: Reduced-order models for large-amplitude vibrations of shells including in-plane inertia. Comput. Methods Appl. Mech. Eng. 197(21–24), 2030–2045 (2008)
Shen, Y., Kesmia, N., Touzé, C., Vizzaccaro, A., Salles, L., Thomas, O.: Predicting the type of nonlinearity of shallow spherical shells: Comparison of direct normal form with modal derivatives. In: Proceedings of NODYCON 21, Second International Nonlinear Dynamics Conference, online conference, Roma, February 2021
Jiang, D., Pierre, C., Shaw, S.W.: Nonlinear normal modes for vibratory systems under harmonic excitation. J. Sound Vib. 288(4), 791–812 (2005)
Breunung, T., Haller, G.: Explicit backbone curves from spectral submanifolds of forced-damped nonlinear mechanical systems. Proc. Royal Soc. A Math. Phys. Eng. Sci. 474(2213), 20180083 (2018)
Ponsioen, S., Jain, S., Haller, G.: Model reduction to spectral submanifolds and forced-response calculation in high-dimensional mechanical systems. J. Sound Vib. 488, 115640 (2020)
Lacarbonara, W., Nayfeh, A.H., Kreider, W.: Experimental validation of reduction methods for nonlinear vibrations of distributed-parameter systems: analysis of a buckled beam. Nonlinear Dyn. 17, 95–117 (1998)
Lacarbonara, W., Camillacci, R.: Nonlinear normal modes of structural systems via asymptotic approach. Int. J. Solids Struct. 41(20), 5565–5594 (2004)
Marconi, J., Tiso, P., Quadrelli, D.E., Braghin, F.: A higher order parametric nonlinear reduced order model for imperfect structures using Neumann expansion. Nonlinear Dyn. 104, 3039–3063 (2021)
Kim, K., Khanna, V., Wang, X.Q., Mignolet, M.P.: Nonlinear reduced order modeling of flat cantilevered structures. In: Proceedings of the 50th Structures, Structural Dynamics, and Materials Conference, AIAA Paper AIAA-2009-2492., May 4–7, Palm Springs, California, (2009)
Touzé, C., Thomas, O.: Reduced-order modeling for a cantilever beam subjected to harmonic forcing. In: Proceedings of EUROMECH 457: Nonlinear modes of vibrating systems, June 7-9, Fréjus, France, (2004)
Thomas, O., Sénéchal, A., Deü, J.F.: Hardening/softening behaviour and reduced order modelling of nonlinear vibrations of rotating cantilever beams. Nonlinear Dyn. 86(2), 1293–1318 (2016)
Meier, C., Popp, A., Wall, W.A.: Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory versus Simo-Reissner theory. Arch. Comput. Methods Eng. 26, 163–243 (2019)
Farokhi, H., Ghayesh, M.H.: Geometrically exact extreme vibrations of cantilevers. Int. J. Mech. Sci. 168, 105051 (2020)
Givois, A., Grolet, A., Thomas, O., Deü, J.-F.: On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models. Nonlinear Dyn. 97(2), 1747–1781 (2019)
Amabili, M., Touzé, C.: Reduced-order models for non-linear vibrations of fluid-filled circular cylindrical shells: comparison of POD and asymptotic non-linear normal modes methods. J. Fluids Struct. 23(6), 885–903 (2007)
Wagg, D.J.: Normal form transformations for structural dynamics: an introduction for linear and nonlinear systems. J. Struct. Dyn., 1, 2022. URL: https://popups.uliege.be/2684-6500/index.php?id=84