aptasensor; aflatoxin M1; food safety; signal transduction; commercialization
Abstract :
[en] Aflatoxin M1 (AFM1) contamination in milk and dairy products poses a significant global concern due to its severe health risks to humans. Sensitive and specific detection of AFM1 has emerged as the most effective strategy for mitigating these health risks. Aptamers are regarded as ideal biorecognition elements for AFM1 monitoring owing to their small size, ease of production, excellent affinity and specificity, high stability, and low immunogenicity. Herein, we review the advancements in SeleX-based aptamer selection and the recent development of aptasensors for AFM1 from 2020 to 2025 for the first time. Additionally, the progress in signal transduction strategies, underlying mechanisms, and the design of portable devices are highlighted. Furthermore, we critically examine and summarize the prospects, challenges, and future trends in aptasensor technology, with a particular emphasis on its potential for real-world application and commercialization.
Disciplines :
Agriculture & agronomy Chemistry
Author, co-author :
Guo, Xiaodong; of science and technology
Zhang, Mengke; of science and technology
Wen, Xin
Zhang, Genxi; of science and technology
Zhang, Yue
Lou D, Xinhui; of science and technology
Wang, Mengzhi; of science and technology
Fauconnier, Marie-Laure ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES) ; of science and technology
Xie, Kaizhou; of science and technology
Language :
English
Title :
Aptamers for aflatoxin M1: from aptasensing technology to commercialization
Abnous, K., N. M., Danesh, M., Ramezani, M., Alibolandi, M. A., Nameghi, T. S., Zavvar, and S. M., Taghdisi. 2021. A novel colorimetric aptasensor for ultrasensitive detection of aflatoxin M1 based on the combination of CRISPR-Cas12a, rolling circle amplification and catalytic activity of gold nanoparticles. Analytica Chimica Acta1165:338549. doi: 10.1016/j.aca.2021.338549.
Ahmadi, S. F., M., Hojjatoleslamy, H., Kiani, and H., Molavi. 2022. Monitoring of Aflatoxin M1 in milk using a novel electrochemical aptasensor based on reduced graphene oxide and gold nanoparticles. Food Chemistry373 (Pt A):131321. doi: 10.1016/j.foodchem.2021.131321.
Al Mamun, M., Y. A., Wahab, M. M., Hossain, A., Hashem, and M. R., Johan. 2021. Electrochemical biosensors with aptamer recognition layer for the diagnosis of pathogenic bacteria: Barriers to commercialization and remediation. TrAC Trends in Analytical Chemistry145:116458. doi: 10.1016/j.trac.2021.116458.
Amiri, M., K., Nekoueian, and R. S., Saberi. 2021. Graphene-family materials in electrochemical aptasensors. Analytical and Bioanalytical Chemistry413 (3):673–99. doi: 10.1007/s00216-020-02915-y.
Aran, G. C., and C., Bayraç. 2023. Simultaneous dual-sensing platform based on aptamer-functionalized DNA hydrogels for visual and fluorescence detection of chloramphenicol and aflatoxin M1. Bioconjugate Chemistry34 (5):922–33. doi: 10.1021/acs.bioconjchem.3c00130.
Ardalan, S., and A., Ignaszak. 2024. Can electrochemical aptasensors achieve the commercial success of glucose biosensors?Advanced Sensor Research3 (4):2300132. doi: 10.1002/adsr.202300132.
Báez, D. F., T. P., Brito, L. C., Espinoza, A. M., Méndez-Torres, R., Sierpe, P., Sierra-Rosales, C. J., Venegas, C., Yáñez, and S., Bollo. 2021. Graphene-based sensors for small molecule determination in real samples. Microchemical Journal167:106303. doi: 10.1016/j.microc.2021.106303.
Bao, K., X., Liu, Q., Xu, B., Su, Z., Liu, H., Cao, and Q., Chen. 2021. Nanobody multimerization strategy to enhance the sensitivity of competitive ELISA for detection of ochratoxin A in coffee samples. Food Control.127:108167. doi: 10.1016/j.foodcont.2021.108167.
Bernalte, E., S., Arévalo, J., Pérez-Taborda, J., Wenk, P., Estrela, A., Avila, and M. D., Lorenzo. 2020. Rapid and on-site simultaneous electrochemical detection of copper, lead and mercury in the Amazon river. Sensors and Actuators B: Chemical307:127620. doi: 10.1016/j.snb.2019.127620.
Bi, X., L., Li, X., Liu, L., Luo, Z., Cheng, J., Sun, Z., Cai, J., Liu, and T., You. 2021. Inner filter effect-modulated ratiometric fluorescence aptasensor based on competition strategy for zearalenone detection in cereal crops: Using mitoxantrone as quencher of CdTe QDs@SiO2. Food Chemistry349:129171. doi: 10.1016/j.foodchem.2021.129171.
Cai, Y., G., Guo, Y., Fu, X., Huang, T., Wang, and T., Li. 2024. A fluorescent aptasensor based on functional graphene oxide and FRET strategy simultaneously detects Aflatoxins B1 and Aflatoxins M1. Chinese Journal of Analytical Chemistry52 (6):100408. doi: 10.1016/j.cjac.2024.100408.
Cao, H., D., Liang, K., Tang, Y., Sun, Y., Xu, M., Miao, and Y., Zhao. 2024. SERS and MRS signals engineered dual-mode aptasensor for simultaneous distinguishment of aflatoxin subtypes. Journal of Hazardous Materials462:132810. doi: 10.1016/j.jhazmat.2023.132810.
Che, Z. Y., X. Y., Wang, X., Ma, and S. N., Ding. 2021. Bipolar electrochemiluminescence sensors: From signal amplification strategies to sensing formats. Coordination Chemistry Reviews446:214116. doi: 10.1016/j.ccr.2021.214116.
Chen, X., Z., He, X., Huang, Z., Sun, H., Cao, L., Wu, S., Zhang, B. D., Hammock, and X., Liu. 2023b. Illuminating the path: Aggregation-induced emission for food contaminants detection. Critical Reviews in Food Science and Nutrition65 (5):856–83. doi: 10.1080/10408398.2023.2282677.
Chen, Q., M., Meng, W., Li, Y., Xiong, Y., Fang, and Q., Lin. 2023a. Emerging biosensors to detect aflatoxin M1 in milk and dairy products. Food Chemistry398:133848. doi: 10.1016/j.foodchem.2022.133848.
Chrouda, A., D., Ayed, K., Zinoubi, H., Majdoub, and N., Jaffrezic-Renault. 2022. Highly stable and ultra-sensitive Amperometric aptasensor based on pectin stabilized gold nanoparticles on graphene oxide modified GCE for the detection of aflatoxin M1. Food Chemistry Advances1:100068. doi: 10.1016/j.focha.2022.100068.
Dixon, T. A., T. C., Williams, and I. S., Pretorius. 2021. Sensing the future of bio-informational engineering. Nature Communications12 (1):388. doi: 10.1038/s41467-020-20764-2.
Dunn, M. R., R. M., Jimenez, and J. C., Chaput. 2017. Analysis of aptamer discovery and technology. Nature Reviews Chemistry1 (10):0076. doi: 10.1038/s41570-017-0076.
Eivazzadeh-Keihan, R., E., Bahojb Noruzi, E., Chidar, M., Jafari, F., Davoodi, A., Kashtiaray, M., Ghafori Gorab, S., Masoud Hashemi, S., Javanshir, R., Ahangari Cohan, et al.2022. Applications of carbon-based conductive nanomaterials in biosensors. Chemical Engineering Journal442:136183. doi: 10.1016/j.cej.2022.136183.
Elfadil, D., A., Lamaoui, F., Della Pelle, A., Amine, and D., Compagnone. 2021. Molecularly imprinted polymers combined with electrochemical sensors for food contaminants analysis. Molecules (Basel, Switzerland)26 (15):4607. doi: 10.3390/molecules26154607.
Fang, B., S., Xu, Y., Huang, F., Su, Z., Huang, H., Fang, J., Peng, Y., Xiong, and W., Lai. 2020. Gold nanorods etching-based plasmonic immunoassay for qualitative and quantitative detection of aflatoxin M1 in milk. Food Chemistry329:127160. doi: 10.1016/j.foodchem.2020.127160.
Gandhi, S., I., Banga, P. K., Maurya, and S. A., Eremin. 2018. A gold nanoparticle-single-chain fragment variable antibody as an immunoprobe for rapid detection of morphine by dipstick. RSC Advances8 (3):1511–8. doi: 10.1039/C7RA12810J.
Ge, G., T., Wang, Z., Liu, X., Liu, T., Li, Y., Chen, J., Fan, E., Bukye, X., Huang, and L., Song. 2023. A self-assembled DNA double-crossover-based fluorescent aptasensor for highly sensitivity and selectivity in the simultaneous detection of aflatoxin M1 and aflatoxin B1. Talanta265:124908. doi: 10.1016/j.talanta.2023.124908.
Guo, X., and M., Wang. 2024. Recent progress in optical and electrochemical aptasensor technologies for detection of aflatoxin B1. Critical Reviews in Food Science and Nutrition64 (33):13093–111. doi: 10.1080/10408398.2023.2260508.
Guo, L. L., Y. Y., Wang, Y. H., Pang, X. F., Shen, N. C., Yang, Y., Ma, and Y., Zhang. 2021. In situ growth of covalent organic frameworks TpBD on electrode for electrochemical determination of aflatoxin M1. Journal of Electroanalytical Chemistry881:114931. doi: 10.1016/j.jelechem.2020.114931.
Guo, X., F., Wen, N., Zheng, M., Saive, M. L., Fauconnier, and J., Wang. 2020. Aptamer-based biosensor for detection of mycotoxins. Frontiers in Chemistry8:195. doi: 10.3389/fchem.2020.00195.
Hamami, M., A., Mars, and N., Raouafi. 2021. Biosensor based on antifouling PEG/Gold nanoparticles composite for sensitive detection of aflatoxin M1 in milk. Microchemical Journal165:106102. doi: 10.1016/j.microc.2021.106102.
He, L., Z., Shen, J., Wang, J., Zeng, W., Wang, H., Wu, Q., Wang, and N., Gan. 2020. Simultaneously responsive microfluidic chip aptasensor for determination of kanamycin, aflatoxin M1, and 17β-estradiol based on magnetic tripartite DNA assembly nanostructure probes. Mikrochimica Acta187 (3):176. doi: 10.1007/s00604-020-4155-5.
Hejji, L., A., Azzouz, D., Kukkar, and K. H., Kim. 2023. Recent advancements in nanomaterials-based aptasensors for the detection of emerging contaminants in foodstuffs. TrAC Trends in Analytical Chemistry166:117194. doi: 10.1016/j.trac.2023.117194.
Hou, Y., B., Jia, P., Sheng, X., Liao, L., Shi, L., Fang, L., Zhou, and W., Kong. 2022. Aptasensors for mycotoxins in foods: Recent advances and future trends. Comprehensive Reviews in Food Science and Food Safety21 (2):2032–73. doi: 10.1111/1541-4337.12858.
Hou, T., N., Xu, W., Wang, L., Ge, and F., Li. 2019. Label-free and immobilization-free photoelectrochemical biosensing strategy using methylene blue in homogeneous solution as signal probe for facile DNA methyltransferase activity assay. Biosensors & Bioelectronics141:111395. doi: 10.1016/j.bios.2019.111395.
Huang, Y., D., Feng, X., Li, W., Li, J., Ren, and H., Zhong. 2024. Covalent organic frameworks assisted for food safety analysis. Critical Reviews in Food Science and Nutrition64 (30):11006–25. doi: 10.1080/10408398.2023.2230506.
Hui, Y., H., Peng, F., Zhang, L., Zhang, Y., Liu, A., Zhao, R., Jia, B., Wang, and Y., Song. 2022. A novel electrochemical aptasensor based on layer-by-layer assembly of DNA-Au@Ag conjugates for rapid detection of aflatoxin M1 in milk samples. Journal of Dairy Science105 (3):1966–77. doi: 10.3168/jds.2021-20931.
Jahangiri-Dehaghani, F., H. R., Zare, and Z., Shekari. 2020. Measurement of aflatoxin M1 in powder and pasteurized milk samples by using a label–free electrochemical aptasensor based on platinum nanoparticles loaded on Fe–based metal–organic frameworks. Food Chemistry310:125820. doi: 10.1016/j.foodchem.2019.125820.
Jalalian, S. H., P., Lavaee, M., Ramezani, N. M., Danesh, M., Alibolandi, K., Abnous, and S. M., Taghdisi. 2021. An optical aptasensor for aflatoxin M1 detection based on target-induced protection of gold nanoparticles against salt-induced aggregation and silica nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy246:119062. doi: 10.1016/j.saa.2020.119062.
Jalalian, S. H., M., Ramezani, N. M., Danesh, M., Alibolandi, K., Abnous, and S. M., Taghdisi. 2018. A novel electrochemical aptasensor for detection of aflatoxin M1 based on target-induced immobilization of gold nanoparticles on the surface of electrode. Biosensors & Bioelectronics117:487–92. doi: 10.1016/j.bios.2018.06.055.
Jia, M., X., Liao, L., Fang, B., Jia, M., Liu, D., Li, L., Zhou, and W., Kong. 2021. Recent advances on immunosensors for mycotoxins in foods and other commodities. TrAC Trends in Analytical Chemistry136:116193. doi: 10.1016/j.trac.2021.116193.
Jones, A., L., Dhanapala, R. N., Kankanamage, C. V., Kumar, and J. F., Rusling. 2020. Multiplexed immunosensors and immunoarrays. Analytical Chemistry92 (1):345–62. doi: 10.1021/acs.analchem.9b05080.
Ju, B., Q., Zhang, Z., Wang, Z. Q., Aw, P., Chen, B., Zhou, R., Wang, X., Ge, Q., Lv, L., Cheng, et al.2023. Infection with wild-type SARS-CoV-2 elicits broadly neutralizing and protective antibodies against omicron subvariants. Nature Immunology24 (4):690–9. doi: 10.1038/s41590-023-01449-6.
Kasoju, A., D., Shahdeo, A. A., Khan, N. S., Shrikrishna, S., Mahari, A. M., Alanazi, M. A., Bhat, J., Giri, and S., Gandhi. 2020. Fabrication of microfluidic device for Aflatoxin M1 detection in milk samples with specific aptamers. Scientific Reports10 (1):4627. doi: 10.1038/s41598-020-60926-2.
Kaur, G., S., Sharma, S., Singh, N., Bhardwaj, and A., Deep. 2022. Selective and sensitive electrochemical sensor for aflatoxin m1 with a molybdenum disulfide quantum dot/metal–organic framework nanocomposite. ACS Omega7 (21):17600–8. doi: 10.1021/acsomega.2c00126.
Kékedy–Nagy, L., and E. E., Ferapontova. 2019. Directional preference of DNA-mediated electron transfer in gold-tethered DNA duplexes: Is DNA a molecular rectifier?Angewandte Chemie (International ed. in English)58 (10):3048–52. doi: 10.1002/anie.201809559.
Khoshbin, Z., N., Davoodian, S. M., Taghdisi, and K., Abnous. 2022. Metal organic frameworks as advanced functional materials for aptasensor design. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy276:121251. doi: 10.1016/j.saa.2022.121251.
Kordasht, H. K., and M., Hasanzadeh. 2020. Specific monitoring of aflatoxin M1 in real samples using aptamer binding to DNFS based on turn-on method: A novel biosensor. Journal of Molecular Recognition: JMR33 (6):e2832. doi: 10.1002/jmr.2832.
Krissanaprasit, A., C. M., Key, S., Pontula, and T. H., LaBean. 2021. Self-assembling nucleic acid nanostructures functionalized with aptamers. Chemical Reviews121 (22):13797–868. doi: 10.1021/acs.chemrev.0c01332.
Kumar, M., A., Jalota, S. K., Sahu, and S., Haque. 2024. Therapeutic antibodies for the prevention and treatment of cancer. Journal of Biomedical Science31 (1):6. doi: 10.1186/s12929-024-00996-w.
Kurup, C. P., N. F., Mohd-Naim, and M. U., Ahmed. 2022. Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors. Critical Reviews in Biotechnology42 (5):794–812. doi: 10.1080/07388551.2021.1960792.
Lerdsri, J., J., Soongsong, P., Laolue, and J., Jakmunee. 2021. Reliable colorimetric aptasensor exploiting 72-Mers ssDNA and gold nanoprobes for highly sensitive detection of aflatoxin M1 in milk. Journal of Food Composition and Analysis102:103992. doi: 10.1016/j.jfca.2021.103992.
Li, H., C., Du, T., Guo, H., Zhou, Y., Zhou, X., Huang, Y. H., Zhang, S., Wang, X., Liu, L., Ma, et al.2024. Ratiometric electrochemical aptasensor based on split aptamer and Au-RGO for detection of Aflatoxin M1. Journal of Dairy Science107 (5):2748–59. doi: 10.3168/jds.2023-23864.
Li, R., L., Li, T., Huang, X., Liu, Q., Chen, G., Jin, and H., Cao. 2021. Gold nanoparticle-based colorimetric aptasensor for rapid detection of multiple mycotoxins in rice. Analytical Methods: Advancing Methods and Applications13 (47):5749–55. doi: 10.1039/D1AY01809D.
Li, Y., D., Liu, S., Meng, T., Chen, C., Liu, and T., You. 2022. Dual-ratiometric electrochemical aptasensor enabled by programmable dynamic range: Application for threshold-based detection of aflatoxin B1. Biosensors & Bioelectronics195:113634. doi: 10.1016/j.bios.2021.113634.
Liu, D., W., Li, C., Zhu, Y., Li, X., Shen, L., Li, X., Yan, and T., You. 2020. Recent progress on electrochemical biosensing of aflatoxins: A review. TrAC Trends in Analytical Chemistry133:115966. doi: 10.1016/j.trac.2020.115966.
Liu, R., F., Zhang, Y., Sang, I., Katouzian, S. M., Jafari, X., Wang, W., Li, J., Wang, and Z., Mohammadi. 2022a. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends in Food Science & Technology123:355–75. doi: 10.1016/j.tifs.2022.03.025.
Liu, R., F., Zhang, Y., Sang, M., Liu, M., Shi, and X., Wang. 2022b. Selection and characterization of DNA aptamers for constructing aptamer-AuNPs colorimetric method for detection of AFM1. Foods (Basel, Switzerland)11 (12):1802. doi: 10.3390/foods11121802.
Li, W., F., Xiao, X., Bai, and H., Xu. 2023a. Magnetic nanoparticles for food hazard factors sensing: Synthesis, modification and application. Chemical Engineering Journal465:142816. doi: 10.1016/j.cej.2023.142816.
Li, Z., Y., Yi, X., Luo, N., Xiong, Y., Liu, S., Li, R., Sun, Y., Wang, B., Hu, W., Chen, et al.2020. Development and clinical application of a rapid IgM‐IgG combined antibody test for SARS–CoV–2 infection diagnosis. Journal of Medical Virology92 (9):1518–24. doi: 10.1002/jmv.25727.
Lv, M., W., Zhou, H., Tavakoli, C., Bautista, J., Xia, Z., Wang, and X., Li. 2021. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosensors & Bioelectronics176:112947. doi: 10.1016/j.bios.2020.112947.
Ma, H., C., Ó’Fágáin, and R., O’Kennedy. 2020. Antibody stability: A key to performance-Analysis, influences and improvement. Biochimie177:213–25. doi: 10.1016/j.biochi.2020.08.019.
Malhotra, S., A. K., Pandey, Y. S., Rajput, and R., Sharma. 2014. Selection of aptamers for aflatoxin M1 and their characterization. Journal of Molecular Recognition: JMR27 (8):493–500. doi: 10.1002/jmr.2370.
Mao, L., H., Liu, L., Yao, W., Wen, M. M., Chen, X., Zhang, and S., Wang. 2022. Construction of a dual-functional CuO/BiOCl heterojunction for high-efficiently photoelectrochemical biosensing and photoelectrocatalytic degradation of aflatoxin B1. Chemical Engineering Journal429:132297. doi: 10.1016/j.cej.2021.132297.
Negahdary, M., 2020. Electrochemical aptasensors based on the gold nanostructures. Talanta216:120999. doi: 10.1016/j.talanta.2020.120999.
Nguyen, B. H., L., Dai Tran, Q. P., Do, H. L., Nguyen, N. H., Tran, and P. X., Nguyen. 2013. Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor. Materials Science & Engineering. C, Materials for Biological Applications33 (4):2229–34. doi: 10.1016/j.msec.2013.01.044.
Ni, S., Z., Zhuo, Y., Pan, Y., Yu, F., Li, J., Liu, L., Wang, X., Wu, D., Li, Y., Wan, et al.2021. Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Applied Materials & Interfaces13 (8):9500–19. doi: 10.1021/acsami.0c05750.
Niazi, S., I. M., Khan, Y., Yu, I., Pasha, Y., Lv, A., Mohsin, B. S., Mushtaq, and Z., Wang. 2020. A novel fluorescent aptasensor for aflatoxin M1 detection using rolling circle amplification and g-C3N4 as fluorescence quencher. Sensors and Actuators B: Chemical315:128049. doi: 10.1016/j.snb.2020.128049.
Nieuwenhof, F. F. J., J. D., Hoolwerf, and J. W., Van Den Bedem. 1990. Evaluation of an enzyme immunoassay for the determination of aflatoxin M1 in milk using antibody-coated polystyrene beads. Milchwissenschaft455 (9):584–8.
Oduola, A. A., P., Callewaert, F., Devlieghere, B. H., Bluhm, and G. G., Atungulu. 2022. Growth and Aflatoxin B1 biosynthesis rate of model Aspergillus flavus NRRL 3357 exposed to selected infrared wavelengths. Food Control.141:109204. doi: 10.1016/j.foodcont.2022.109204.
Pan, R., G., Li, S., Liu, X., Zhang, J., Liu, Z., Su, and Y., Wu. 2021. Emerging nanolabels-based immunoassays: Principle and applications in food safety. TrAC Trends in Analytical Chemistry145:116462. doi: 10.1016/j.trac.2021.116462.
Pang, Y. H., L. L., Guo, X. F., Shen, N. C., Yang, and C., Yang. 2020. Rolling circle amplified DNAzyme followed with covalent organic frameworks: Cascade signal amplification of electrochemical ELISA for aflatoxin M1 sensing. Electrochimica Acta341:136055. doi: 10.1016/j.electacta.2020.136055.
Peltomaa, R., R., Barderas, E., Benito-Peña, and M. C., Moreno-Bondi. 2022. Recombinant antibodies and their use for food immunoanalysis. Analytical and Bioanalytical Chemistry414 (1):193–217. doi: 10.1007/s00216-021-03619-7.
Pundir, M., S., Papagerakis, M. C., De Rosa, N., Chronis, K., Kurabayashi, S., Abdulmawjood, M. E. P., Prince, L., Lobanova, X., Chen, P., Papagerakis, et al.2022. Emerging biotechnologies for evaluating disruption of stress, sleep, and circadian rhythm mechanism using aptamer-based detection of salivary biomarkers. Biotechnology Advances59:107961. doi: 10.1016/j.biotechadv.2022.107961.
Qiao, Q., X., Guo, F., Wen, L., Chen, Q., Xu, N., Zheng, J., Cheng, X., Xue, and J., Wang. 2021. Aptamer-based fluorescence quenching approach for detection of aflatoxin M1 in milk. Frontiers in Chemistry9:653869. doi: 10.3389/fchem.2021.653869.
Rahmani, H. R., M., Adabi, K. P., Bagheri, and G., Karim. 2021. Development of electrochemical aptasensor based on gold nanoparticles and electrospun carbon nanofibers for the detection of aflatoxin M1 in milk. Journal of Food Measurement and Characterization15 (2):1826–33. doi: 10.1007/s11694-020-00780-y.
Ramalingam, S., A., Elsayed, and A., Singh. 2023. An Aflatoxin-M1 biochip using graphene quantum dot-gold hybrid nanoparticles. Food Chemistry403:134302. doi: 10.1016/j.foodchem.2022.134302.
Sameiyan, E., Z., Khoshbin, P., Lavaee, M., Ramezani, M., Alibolandi, K., Abnous, and S. M., Taghdisi. 2021. A bivalent binding aptamer-cDNA on MoS2 nanosheets based fluorescent aptasensor for detection of aflatoxin M1. Talanta235:122779. doi: 10.1016/j.talanta.2021.122779.
Sharma, A., M., Majdinasab, R., Khan, Z., Li, A., Hayat, and J. L., Marty. 2021. Nanomaterialsin fluorescence-based biosensors: Defining key roles. Nano-Structures & Nano-Objects27:100774. doi: 10.1016/j.nanoso.2021.100774.
Shelash Al-Hawary, S. I., I. B., Sapaev, R. H., Althomali, E. A., Musad Saleh, K., Qadir, R. M., Romero-Parra, G., Ismael Ouda, B. M., Hussien, and M. F., Ramadan. 2024. Recent progress in screening of mycotoxins in foods and other commodities using MXenes-based nanomaterials. Critical Reviews in Analytical Chemistry54 (8):3066–82. doi: 10.1080/10408347.2023.2222412.
Shoaib, M., H., Li, I. M., Khan, M. M., Hassan, M., Zareef, S., Niazi, and Q., Chen. 2024. Emerging MXene-based aptasensors: A paradigm shift in food safety detection. Trends in Food Science & Technology151:104635. doi: 10.1016/j.tifs.2024.104635.
Shoaib, M., H., Li, M., Zareef, I. M., Khan, M. W., Iqbal, S., Niazi, H., Raza, Y., Yan, and Q., Chen. 2025. Recent advances in food safety detection: Split aptamer-based biosensors development and potential applications. Journal of Agricultural and Food Chemistry73 (8):4397–424. doi: 10.1021/acs.jafc.4c06338.
Song, Y., M., Xu, X., Liu, Z., Li, C., Wang, Q., Jia, Z., Zhang, and M., Du. 2021. A label-free enrofloxacin electrochemical aptasensor constructed by a semiconducting CoNi-based metal–organic framework (MOF). Electrochimica Acta368:137609. doi: 10.1016/j.electacta.2020.137609.
Su, D., H., Li, X., Yan, Y., Lin, and G., Lu. 2021. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC Trends in Analytical Chemistry134:116126. doi: 10.1016/j.trac.2020.116126.
Su, Z., G., Zhao, and W., Dou. 2020. Determination of trace aflatoxin M1 (AFM1) residue in milk by an immunochromatographic assay based on (PEI/PSS) 4 red silica nanoparticles. Mikrochimica Acta187 (12):658. doi: 10.1007/s00604-020-04636-6.
Talan, A., A., Mishra, S. A., Eremin, J., Narang, A., Kumar, and S., Gandhi. 2018. Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosensors & Bioelectronics105:14–21. doi: 10.1016/j.bios.2018.01.013.
Tang, X., G., Catanante, X., Huang, J. L., Marty, H., Wang, Q., Zhang, and P., Li. 2022. Screen-printed electrochemical immunosensor based on a novel nanobody for analyzing aflatoxin M1 in milk. Food Chemistry383:132598. doi: 10.1016/j.foodchem.2022.132598.
Tang, X., J., Wu, W., Wu, Z., Zhang, W., Zhang, Q., Zhang, W., Zhang, X., Chen, and P., Li. 2020. Competitive-type pressure-dependent immunosensor for highly sensitive detection of diacetoxyscirpenol in wheat via monoclonal antibody. Analytical Chemistry92 (5):3563–71. doi: 10.1021/acs.analchem.9b03933.
Umapathi, R., S. M., Ghoreishian, S., Sonwal, G. M., Rani, and Y. S., Huh. 2022. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coordination Chemistry Reviews453:214305. doi: 10.1016/j.ccr.2021.214305.
Van Dyck, C. H., 2018. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: Pitfalls and promise. Biological Psychiatry83 (4):311–9. doi: 10.1016/j.biopsych.2017.08.010.
Wang, L., K., He, X., Wang, Q., Wang, H., Quan, P., Wang, and X., Xu. 2022. Recent progress in visual methods for aflatoxin detection. Critical Reviews in Food Science and Nutrition62 (28):7849–65. doi: 10.1080/10408398.2021.1919595.
Wang, M., L., Shan, X., Kong, R., Pan, H., Wang, J., Zhou, and J., Ming. 2023. A label-free fluorescence strategy for analysis of aflatoxin M1 by self-protected DNAzyme and aptamer recognition triggered DNA walker cascade amplification. Microchemical Journal186:108356. doi: 10.1016/j.microc.2022.108356.
Wang, Z., S., Wu, J., Wang, A., Yu, and G., Wei. 2019. Carbon nanofiber-based functional nanomaterials for sensor applications. Nanomaterials (Basel, Switzerland)9 (7):1045. doi: 10.3390/nano9071045.
Wang, S., Z., Zhou, M., Cao, Y., Pan, Y., Zhang, Y., Fang, Q., Sun, X., Lei, and T., Le. 2024. A comprehensive review of aptamer screening and application for lateral flow strip: Current status and future perspectives. Talanta275:126181. doi: 10.1016/j.talanta.2024.126181.
Wei, X., P., Ma, K., Imran Mahmood, Y., Zhang, and Z., Wang. 2023. Screening of a high-affinity aptamer for aflatoxin M1 and development of its colorimetric aptasensor. Journal of Agricultural and Food Chemistry71 (19):7546–56. doi: 10.1021/acs.jafc.3c01586.
Wu, Q., W. S., Miao, Y. D., Zhang, H. J., Gao, and D., Hui. 2020. Mechanical properties of nanomaterials: A review. Nanotechnology Reviews9 (1):259–73. doi: 10.1515/ntrev-2020-0021.
Xie, Y., J., Li, Z., Peng, Y., Yao, and S., Chen. 2020. A first-principle study on the atomic-level mechanism of surface effect in nanoparticles. Materials Today Communications24:100948. doi: 10.1016/j.mtcomm.2020.100948.
Xing, K. Y., S., Shan, D. F., Liu, and W. H., Lai. 2020. Recent advances of lateral flow immunoassay for mycotoxins detection. TrAC Trends in Analytical Chemistry133:116087. doi: 10.1016/j.trac.2020.116087.
Xiong, Y., Y., Leng, X., Li, X., Huang, and Y., Xiong. 2020. Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples. TrAC Trends in Analytical Chemistry126:115861. doi: 10.1016/j.trac.2020.115861.
Xu, W., W., He, Z., Du, L., Zhu, K., Huang, Y., Lu, and Y., Luo. 2021. Functional nucleic acid nanomaterials: Development, properties, and applications. Angewandte Chemie (International ed. in English)60 (13):6890–918. doi: 10.1002/anie.201909927.
Xue, R., Y. S., Liu, S. L., Huang, and G. Y., Yang. 2023. Recent progress of covalent organic frameworks applied in electrochemical sensors. ACS Sensors8 (6):2124–48. doi: 10.1021/acssensors.3c00269.
Yadav, K., K., Moovendaran, N., Dhenadhayalan, S. F., Lee, M. K., Leung, and R., Sankar. 2023. From food toxins to biomarkers: Multiplexed detection of aflatoxin B1 and aflatoxin M1 in milk and human serum using PEGylated ternary transition metal sulfides. Sensors and Actuators Reports5:100156. doi: 10.1016/j.snr.2023.100156.
Yang, D., Y., Hui, Y., Liu, W., Wang, C., He, A., Zhao, L., Wei, and B., Wang. 2024. Novel dual-recognition electrochemical biosensor for the sensitive detection of AFM1 in milk. Food Chemistry433:137362. doi: 10.1016/j.foodchem.2023.137362.
Yang, K., N. M., Mitchell, S., Banerjee, Z., Cheng, S., Taylor, A. M., Kostic, I., Wong, S., Sajjath, Y., Zhang, J., Stevens, et al.2023. A functional group–guided approach to aptamers for small molecules. Science (New York, N.Y.)380 (6648):942–8. doi: 10.1126/science.abn9859.
Yu, Z., C., Qiu, L., Huang, Y., Gao, and D., Tang. 2023. Microelectromechanical microsystems-supported photothermal immunoassay for point-of-care testing of aflatoxin B1 in foodstuff. Analytical Chemistry95 (8):4212–9. doi: 10.1021/acs.analchem.2c05617.
Zahra, Q. U. A., X., Fang, Z., Luo, S., Ullah, S., Fatima, S., Batool, B., Qiu, and F., Shahzad. 2023. Graphene based nanohybrid aptasensors in environmental monitoring: Concepts, design and future outlook. Critical Reviews in Analytical Chemistry53 (7):1433–54. doi: 10.1080/10408347.2022.2025758.
Zahra, Q. U. A., S. A. H., Mohsan, F., Shahzad, M., Qamar, B., Qiu, Z., Luo, and S. A., Zaidi. 2022. Progress in smartphone-enabled aptasensors. Biosensors & Bioelectronics215:114509. doi: 10.1016/j.bios.2022.114509.
Zavvar, T. S., Z., Khoshbin, M., Ramezani, M., Alibolandi, K., Abnous, and S. M., Taghdisi. 2022. CRISPR/Cas-engineered technology: Innovative approach for biosensor development. Biosensors & Bioelectronics214:114501. doi: 10.1016/j.bios.2022.114501.
Zhang, M., and X., Guo. 2022a. Gold/platinum bimetallic nanomaterials for immunoassay and immunosensing. Coordination Chemistry Reviews465:214578. doi: 10.1016/j.ccr.2022.214578.
Zhang, M., and X., Guo. 2022b. Emerging strategies in fluorescent aptasensor toward food hazard aflatoxins detection. Trends in Food Science & Technology129:621–33. doi: 10.1016/j.tifs.2022.11.013.
Zhang, M., X., Guo, and J., Wang. 2023. Advanced biosensors for mycotoxin detection incorporating miniaturized meters. Biosensors & Bioelectronics224:115077. doi: 10.1016/j.bios.2023.115077.
Zhang, Y., Y., Huang, Z., Yue, H., Fan, and S., Wu. 2021a. Preparation and application of aptamer-functionalized sorbent for the analysis of ultra-trace aflatoxin M1 and analogues in milk. Microchemical Journal166:106179. doi: 10.1016/j.microc.2021.106179.
Zhang, H. W., H. K., Li, Z. Y., Han, R., Yuan, and H., He. 2022. Incorporating fullerenes in nanoscale metal–organic matrixes: An ultrasensitive platform for impedimetric aptasensing of tobramycin. ACS Applied Materials & Interfaces14 (5):7350–7. doi: 10.1021/acsami.1c23320.
Zhang, Y., Y., Zhu, Z., Zeng, G., Zeng, R., Xiao, Y., Wang, Y., Hu, L., Tang, and C., Feng. 2021b. Sensors for the environmental pollutant detection: Are we already there?Coordination Chemistry Reviews431:213681. doi: 10.1016/j.ccr.2020.213681.
Zhao, Y., L., Li, X., Yan, L., Wang, R., Ma, X., Qi, S., Wang, and X., Mao. 2022. Emerging roles of the aptasensors as superior bioaffinity sensors for monitoring shellfish toxins in marine food chain. Journal of Hazardous Materials421:126690. doi: 10.1016/j.jhazmat.2021.126690.
Zhao, Q., D., Lu, G., Zhang, D., Zhang, and X., Shi. 2021. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta223 (Pt 1):121722. doi: 10.1016/j.talanta.2020.121722.
Zhou, T., Y., Wang, T., Li, H., Li, C., Yang, D., Sun, D., Wang, C., Liu, and J., Che. 2021. Fabricating magnetic hydrophilic molecularly imprinted resin with enhanced adsorption and recognition performance for targeted detecting chlorophenols in environmental water. Chemical Engineering Journal420:129904. doi: 10.1016/j.cej.2021.129904. s
Zhu, C., Y., Wang, H., Tan, Y., Yang, X., Wang, and X., Liu. 2025. Ratiometric electrochemical and impedimetric dual-mode aptasensor based on thionine-functionalized Ti3C2Tx MXene/Pt and Au nanoparticle composites for reliable detection of aflatoxin B1. Sensors and Actuators B: Chemical423:136758. doi: 10.1016/j.snb.2024.136758.
Zon, G., 2022. Recent advances in aptamer applications for analytical biochemistry. Analytical Biochemistry644:113894. doi: 10.1016/j.ab.2020.113894.
Zorainy, M. Y., M. G., Alalm, S., Kaliaguine, and D. C., Boffito. 2021. Revisiting the MIL-101 metal–organic framework: Design, synthesis, modifications, advances, and recent applications. Journal of Materials Chemistry A9 (39):22159–217. doi: 10.1039/D1TA06238G.