[en] In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.
Disciplines :
Mechanical engineering
Author, co-author :
Fontanela, F.; Department of Mechanical Engineering, Imperial College London, London, United Kingdom
Grolet, A.; Department of Mechanical Engineering, Arts et Métiers ParisTech, Lille, France
Salles, Loïc ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Department of Mechanical Engineering, Imperial College London, London, United Kingdom
Chabchoub, A.; Department of Mechanical Engineering, Aalto University, Aalto, Finland ; School of Civil Engineering, The University of Sydney, Sydney, Australia
Hoffmann, N.; Department of Mechanical Engineering, Imperial College London, London, United Kingdom ; Department of Mechanical Engineering, Hamburg University of Technology, Hamburg, Germany
Language :
English
Title :
Dark solitons, modulation instability and breathers in a chain of weakly nonlinear oscillators with cyclic symmetry
Hodges, C.H., Confinement of vibration by structural irregularity. J. Sound Vib. 82:3 (1982), 411–424, 10.1016/S0022-460X(82)80022-9.
Hodges, C.H., Woodhouse, J., Vibration isolation from irregularity in a nearly periodic structure: theory and measurements. J. Acoust. Soc. Am., 74(3), 1983, 894, 10.1121/1.389847.
Bendiksen, O.O., Cornwell, P.J., Localization of vibrations in large space reflectors. AIAA J. 27:2 (1989), 219–226, 10.2514/3.10084.
Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.A., Normal Modes and Localization in Nonlinear Systems. 1996, John Wiley & Sons Inc, New York.
Castanier, M.P., Pierre, C., Using intentional mistuning in the design of turbomachinery rotors. AIAA J. 40:10 (2002), 2077–2086, 10.2514/3.15298.
Georgiades, F., Peeters, M., Kerschen, G., Golinval, J.C., Ruzzene, M., Modal analysis of a nonlinear periodic structure with cyclic symmetry. AIAA J. 47:4 (2009), 1014–1025, 10.2514/1.40461.
Mbaye, M., Soize, C., Ousty, J.-P., Capiez-Lernout, E., Robust analysis of design in vibration of turbomachines. J. Turbomach., 135(2), 2012, 021008, 10.1115/1.4007442.
Anderson, P.W., Absence of diffusion in certain random lattices. Phys. Rev. 109:5 (1958), 1492–1505, 10.1103/PhysRev.109.1492.
Whitehead, D.S., Effect of mistuning on the vibration of turbo-machine blades induced by wakes. Arch.: J. Mech. Eng. Sci. 8:1 (1966), 15–21, 10.1243/JMES_JOUR_1966_008_004_02 (1959–1982 vols (1–23)).
Petrov, E.P., Ewins, D.J., Analysis of the worst mistuning patterns in bladed disk assemblies. J. Turbomach., 125(4), 2003, 623, 10.1115/1.1622710.
Krack, M., Salles, L., Thouverez, F., Vibration prediction of bladed disks coupled by friction joints. Arch. Comput. Methods Eng., 2016, 1–48, 10.1007/s11831-016-9183-2.
Bartels, R., Sayma, A., Computational aeroelastic modelling of airframes and turbomachinery: progress and challenges. Philos. Trans. R. Soc. A 365:1859 (2007), 2469–2499, 10.1098/rsta.2007.2018.
Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F., Nonlinear normal modes, Part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23:1 (2009), 170–194, 10.1016/j.ymssp.2008.04.002.
Grolet, A., Thouverez, F., Vibration Analysis of a Nonlinear System With Cyclic Symmetry. J. Eng. Gas. Turbines Power, 133(2), 2011, 022502, 10.1115/1.4001989.
Grolet, A., Thouverez, F., Free and forced vibration analysis of a nonlinear system with cyclic symmetry: application to a simplified model. J. Sound Vib. 331:12 (2012), 2911–2928, 10.1016/j.jsv.2012.02.008.
Starosvetsky, Y., Manevitch, L.I., On intense energy exchange and localization in periodic FPU dimer chains. Phys. D: Nonlinear Phenom. 264 (2013), 66–79, 10.1016/j.physd.2013.06.012.
Grolet, A., Thouverez, F., Computing multiple periodic solutions of nonlinear vibration problems using the harmonic balance method and Groebner bases. Mech. Syst. Signal Process. 52- 53:1 (2015), 529–547, 10.1016/j.ymssp.2014.07.015.
Papangelo, A., Grolet, A., Salles, L., Hoffmann, N., Ciavarella, M., Snaking bifurcations in a self-excited oscillator chain with cyclic symmetry. Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 108–119, 10.1016/j.cnsns.2016.08.004.
Smirnov, V.V., Manevitch, L.I., Large-amplitude nonlinear normal modes of the discrete sine lattices. Phys. Rev. E, 95(2), 2017, 022212, 10.1103/PhysRevE.95.022212.
Capiez-Lernout, E., Soize, C., Mbaye, M., Mistuning analysis and uncertainty quantification of an industrial bladed disk with geometrical nonlinearity. J. Sound Vib. 356 (2015), 124–143, 10.1016/j.jsv.2015.07.006.
V. Ruffini, C. Schwingshackl, J. Green, Experimental and analytical study of coriolis effects in bladed disk, in: Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Boston, Massachusetts, USA, 2015, pp. 1–10.
Flach, S., Gorbach, A.V., Discrete breathers - advances in theory and applications. Phys. Rep. 467:1–3 (2008), 1–116, 10.1016/j.physrep.2008.05.002.
Dudley, J.M., Dias, F., Erkintalo, M., Genty, G., Instabilities, breathers and rogue waves in optics. Nat. Publ. Group 8 (2014), 755–764, 10.1038/nphoton.2014.220 (arXiv:1410.3071).
Remoissenet, M., Waves Called Solitons: Concepts and Experiments, Advanced Texts in Physics. 1994, Springer, New York.
Grolet, A., Hoffmann, N., Thouverez, F., Schwingshackl, C., Travelling and standing envelope solitons in discrete non-linear cyclic structures. Mech. Syst. Signal Process. 81:15 (2016), 1–13, 10.1016/j.ymssp.2016.02.062.
Bendiksen, O.O., Mode localization phenomena in large space structures. AIAA J. 25:9 (1987), 1241–1248, 10.2514/3.9773.
Dauxois, T., Peyrard, M., Physics of Solitons. 2006, Cambridge University Press, Cambridge.
Kivshar, Y.S., Peyrard, M., Modulational instabilities in discrete lattices. Phys. Rev. A 46:6 (1992), 3198–3205, 10.1103/PhysRevA.46.3198.
Daumont, I., Dauxois, T., Peyrard, M., Modulational instability: first step towards energy localization in nonlinear lattices. Nonlinearity 10:3 (1997), 617–630, 10.1088/0951-7715/10/3/003.
MacKay, R.S., Aubry, S., Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7:6 (1994), 1623–1643, 10.1088/0951-7715/7/6/006.
Sato, M., Hubbard, B.E., Sievers, A.J., Colloquium: nonlinear energy localization and its manipulation in micromechanical oscillator arrays. Rev. Mod. Phys. 78:1 (2006), 137–157, 10.1103/RevModPhys.78.137.
Aigner, A.A., Champneys, A.R., Rothos, V.M., A new barrier to the existence of moving kinks in Frenkel-Kontorova lattices. Phys. D: Nonlinear Phenom. 186:3–4 (2003), 148–170, 10.1016/S0167-2789(03)00261-6.
Emplit, P., Hamaide, J.P., Reynaud, F., Froehly, C., Barthelemy, A., Picosecond steps and dark pulses through nonlinear single mode fibers. Opt. Commun. 62:6 (1987), 374–379, 10.1016/0030-4018(87)90003-4.
Shukla, P.K., Eliasson, B., Formation and dynamics of dark solitons and vortices in quantum electron plasmas. Phys. Rev. Lett. 96:24 (2006), 3–6, 10.1103/PhysRevLett.96.245001.
Chabchoub, A., Kimmoun, O., Branger, H., Hoffmann, N., Proment, D., Onorato, M., Akhmediev, N., Experimental observation of dark solitons on the surface of water. Phys. Rev. Lett. 110:12 (2013), 1–5, 10.1103/PhysRevLett.110.124101.
Kivshar, Y.S., Królikowski, W., Chubykalo, O.A., Dark solitons in discrete lattices. Phys. Rev. E 50:6 (1994), 5020–5032, 10.1103/PhysRevE.50.5020.
Bekki, N., Nozaki, K., Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation. Phys. Lett. A 110:3 (1985), 133–135, 10.1016/0375-9601(85)90759-5.
Peregrine, D., Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B. Appl. Math. 25:1 (1983), 16–43, 10.1017/S0334270000003891.
Fermi, E., Pasta, J., Ulam, S., Studies of Nonlinear Problems, Los Alamos Report LA-1940 978, 1940, 978.
O. Kimmoun, H.C. Hsu, H. Branger, M.S. Li, Y.Y. Chen, C. Kharif, M. Onorato, E.J.R. Kelleher, B. Kibler, N. Akhmediev, A. Chabchoub, Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Re-currence, May 2016, pp. 1–9 〈 https://doi.org/10.1038/srep28516〉 (arXiv:1602.01604).
Feldman, M., Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25:3 (2011), 735–802, 10.1016/j.ymssp.2010.07.018.
Pelinovsky, D.E., Localization in Periodic Potentials: From Schrödinger Operators to the Gross-Pitaevskii Equation, London Mathematical Society Lecture Note Series. 2011, Cambridge University, Cambridge. Press, 10.1017/CBO9780511997754.
Onorato, M., Proment, D., Clauss, G., Klein, M., Rogue waves: from nonlinear Schrödinger breather solutions to sea-keeping test. PLoS One, 8(2), 2013, e54629, 10.1371/journal.pone.0054629.
Akhmediev, N., Eleonskii, V.M., Kulagin, N.E., Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions. Sov. Phys. JETP 62:5 (1985), 894–899.
Akhmediev, N.N., Korneev, V.I., Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69:2 (1987), 1089–1093, 10.1007/BF01037866.
Akhmediev, N., Ankiewicz, A., Taki, M., Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373:6 (2009), 675–678, 10.1016/j.physleta.2008.12.036.
Chabchoub, A., Hoffmann, N.P., Akhmediev, N., Rogue wave observation in a water wave tank. Phys. Rev. Lett., 106(20), 2011, 204502, 10.1103/PhysRevLett.106.204502.
Erkintalo, M., Hammani, K., Kibler, B., Finot, C., Akhmediev, N., Dudley, J.M., Genty, G., Higher-order modulation instability in nonlinear fiber optics. Phys. Rev. Lett. 107:25 (2011), 14–18, 10.1103/PhysRevLett.107.253901.
Chabchoub, A., Hoffmann, N., Onorato, M., Akhmediev, N., Super rogue waves: observation of a higher-order breather in water waves. Phys. Rev. X, 2(1), 2012, 011015, 10.1103/PhysRevX.2.011015.
Chabchoub, A., Hoffmann, N., Onorato, M., Slunyaev, A., Sergeeva, A., Pelinovsky, E., Akhmediev, N., Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. 86:5 (2012), 1–6, 10.1103/PhysRevE.86.056601.
Akhmediev, N., Kulagin, E., Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions. Sov. Phys. Uspekhi 1:1985 (1986), 894–899.
Akhmediev, N.N., Mitzkevich, N.V., Extremely high degree of n-soliton pulse compression in an optical fiber. IEEE J. Quantum Electron. 27:3 (1991), 849–857, 10.1109/3.81399.
Walczak, P., Randoux, S., Suret, P., Optical rogue waves in integrable turbulence. Phys. Rev. Lett. 114:14 (2015), 33–35, 10.1103/PhysRevLett.114.143903 (arXiv:1410.6058).
Peyrard, M., The pathway to energy localization in nonlinear lattices. Phys. D 119:1–2 (1998), 184–199, 10.1016/S0167-2789(98)00079-7.
Akhmediev, N., Soto-Crespo, J.M., Devine, N., Breather turbulence versus soliton turbulence: rogue waves, probability density functions, and spectral features. Phys. Rev. E, 94(2), 2016, 022212, 10.1103/PhysRevE.94.022212.
Mahnke, C., Mitschke, F., Possibility of an Akhmediev breather decaying into solitons. Phys. Rev. A – At. Mol. Opt. Phys. 85:3 (2012), 1–9, 10.1103/PhysRevA.85.033808.
K.B. Dysthe, Note on a modification to the nonlinear Schrödinger equation for application to deep water waves, in: Proceedings Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 369, The Royal Society, 1979, pp. 105–114.
Blow, K., Wood, D., Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. 25:12 (1989), 2665–2673, 10.1109/3.40655.