[en] Non-isocyanate polyurethane foams (NIPUFs) offer a safer, more sustainable alternative to conventional isocyanate-based foams. However, polyhydroxyurethane-type NIPUFs, despite containing covalent adaptable bonds, require harsh reprocessing conditions (160–170 °C for several hours), which limits practical recyclability due to unwanted side reactions. In this work, we introduce cystamine-based dynamic disulfide bonds into self-blown NIPUFs, enabling effective reprocessing at significantly milder conditions (as low as 90 °C) without requiring catalysts or generating any side reactions. Critically, the combination of dynamic disulfide chemistry with NIPU hydroplasticization synergistically enhances bond exchange dynamics, accelerating the foam-to-film transformation under gentle, cost-efficient conditions. This powerful strategy allows the resulting films to be repurposed into high-performance adhesives, showing lap-shear strengths comparable to cyanoacrylate thermoset formulations on stainless steel and glass–steel interfaces, and exceeding those of tested commercial polyurethane thermoset and hot-melt adhesives. Notably, the adhesives also demonstrate strong adhesion, in the same range as benchmarks, on glass and nylon fabrics. Furthermore, the cystamine-containing NIPU adhesives exhibit fast, heat-triggered debonding and are reusable across multiple cycles without notable performance loss. This study presents a versatile and scalable approach to NIPUF design, where the synergistic effect of hydroplasticization and dynamic disulfide bonds enables facile, efficient recycling and repurposing into adhesives—broadening application potential and extending material lifespan.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège [BE] CERM - Center for Education and Research on Macromolecules - ULiège [BE]
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Lechuga Islas, Victor Daniel ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; Walloon Excellence [ WEL] Research Institute - Wavre - Belgium
Gillissen, Emeline ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; Walloon Excellence [ WEL] Research Institute - Wavre - Belgium
Bourguignon, Maxime ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium
Grignard, Bruno ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; University of Liège [ULiège] - FRITCO2T Platform - Belgium
Detrembleur, Christophe ; University of Liège [ULiège] - Complex and Entangled Systems from Atoms to Materials [CESAM] Research Unit - Center for Education and Research on Macromolecules [CERM] - Belgium ; Walloon Excellence [ WEL] Research Institute - Wavre - Belgium
Language :
English
Title :
Foam-to-adhesive recycling of self-blown non-isocyanate polyurethane foams facilitated by integration of disulfide exchangeable bonds and moisture
Publication date :
15 July 2025
Journal title :
Chemical Engineering Journal
ISSN :
1385-8947
eISSN :
1873-3212
Publisher :
Elsevier
Volume :
516
Pages :
163998
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fund for Scientific Research Walloon region
Funding text :
The authors thank the Region Wallonne for funding the Win2Wal project \u201CECOFOAM\u201D (convention 2010130) and the FRFS-WEL-T Advanced Grant project \u201CChemistry\u201D (convention WEL-T-CR-2023 A). Christophe Detrembleur is FNRS Research Director and thanks the \u201CFonds de la Recherche Scientifique (F.R.S.-FNRS, Belgium) for funding. A preprint of this article appeared on ChemRxiv at DOI: 10.26434/chemrxiv-2025-hl2k7. Patent pending (WO2023/104362: Self-blowing isocyanate-free polyurethane foams).
Commentary :
A preprint of this article appeared on ChemRxiv at DOI: 10.26434/ chemrxiv-2025-hl2k7
Delavarde, A., Savin, G., Derkenne, P., Boursier, M., Morales-Cerrada, R., Nottelet, B., Pinaud, J., Caillol, S., Sustainable polyurethanes: toward new cutting-edge opportunities. Prog. Polym. Sci., 151, 2024, 101805, 10.1016/j.progpolymsci.2024.101805.
Liang, C., Gracida-Alvarez, U.R., Gallant, E.T., Gillis, P.A., Marques, Y.A., Abramo, G.P., Hawkins, T.R., Dunn, J.B., Material flows of polyurethane in the United States. Environ. Sci. Technol. 55 (2021), 14215–14224, 10.1021/acs.est.1c03654.
Niesiobędzka, J., Datta, J., Challenges and recent advances in bio-based isocyanate production. Green Chem. 25 (2023), 2482–2504, 10.1039/D2GC04644J.
Peyrton, J., Avérous, L., Structure-properties relationships of cellular materials from biobased polyurethane foams. Mater. Sci. Eng. R. Rep., 145, 2021, 100608, 10.1016/j.mser.2021.100608.
Ates, M., Karadag, S., Eker, A.A., Eker, B., Polyurethane foam materials and their industrial applications. Polym. Int. 71 (2022), 1157–1163, 10.1002/PI.6441.
Monie, F., Vidil, T., Grignard, B., Cramail, H., Detrembleur, C., Self-foaming polymers: Opportunities for the next generation of personal protective equipment. Mater. Sci. Eng. R. Rep., 145, 2021, 100628, 10.1016/j.mser.2021.100628.
Liu, B., Westman, Z., Richardson, K., Lim, D., Stottlemyer, A.L., Farmer, T., Gillis, P., Vlcek, V., Christopher, P., Abu-Omar, M.M., Opportunities in closed-loop molecular recycling of end-of-life polyurethane. ACS Sustain. Chem. Eng. 11 (2023), 6114–6128, 10.1021/acssuschemeng.2c07422.
Sheppard, D.T., Jin, K., Hamachi, L.S., Dean, W., Fortman, D.J., Ellison, C.J., Dichtel, W.R., Reprocessing postconsumer polyurethane foam using carbamate exchange catalysis and twin-screw extrusion. ACS Cent. Sci. 6 (2020), 921–927, 10.1021/acscentsci.0c00083.
Sun, M., Sheppard, D.T., Brutman, J.P., Alsbaiee, A., Dichtel, W.R., Green catalysts for reprocessing thermoset polyurethanes. Macromolecules 56 (2023), 6978–6987, 10.1021/acs.macromol.3c01116.
Quienne, B., Cuminet, F., Pinaud, J., Semsarilar, M., Cot, D., Ladmiral, V., Caillol, S., Upcycling biobased polyurethane foams into thermosets: toward the closing of the loop. ACS Sustain. Chem. Eng. 10 (2022), 7041–7049, 10.1021/acssuschemeng.2c00950.
Kim, S., Swartz, J.L., Sala, O., Sun, M., Oanta, A.K., Brutman, J.P., Alsbaiee, A., Dichtel, W.R., Thermal activation of Zirconium(IV) acetylacetonate catalysts to enhance polyurethane synthesis and reprocessing. Macromolecules 57 (2024), 6759–6768, 10.1021/acs.macromol.4c00625.
Bakkali-Hassani, C., Berne, D., Ladmiral, V., Caillol, S., Transcarbamoylation in polyurethanes: underestimated exchange reactions?. Macromolecules 55 (2022), 7974–7991, 10.1021/acs.macromol.2c01184.
Bandegi, A., Montemayor, M., Manas-Zloczower, I., Vitrimerization of rigid thermoset polyurethane foams: A mechanochemical method to recycle and reprocess thermosets. Polym. Adv. Technol. 33 (2022), 3750–3758, 10.1002/PAT.5827.
Kim, S., Li, K., Alsbaiee, A., Brutman, J.P., Dichtel, W.R., Circular Reprocessing of thermoset polyurethane foams. Adv. Mater., 35, 2023, 2305387, 10.1002/adma.202305387.
Zhong, K., Guan, Q., Sun, W., Qin, M., Liu, Z., Zhang, L., Xu, J., Zhang, F., You, Z., Hot-melt adhesive based on dynamic oxime-carbamate bonds. Ind. Eng. Chem. Res. 60 (2021), 6925–6931, 10.1021/acs.iecr.1c00768.
Kassem, H., Samat, E.H., Imbernon, L., Du Prez, F.E., Foam‐to‐foam recycling potential of PU‐foams by integration of amino esters. Adv. Funct. Mater., 34, 2024, 2409263, 10.1002/adfm.202409263.
Unal, K., Maes, D., Stricker, L., Lorenz, K., Du Prez, F.E., Imbernon, L., Winne, J.M., Foam-to-elastomer recycling of polyurethane materials through incorporation of dynamic covalent TAD-indole linkages. ACS Appl. Polym. Mater. 6 (2024), 2604–2615, 10.1021/acsapm.3c02791.
Liu, W., Chang, Y.C., Hao, C., Liu, H., Zhang, J., Mielewski, D., Kiziltas, A., Improving thermal reprocessability of commercial flexible polyurethane foam by vitrimer modification of the hard segments. ACS Appl. Polym. Mater. 4 (2022), 5056–5067, 10.1021/acsapm.2c00595.
Zhou, H., Liu, C., Huang, J., Li, Y., Zhu, G., Lu, C., Yao, J., Xu, H., Zhao, P., High-performance, high biobased content, self-repairable, and recyclable biobased photopolymers for UV-curing 3D printing. Ind. Crop. Prod., 224, 2025, 120299, 10.1016/J.INDCROP.2024.120299.
Zeng, Y., Li, J., Hu, C., Yang, B., Ning, Z., Sustainable polyurethane networks with high self-healing and mechanical properties based on dual dynamic covalent bonds. Macromol. Chem. Phys., 224, 2023, 2200322, 10.1002/MACP.202200322.
Blattmann, H., Lauth, M., Mülhaupt, R., Flexible and bio‐based nonisocyanate polyurethane (NIPU) foams. Macromol. Mater. Eng. 301 (2016), 944–952, 10.1002/mame.201600141.
Grignard, B., Thomassin, J.-M., Gennen, S., Poussard, L., Bonnaud, L., Raquez, J.-M., Dubois, P., Tran, M.-P., Park, C.B., Jerome, C., Detrembleur, C., CO 2 -blown microcellular non-isocyanate polyurethane (NIPU) foams: from bio- and CO 2 -sourced monomers to potentially thermal insulating materials. Green Chem. 18 (2016), 2206–2215, 10.1039/C5GC02723C.
Dong, T., Dheressa, E., Wiatrowski, M., Pereira, A.P., Zeller, A., Laurens, L.M.L., Pienkos, P.T., Assessment of plant and microalgal oil-derived nonisocyanate polyurethane products for potential commercialization. ACS Sustain. Chem. Eng. 9 (2021), 12858–12869, 10.1021/acssuschemeng.1c03653.
Cornille, A., Dworakowska, S., Bogdal, D., Boutevin, B., Caillol, S., A new way of creating cellular polyurethane materials: NIPU foams. Eur. Polym. J. 66 (2015), 129–138, 10.1016/j.eurpolymj.2015.01.034.
Cornille, A., Guillet, C., Benyahya, S., Negrell, C., Boutevin, B., Caillol, S., Room temperature flexible isocyanate-free polyurethane foams. Eur. Polym. J. 84 (2016), 873–888, 10.1016/j.eurpolymj.2016.05.032.
Coste, G., Berne, D., Ladmiral, V., Negrell, C., Caillol, S., Non-isocyanate polyurethane foams based on six-membered cyclic carbonates. Eur. Polym. J., 176, 2022, 111392, 10.1016/j.eurpolymj.2022.111392.
Purwanto, N.S., Chen, Y., Wang, T., Torkelson, J.M., Rapidly synthesized, self-blowing, non-isocyanate polyurethane network foams with reprocessing to bulk networks via hydroxyurethane dynamic chemistry. Polymer (Guildf), 272, 2023, 125858, 10.1016/j.polymer.2023.125858.
Makarov, M., Bourguignon, M., Grignard, B., Detrembleur, C., Advancing non-isocyanate polyurethane foams: exo -vinylene cyclic carbonate–amine chemistry enabling room-temperature reactivity and fast self-blowing. Macromolecules 58 (2025), 1673–1685, 10.1021/acs.macromol.4c02894.
Bourguignon, M., Grignard, B., Detrembleur, C., Fast, catalyst-free room temperature production of isocyanate-free polyurethane foams using aromatic thiols. Polym. Chem. 16 (2025), 192–203, 10.1039/D4PY00971A.
C. Detrembleur, B. Grignard, M. Bourguignon, Self-blowing isocyanate-free polyurethane foams, WO 2023/104362, 2023.
Sternberg, J., Pilla, S., Materials for the biorefinery: high bio-content, shape memory Kraft lignin-derived non-isocyanate polyurethane foams using a non-toxic protocol. Green Chem. 22 (2020), 6922–6935, 10.1039/D0GC01659D.
Ghasemlou, M., Daver, F., Ivanova, E.P., Adhikari, B., Bio-based routes to synthesize cyclic carbonates and polyamines precursors of non-isocyanate polyurethanes: A review. Eur. Polym. J. 118 (2019), 668–684, 10.1016/j.eurpolymj.2019.06.032.
Trojanowska, D., Monie, F., Perotto, G., Athanassiou, A., Grignard, B., Grau, E., Vidil, T., Cramail, H., Detrembleur, C., Valorization of waste biomass for the fabrication of isocyanate-free polyurethane foams. Green Chem. 26 (2024), 8383–8394, 10.1039/D4GC01547A.
Chen, X., Li, L., Jin, K., Torkelson, J.M., Reprocessable polyhydroxyurethane networks exhibiting full property recovery and concurrent associative and dissociative dynamic chemistry: Via transcarbamoylation and reversible cyclic carbonate aminolysis. Polym. Chem. 8 (2017), 6349–6355, 10.1039/c7py01160a.
Wang, T., Chen, Y., Chen, B., Suazo, M.J., Purwanto, N.S., Torkelson, J.M., Reprocessable, self-healing, and creep-resistant covalent adaptable network made from chain-growth monomers with dynamic covalent thionourethane and disulfide cross-links. ACS Macro. Lett. 13 (2024), 1147–1155, 10.1021/acsmacrolett.4c00391.
Chen, Y., Mielke, N., Purwanto, N.S., Chen, B., Malliakas, C.D., Torkelson, J.M., Non-isocyanate polythiourethane network from biowaste: achieving circularity via multidimensional chemical recycling with valuable small-molecule recovery and reprocessability by understanding the dynamic chemistry. Macromolecules 57 (2024), 490–502, 10.1021/acs.macromol.3c01941.
Pronoitis, C., Hakkarainen, M., Odelius, K., Structurally diverse and recyclable isocyanate-free polyurethane networks from CO2-derived cyclic carbonates. ACS Sustain Chem Eng 10 (2022), 2522–2531, 10.1021/acssuschemeng.1c08530.
Fortman, D.J., Snyder, R.L., Sheppard, D.T., Dichtel, W.R., Rapidly reprocessable cross-linked polyhydroxyurethanes based on disulfide exchange. ACS Macro Lett. 7 (2018), 1226–1231, 10.1021/acsmacrolett.8b00667.
Li, L., Chen, X., Torkelson, J.M., Covalent adaptive networks for enhanced adhesion: exploiting disulfide dynamic chemistry and annealing during application. ACS Appl. Polym. Mater. 2 (2020), 4658–4665, 10.1021/acsapm.0c00720.
Chen, Y., Chen, B., Torkelson, J.M., Biobased, reprocessable non-isocyanate polythiourethane networks with thionourethane and disulfide cross-links: comparison with polyhydroxyurethane network analogues. Macromolecules 56 (2023), 3687–3702, 10.1021/acs.macromol.3c00220.
Savige, W.E., Maclaren, J.A., Oxidation of disulfides, with special reference to cystine. Kharasch, N., Meyers, C.Y., (eds.) The Chemistry of Organic Sulfur Compounds, 1966, Elsevier, Amsterdam, 367–402.
Panchireddy, S., Thomassin, J.M., Grignard, B., Damblon, C., Tatton, A., Jerome, C., Detrembleur, C., Reinforced poly(hydroxyurethane) thermosets as high performance adhesives for aluminum substrates. Polym. Chem. 8 (2017), 5897–5909, 10.1039/c7py01209h.
Alferiev, I.S., Connolly, J.M., Levy, R.J., A novel mercapto-bisphosphonate as an efficient anticalcification agent for bioprosthetic tissues. J. Organomet. Chem. 690 (2005), 2543–2547, 10.1016/j.jorganchem.2004.10.011.
Jayson, G.G., Owen, T.C., Wilbraham, A.C., The radiation chemistry of cystamine sulphate. J. Chem. Soc. B, 1967, 944, 10.1039/j29670000944.
Fortman, D.J., Brutman, J.P., Hillmyer, M.A., Dichtel, W.R., Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes. J. Appl. Polym. Sci., 134, 2017, 44984, 10.1002/app.44984.
Monie, F., Vidil, T., Grau, E., Grignard, B., Detrembleur, C., Cramail, H., The Multifaceted role of water as an accelerator for the preparation of isocyanate-free polyurethane thermosets. Macromolecules 57 (2024), 8877–8888, 10.1021/acs.macromol.4c01672.
Van Lijsebetten, F., De Bruycker, K., Van Ruymbeke, E., Winne, J.M., Du Prez, F.E., Characterising different molecular landscapes in dynamic covalent networks. Chem. Sci. 13 (2022), 12865–12875, 10.1039/D2SC05528G.
Deng, G., Li, F., Yu, H., Liu, F., Liu, C., Sun, W., Jiang, H., Chen, Y., Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive Sol-Gel transitions. ACS Macro Lett. 1 (2012), 275–279, 10.1021/mz200195n.
Luo, C., Lei, Z., Mao, Y., Shi, X., Zhang, W., Yu, K., Chemomechanics in the moisture-induced malleability of polyimine-based covalent adaptable networks. Macromolecules 51 (2018), 9825–9838, 10.1021/acs.macromol.8b02046.
Taynton, P., Yu, K., Shoemaker, R.K., Jin, Y., Qi, H.J., Zhang, W., Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv. Mater. 26 (2014), 3938–3942, 10.1002/adma.201400317.
Sen Choong, P., Chong, N.X., Wai Tam, E.K., Seayad, A.M., Seayad, J., Jana, S., Biobased nonisocyanate polyurethanes as recyclable and intrinsic self-healing coating with triple healing sites. ACS Macro Lett. 10 (2021), 635–641, 10.1021/acsmacrolett.1c00163.
Gomez-Lopez, A., Panchireddy, S., Grignard, B., Calvo, I., Jerome, C., Detrembleur, C., Sardon, H., Poly(hydroxyurethane) adhesives and coatings: state-of-the-art and future directions. ACS Sustain. Chem. Eng. 9 (2021), 9541–9562, 10.1021/acssuschemeng.1c02558.
Matos-Pérez, C.R., White, J.D., Wilker, J.J., Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J. Am. Chem. Soc. 134 (2012), 9498–9505, 10.1021/ja303369p.
Azcune, I., Odriozola, I., Aromatic disulfide crosslinks in polymer systems: Self-healing, reprocessability, recyclability and more. Eur. Polym. J. 84 (2016), 147–160, 10.1016/j.eurpolymj.2016.09.023.
Verdugo, P., Santiago, D., De la Flor, S., Serra, À., A biobased epoxy vitrimer with dual relaxation mechanism: A promising material for renewable, reusable, and recyclable adhesives and composites. ACS Sustain. Chem. Eng. 12 (2024), 5965–5978, 10.1021/acssuschemeng.4c00205.
S. Ebnesajjad, A.H. Landrock, Characteristics of Adhesive Materials, in: S. Ebnesajjad, A. H. Landrock (Eds.), Adhesives Technology Handbook, Elsevier, Amsterdam, 2015: pp. 84–159. https://doi.org/10.1016/B978-0-323-35595-7.00005-X.
Van Lijsebetten, F., Debsharma, T., Winne, J.M., Du Prez, F.E., A highly dynamic covalent polymer network without creep: mission impossible?. Angew. Chem. Int. Ed., 61, 2022, e202210405, 10.1002/anie.202210405.
Bin Rusayyis, M.A., Torkelson, J.M., Reprocessable covalent adaptable networks with excellent elevated-temperature creep resistance: facilitation by dynamic, dissociative bis(hindered amino) disulfide bonds. Polym. Chem. 12 (2021), 2760–2771, 10.1039/D1PY00187F.
Yi, R., Chen, C., Li, Y., Peng, H., Zhang, H., Ren, X., The bonding between glass and metal. Int. J. Adv. Manuf. Technol. 111 (2020), 963–983, 10.1007/s00170-020-06018-x.
Overend, M., Jin, Q., Watson, J., The selection and performance of adhesives for a steel–glass connection. Int. J. Adhes Adhes 31 (2011), 587–597, 10.1016/j.ijadhadh.2011.06.001.
Pereira, A.M., Ferreira, J.M., Antunes, F.V., Bártolo, P.J., Analysis of manufacturing parameters on the shear strength of aluminium adhesive single-lap joints. J Mater Process Technol 210 (2010), 610–617, 10.1016/j.jmatprotec.2009.11.006.
G. Critchlow, Surface Treatments, in: L.F.M. da Silva, A. Öchsner, R.D. Adams (Eds)., Handbook of Adhesion Technology, in Springer Berlin Heidelberg, Berlin, Heidelberg, 2011: pp. 119-146. https://doi.org/10.1007/978-3-642-01169-6.