rotational testing; rotor; structural dynamic behaviour; vibration excitation; Axial displacements; Piezoelectric stack actuators; Rotating conditions; Rotating coordinate system; Rotational speed; Steel rotors; Transverse axis; Analytical Chemistry; Information Systems; Atomic and Molecular Physics, and Optics; Biochemistry; Instrumentation; Electrical and Electronic Engineering
Abstract :
[en] A vibration excitation system (VES) in a form of an active coupling is proposed, designed and manufactured. The system is equipped with a set of piezoelectric stack actuators uniformly distributed around the rotor axis and positioned parallel to each other. The actuator arrangement allows an axial displacement of the coupling halves as well as their rotation about any transverse axis. Through the application of the VES an aimed vibration excitation is realised in a co-rotating coordinate system, which enables a non-invasive and precise modal analysis of rotating components. As an example, the VES is applied for the characterisation of the structural dynamic behaviour of a generic steel rotor at different rotational speeds. The first results are promising for both stationary and rotating conditions.
Disciplines :
Mechanical engineering
Author, co-author :
Filippatos, Angelos ; Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, 01307 Dresden, Germany. angelos.filippatos@tu-dresden.de
Wollmann, Tino ; Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, 01307 Dresden, Germany. tino.wollmann@tu-dresden.de
Nguyen, Minh ; Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, 01307 Dresden, Germany. minh.nguyen@tu-dresden.de
Kostka, Pawel; Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, 01307 Dresden, Germany. pawel.kostka@tu-dresden.de
Dannemann, Martin ; Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, 01307 Dresden, Germany. martin.dannemann@tu-dresden.de
Langkamp, Albert; Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, 01307 Dresden, Germany. albert.langkamp@tu-dresden.de
Salles, Loïc ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK. l.salles@imperial.ac.uk
Gude, Maik ; Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, 01307 Dresden, Germany. maik.gude@tu-dresden.de
Language :
English
Title :
Design and Testing of a Co-Rotating Vibration Excitation System.
EPSRC - Engineering and Physical Sciences Research Council
Funding text :
Funding: The results were obtained within the international CORNET research project named: “Development of a combined numerical and experimental approach for the 3D dynamic analysis of rotating components”. This research was funded by the IGF project 151 EBR / 1 of the Forschungsvereinigung Forschungskuratorium Maschinenbau e.V. - FKM, Lyoner Straße 18, 60528 Frankfurt am Main via the AiF within the programme to promote Industrial Collective Research (IGF) by the Federal Ministry of Economic Affairs and Energy (BMWi) based on a decision of the German Bundestag. This research was funded by the EPSRC via the Industrial Cooperative Awards in Science & Technology (CASE) PhD studentship, grant number MEDY_NN0923.
Gude, M.; Filippatos, A.; Langkamp, A.; Hufenbach, W.; Kuschmierz, R.; Fischer, A.; Czarske, J. Model assessment of a composite mock-up bladed rotor based on its vibration response and radial expansion. Compos. Struct. 2015, 124, 394–401. [CrossRef]
Gude, M.; Filippatos, A.; Langkamp, A.; Hufenbach, W.; Kuschmierz, R.; Fischer, A.; Czarske, J. Model assessment of a composite mock-up bladed rotor based on its vibration response and radial expansion. Compos. Struct. 2015, 124, 394–401. [CrossRef]
Filippatos, A.; Langkamp, A.; Gude, M. Influence of Gradual Damage on the Structural Dynamic Behaviour of Composite Rotors: Simulation Assessment. Materials 2018, 11, doi:10.3390/ma11122453. [CrossRef]
Pesaresi, L.; Salles, L.; Elliott, R.; Jones, A.; Green, J.; Schwingshackl, C. Numerical and experimental investigation of an underplatform damper test rig. Appl. Mech. Mater. 2016, 849, 1–12. [CrossRef]
Raubenheimer, G.; van der Spuy, S.; von Backström, T. The Use of Air Injection Nozzles for the Forced Excitation of Axial Compressor Blades. Int. J. Turbo Jet Eng. 2013, 30, 55–65. [CrossRef]
Niezrecki, C.; Brei, D.; Balakrishnan, S.; Moskalik, A. Piezoelectric actuation: State of the art. Shock Vib. Dig. 2001, 33, 269–280. [CrossRef]
An, Y.K.; Park, B.; Sohn, H. Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate. Smart Mater. Struct. 2013, 22, 025022. [CrossRef]
Ruffini, V.; Nauman, T.; Schwingshackl, C. Impulse excitation of piezoelectric patch actuators for modal analysis. In Topics in Modal Analysis & Testing, Volume 10; Springer: Berlin, Germany, 2017; pp. 97–106.
Giorgio, I.; Culla, A.; Del Vescovo, D. Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 2009, 79, 859. [CrossRef]
Lumentut, M.; Howard, I. Effect of shunted piezoelectric control for tuning piezoelectric power harvesting system responses—Analytical techniques. Smart Mater. Struct. 2015, 24, 105029. [CrossRef]
Provenza, A.J.; Duffy, K.P. Experimental Methodology for Determining Turbomachinery Blade Damping Using Magnetic Bearing Excitation and Non-Contacting Optical Measurements. Avaliable online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100039314.pdf (accessed on 27 December 2018).
Pešek, L.; Vaněk, F.; Bula, V.; Cibulka, J. Excitation of blade vibration under rotation by synchronous electromagnet. Eng. Mech. 2011, 18, 249–257.
Duffy, K.P.; Choi, B.B.; Provenza, A.J.; Min, J.B.; Kray, N. Active piezoelectric vibration control of subscale composite fan blades. J. Eng. Gas Turbines Power 2013, 135, 011601. [CrossRef]
Kostka, P.; Holeczek, K.; Filippatos, A.; Hufenbach, W. Integration of health monitoring system for composite rotors. In Proceedings of the 18th International Conference on Composite Materials (ICCM18), Jeju Island, Korea, 21–26 August 2011.
Ruffini, V.; Schwingshackl, C.; Green, J. Experimental and analytical study of Coriolis effects in bladed disk. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015.
Brown, G.V.; Kielb, R.E.; Meyn, E.H.; Morris, R.E.; Posta, S.J. Lewis Research Center Spin Rig and Its Use in Vibration Analysis of Rotating Systems; Lewis Research Center: Cleveland, OH, USA, 1984.
Das, A.; Nighil, M.; Dutt, J.; Irretier, H. Vibration control and stability analysis of rotor-shaft system with electromagnetic exciters. Mech. Mach. Theory 2008, 43, 1295–1316. [CrossRef]
Scheurer, F. Balancing Device and Method. WO2001075412 A1, 11 October 2001.
Aenis, M.; Knopf, E.; Nordmann, R. Active magnetic bearings for the identification and fault diagnosis in turbomachinery. Mechatronics 2002, 12, 1011–1021. [CrossRef]
Min, J.B.; Duffy, K.P.; Choi, B.B.; Provenza, A.; Kray, N. Piezoelectric vibration damping study for rotating composite fan blades. In Proceedings of the 14th AIAA Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2012; pp. 23–26.
Simões, R.C.; Steffen, V.; Der Hagopian, J.; Mahfoud, J. Modal active vibration control of a rotor using piezoelectric stack actuators. J. Vib. Control 2007, 13, 45–64. [CrossRef]
Di Maio, D.; Ewins, D. Experimental measurements of out-of-plane vibrations of a simple blisk design using blade tip timing and scanning LDV measurement methods. Mech. Syst. Signal Process. 2012, 28, 517–527. [CrossRef]
Gude, M.; Filippatos, A.; Langkamp, A.; Hufenbach, W.; Kuschmierz, R.; Fischer, A.; Czarske, J. Model assessment of a composite mock-up bladed rotor based on its vibration response and radial expansion. Compos. Struct. 2015, 124, 394–401. [CrossRef].
Zielinski, M.; Ziller, G. Noncontact vibration measurements on compressor rotor blades. Meas. Sci. Technol. 2000, 11, 847. [CrossRef]
Georgiev, V.; Holík, M.; Kraus, V.; Krutina, A.; Kubín, Z.; Liška, J.; Poupa, M. The blade flutter measurement based on the blade tip timing method. In Proceedings of the 15th WSEAS International Conference on Systems, Corfu Island, Greece, 14–16 July 2011; pp. 14–16.
Di Maio, D.; Ewins, D. Applications of continuous tracking SLDV measurement methods to axially symmetric rotating structures using different excitation methods. Mech. Syst. Signal Process. 2010, 24, 3013–3036. [CrossRef]
Staszewski, W.J.; bin Jenal, R.; Klepka, A.; Szwedo, M.; Uhl, T. A Review of Laser Doppler Vibrometry for Structural Health Monitoring Applications. Key Eng. Mater. 2012, 518, 1–15. [CrossRef]
Polytec GmbH. Theory Manual of Polytec Scanning Vibrometer, 8th ed.; Polytec GmbH: Waldbronn, Germany, 2010.
Boedecker, S.; Dräbenstedt, A.; Heller, L.; Kraft, A.; Leonhardt, A.; Pape, C.; Ristau, S.; Reithmeier, E.; Rembe, C. Optical derotator for scanning vibrometer measurements on rotating objects. Proc. SPIE 2006, 6345, 63450M.
Vibrometer, P.S. Theory Manual; Polytec GmbH: Waldbronn, Germany, 2008.
Hufenbach, W.; Kostka, P.; Filippatos, A. Verfahren und Vorrichtung an Rotorsystemen. DE102014217363A1, 5 March 2013.
Philipp, K.; Filippatos, A.; Kuschmierz, R.; Langkamp, A.; Gude, M.; Fischer, A.; Czarske, J. Multi-sensor system for in-situ shape monitoring and damage identification of high-speed composite rotors. Mech. Syst. Signal Process. 2016, 76, 187–200. [CrossRef]
Gude, M.; Filippatos, A.; Langkamp, A.; Hufenbach, W.; Kuschmierz, R.; Fischer, A.; Czarske, J. Model assessment of a composite mock-up bladed rotor based on its vibration response and radial expansion. Compos. Struct. 2015, 124, 394–401. [CrossRef].
Wollmann, T.; Modler, N.; Dannemann, M.; Langkamp, A.; Nitschke, S.; Filippatos, A. Design and testing of composite compressor blades with focus on the vibration behaviour. Compos. Part A 2017, 92, 183–189. [CrossRef]
Pickelmann, L.; Pickelmann, L. Piezomechanics: An Introduction; TM. International, Ltd.: London, UK, 2003.
Lobontiu, N. Compliant Mechanisms: Design of Flexure Hinges; CRC Press: Boca Raton, FL, USA, 2002.
Cuntze, R.; Freund, A. The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Compos. Sci. Technol. 2004, 64, 343–377. [CrossRef]