[en] The calculated dynamic response of an excited rotating system can be significantly affected by uncertainties in its mechanical properties, such as mass, stiffness, geometrical imperfections, or loadings. For this reason, it is essential to understand and quantify the influence of uncertain parameters on the predicted rotor response. This paper aims to optimize the propagation of random input uncertainties for a rotordynamic problem and assess their influence on the dynamic behaviour of an unbalanced rotor. The Harmonic balance method (HBM) and a non-intrusive Polynomial Chaos Expansion (PCE) are used to evaluate the stochastic response of a finite element rotor. The proposed stochastic approach is based on a numerical quadrature calculation of integrals for finding the coefficients of the PCE. The method is initially applied to evaluate the stochastic response of a linear rotodynamic system, leading to the original concept of stochastic Campbell diagram and further extended to nonlinear rotordynamic problems, using the Asymptotic Numerical Method (ANM).
Peradotto, Edoardo; Department of Aerospace Engineering, Politecnico di Torino, École Centrale de Lyon, Turin, Italy
Salles, Loïc ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Vibration University Technology Center, Imperial College London, London, United Kingdom
Panunzio, Alfonso M.; Laboratoire MSSMat, École Centrale de Paris, Châtenay-Malabry, France
Schwingshackl, Christoph; Vibration University Technology Center, Imperial College London, London, United Kingdom
Language :
English
Title :
Stochastic methods for nonlinear rotordynamics with uncertainties
Metropolis, N., and Ulam, S., 1949. "The Monte Carlo Method". Journal of the American statistical association, 44(247), pp. 335-341.
Ghanem, R. G., Spanos, P. D., 2003. Stochastic finite elements: a spectral approach. Courier Dover Publications, Dover, New York.
Xiu, D., 2010. Numerical Methods for Stochastic Computations. Princeton University Press.
Wiener, N., 1938. "The Homogeneous Chaos". American Journal of Mathematics, 60(4), pp. 897-936.
Xiu, D., Karniadakis, G. E., 2002. "The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations". SIAM J. Sci. Comput., 24(2), Feb., pp. 619-644.
Chantrasmi, T., Doostan, A., and Iaccarino, G., 2009. "Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces". Journal of Computational Physics, 228(19), pp. 7159-7180.
Wan, X., Karniadakis, G. E., 2005. "An Adaptive Multi-element Generalized Polynomial Chaos Method for Stochastic Differential Equations". J. Comput. Phys., 209(2), Nov., pp. 617-642.
Blatman, G., and Sudret, B., 2011. "Adaptive sparse polynomial chaos expansion based on least angle regression". J. Comput. Phys., 230(6), Mar., pp. 2345-2367.
Didier, J., Sinou, J.-J., and Faverjon, B., 2013. "Nonlinear vibrations of a mechanical system with non-regular non linearities and uncertainties". Communications in Nonlinear Science and Numerical Simulation, 18(11), pp. 3250-3270.
Le Mâitre, O. P., and Knio, O. M., 2010. Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Series: Scientific computation. Springer, Dordrecht, Heidelberg, London.
Code Aster documentation.
OpenTURNS documentation.
Cochelin, F. d. d., 1994. "A path-following technique via an asymptotic-numerical method". Computers & Structures, 53(5), pp. 1181-1192.
Smolyak, S., 1963. "Quadrature and interpolation formulas for tensor products of certain classes of functions". Soviet Mathematics, Doklady, 4, pp. 240-243.
Brams, C., 2013. "Spectral methods for uncertainty quantification". Bsc. thesis, Technical University of Denmark.
Kaarnioja, V., 2013. "Smolyak Quadrature". Master's thesis, University of Helsinki.
Didier, J., Faverjon, B., and Sinou, J.-J., 2012. "Analyzing the dynamic response of a rotor system under uncertain parameters by Polynomial Chaos Expansion". Journal of Vibration and Control, 18(5), pp. 587-607.
Damil, N., and Potier-Ferry, M., 1990. "A new method to compute perturbed bifurcations: application to the buckling of imperfect elastic structures". International Journal of Engineering Science, 28(9), pp. 943-957.
Cochelin, B., and Vergez, C., 2009. "A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions". Journal of Sound and Vibration, 324(12), pp. 243-262.
Allgower, E. L., and Georg, K., 2003. Introduction to numerical continuation methods, Vol. 45. SIAM.
Lazarus, A., and Thomas, O., 2010. "A harmonic-based method for computing the stability of periodic solutions of dynamical systems". Comptes Rendus Mécanique, 338(9), pp. 510-517.
Moussi, E. H., Bellizzi, S., Cochelin, B., and Nistor, I., 2012. "Nonlinear normal modes of a two degree of freedom oscillator with a bilateral elastic stop". In 18 Symposium Vibrations Chocs et Bruit.
Karkar, S., Cochelin, B., and Vergez, C, 2013. "A highorder, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of nonpolynomial nonlinearities". Journal of Sound and Vibration, 332(4), pp. 968-977.
Zahrouni, H., Aggoune, W., Brunelot, J., and Potier-Ferry, M., 2004. "Asymptotic Numerical Method for strong nonlinearities". Revue Européenne des Éléments Finis, 13(1-2), pp. 97-118.