mosquitoes; pathogen transmission; sand flies; skin immune defense; ticks; vector saliva; vector-borne disease; Infectious Diseases; Microbiology (medical); Public Health, Environmental and Occupational Health
Abstract :
[en] Infections caused by vector-borne pathogens impose a significant burden of morbidity and mortality in a global scale. In their quest for blood, hematophagous arthropods penetrate the host skin and may transmit pathogens by the bite. These pathogens are deposited along with saliva and a complex mixture of vector derived factors. Hematophagous arthopod vectors have evolved a complex array of adaptations to modulate the host immune response at the bite site with the primary goal to improve blood feeding, which have been exploited throughout evolution by these pathogens to enhance infection establishment in the host. While this paradigm has been firmly established in mouse models, comparable data from human studies are scarce. Here we review how the host skin immune response to vector bites in animal models is hijacked by microbes to promote their pathogenesis. We mainly explored four distinct vector-pathogen pairs of global health importance: sand flies and Leishmania parasites, Ixodes scapularis ticks and Borrelia burgdorferi, Aedes aegypti mosquitoes and arboviruses, and Anopheles gambiae mosquitos and Plasmodium parasites. Finally, we outline how critical it is for the field of vector biology to shift from rodent models to clinical studies focused on the interface of vector-pathogen-host immune system to push further the frontiers of knowledge of the field.
Precision for document type :
Review article
Disciplines :
Immunology & infectious disease
Author, co-author :
Lacsina, Joshua R.; Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
Kissinger, Ryan; Visual and Medical Arts Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, United States
Doehl, Johannes S. P.; Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
Disotuar, Maria M.; Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
Short, Mara; Department of Entomology, College of Agriculture and Life Sciences, University of Arizona, Tucson, United States
Lowe, Elliot; Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, United States
Oristian, James; Department of Infectious Diseases, University of Georgia, Athens, United States ; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States
Sonenshine, Daniel; Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
DeSouza-Vieira, Thiago; Laboratório de Imunofarmacologia, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias - Instituto Oswaldo Cruz – Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
Petrellis, Georgios ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Parasitologie vétérinaire et maladies parasitaires animales ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Immunologie vétérinaire
Language :
English
Title :
Host skin immunity to arthropod vector bites: from mice to humans
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the NIAID Intramural Research Program, the NIAID Transition Program in Clinical Research, and the NIH Bench-to-Bedside Program 2016 from the NIH Clinical Center, Dimensions Sciences, and Conselho Nacional de Desenvolvimento Cient\u0131f\u00EDco e Tecnol\u00F3gico (CNPq).
Who. Global Vector Control Response 2017-2030. Geneva: World Health Organization (2017).
Kazimírová M Sulanová M Trimnellt AR Kozánek M Vidlicka L Labuda M et al. Anticoagulant activities in salivary glands of tabanid flies. Med Vet Entomol. (2002) 16:301–9. doi: 10.1046/j.1365-2915.2002.00379.x
Bernard Q Jaulhac B Boulanger N. Skin and arthropods: an effective interaction used by pathogens in vector-borne diseases. Eur J Dermatol. (2015) 25 Suppl 1:18–22. doi: 10.1684/ejd.2015.2550
Dey R Joshi AB Oliveira F Pereira L Guimaraes-Costa AB Serafim TD et al. Gut Microbes Egested during Bites of Infected Sand Flies Augment Severity of Leishmaniasis via Inflammasome-Derived IL-1beta. Cell Host Microbe. (2018) 23:134–143 e136. doi: 10.1016/j.chom.2017.12.002
Arca B Colantoni A Fiorillo C Severini F Benes V Di Luca M et al. MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions. Sci Rep. (2019) 9:2955. doi: 10.1038/s41598-019-39880-1
Sultana H Neelakanta G. Arthropod exosomes as bubbles with message(s) to transmit vector-borne diseases. Curr Opin Insect Sci. (2020) 40:39–47. doi: 10.1016/j.cois.2020.05.017
Schneider CA Calvo E Peterson KE. Arboviruses: how saliva impacts the journey from vector to host. Int J Mol Sci. (2021) 22:9173. doi: 10.3390/ijms22179173
Ali A Zeb I Alouffi A Zahid H Almutairi MM Ayed Alshammari F et al. Host immune responses to salivary components - A critical facet of tick-host interactions. Front Cell Infect Microbiol. (2022) 12:809052. doi: 10.3389/fcimb.2022.809052
Leal-Galvan B Arocho Rosario C Oliva Chávez A. Extracellular vesicles and immunomodulation in mosquitoes and ticks. Encyclopedia. (2022) 2:873–81. doi: 10.3390/encyclopedia2020057
Arora G Chuang YM Sinnis P Dimopoulos G Fikrig E. Malaria: influence of Anopheles mosquito saliva on Plasmodium infection. Trends Immunol. (2023) 44:256–65. doi: 10.1016/j.it.2023.02.005
Som PM Laitman JT Mak K. Embryology and anatomy of the skin, its appendages, and physiologic changes in the head and neck. Neurographics. (2017) 7:390–415. doi: 10.3174/ng.9170210
Nafisi S Maibach H. Skin penetration of nanoparticles. In: Shegokar R Souto E, editors. Emerging Nanotechnologies in Immunology, 1st ed. Elsevier (2018).
Pasparakis M Haase I Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. (2014) 14:289–301. doi: 10.1038/nri3646
Zomer HD Trentin AG. Skin wound healing in humans and mice: Challenges in translational research. J Dermatol Sci. (2018) 90:3–12. doi: 10.1016/j.jdermsci.2017.12.009
Nystrom A Bruckner-Tuderman L. Matrix molecules and skin biology. Semin Cell Dev Biol. (2019) 89:136–46. doi: 10.1016/j.semcdb.2018.07.025
Wei JCJ Edwards GA Martin DJ Huang H Crichton ML Kendall M. Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: from mice, rats, rabbits, pigs to humans. Sci Rep. (2017) 7:15885. doi: 10.1038/s41598-017-15830-7
Aoyagi S Takaoki Y Takayanagi H Huang CH Tanaka T Suzuki M et al. (2012). “Equivalent negative stiffness mechanism using three bundled needles inspired by mosquito for achieving easy insertion”, in: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,. doi: 10.1109/IROS.2012.6386088
Li ADR Putra KB Chen L Montgomery JS Shih A. Mosquito proboscis-inspired needle insertion to reduce tissue deformation and organ displacement. Sci Rep. (2020) 10:12248. doi: 10.1038/s41598-020-68596-w
Szolnoky G Bata-Csorgo Z Kenderessy AS Kiss M Pivarcsi A Novak Z et al. A mannose-binding receptor is expressed on human keratinocytes and mediates killing of Candida albicans. J Invest Dermatol. (2001) 117:205–13. doi: 10.1046/j.1523-1747.2001.14071.x
Nestle FO Di Meglio P Qin JZ Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. (2009) 9:679–91. doi: 10.1038/nri2622
Byrd AL Belkaid Y Segre JA. The human skin microbiome. Nat Rev Microbiol. (2018) 16:143–55. doi: 10.1038/nrmicro.2017.157
Lucas-Barbosa D DeGennaro M Mathis A Verhulst NO. Skin bacterial volatiles: propelling the future of vector control. Trends Parasitol. (2022) 38(1):15–22. doi: 10.1016/j.pt.2021.08.010
Clayton K Vallejo AF Davies J Sirvent S Polak ME. Langerhans cells-programmed by the epidermis. Front Immunol. (2017) 8:1676. doi: 10.3389/fimmu.2017.01676
Doebel T Voisin B Nagao K. Langerhans cells - the macrophage in dendritic cell clothing. Trends Immunol. (2017) 38(11):817–28. doi: 10.1016/j.it.2017.06.008
Ali N Rosenblum MD. Regulatory T cells in skin. Immunology. (2017) 152:372–81. doi: 10.1111/imm.12791
Jiang X Campbell JJ Kupper TS. Embryonic trafficking of gammadelta T cells to skin is dependent on E/P selectin ligands and CCR4. Proc Natl Acad Sci U.S.A. (2010) 107:7443–8. doi: 10.1073/pnas.0912943107
Nguyen AV Soulika AM. The dynamics of the skin’s immune system. Int J Mol Sci. (2019) 20. doi: 10.3390/ijms20081811
Kabashima K Honda T Ginhoux F Egawa G. The immunological anatomy of the skin. Nat Rev Immunol. (2019) 19:19–30. doi: 10.1038/s41577-018-0084-5
Malissen B Tamoutounour S Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol. (2014) 14:417–28. doi: 10.1038/nri3683
Tamoutounour S Guilliams M Montanana Sanchis F Liu H Terhorst D Malosse C et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity. (2013) 39:925–38. doi: 10.1016/j.immuni.2013.10.004
Epelman S Lavine KJ Randolph GJ. Origin and functions of tissue macrophages. Immunity. (2014) 41:21–35. doi: 10.1016/j.immuni.2014.06.013
Yanez DA Lacher RK Vidyarthi A Colegio OR. The role of macrophages in skin homeostasis. Pflugers Arch. (2017) 469:455–63. doi: 10.1007/s00424-017-1953-7
Krystel-Whittemore M Dileepan KN Wood JG. Mast cell: a multi-functional master cell. Front Immunol. (2015) 6:620. doi: 10.3389/fimmu.2015.00620
Clark RA Chong BF Mirchandani N Yamanaka K Murphy GF Dowgiert RK et al. A novel method for the isolation of skin resident T cells from normal and diseased human skin. J Invest Dermatol. (2006) 126:1059–70. doi: 10.1038/sj.jid.5700199
Harrison OJ Linehan JL Shih HY Bouladoux N Han SJ Smelkinson M et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science. (2019) 363. doi: 10.1126/science.aat6280
Kamhawi S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. (2006) 22(9):439–45. doi: 10.1016/j.pt.2006.06.012
Courtenay O Peters NC Rogers ME Bern C. Combining epidemiology with basic biology of sand flies, parasites, and hosts to inform leishmaniasis transmission dynamics and control. PloS Pathog. (2017) 13(10):e1006571. doi: 10.1371/journal.ppat.1006571
Peters NC Egen JG Secundino N Debrabant A Kimblin N Kamhawi S et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. (2008) 321:970–4. doi: 10.1126/science.1159194
Ribeiro-Gomes FL Peters NC Debrabant A Sacks DL. Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response. PloS Pathog. (2012) 8:e1002536. doi: 10.1371/journal.ppat.1002536
Romano A Carneiro MBH Doria NA Roma EH Ribeiro-Gomes FL Inbar E et al. Divergent roles for Ly6C+CCR2+CX3CR1+ inflammatory monocytes during primary or secondary infection of the skin with the intra-phagosomal pathogen Leishmania major. PloS Pathog. (2017) 13:e1006479. doi: 10.1371/journal.ppat.1006479
Chaves MM Lee SH Kamenyeva O Ghosh K Peters NC Sacks D. The role of dermis resident macrophages and their interaction with neutrophils in the early establishment of Leishmania major infection transmitted by sand fly bite. PloS Pathog. (2020) 16:e1008674. doi: 10.1371/journal.ppat.1008674
Afonso L Borges VM Cruz H Ribeiro-Gomes FL DosReis GA Dutra AN et al. Interactions with apoptotic but not with necrotic neutrophils increase parasite burden in human macrophages infected with Leishmania amazonensis. J Leukoc Biol. (2008) 84(2):389–96. doi: 10.1189/jlb.0108018
Medina E. Beyond the NETs. J Innate Immun. (2009) 1(3):175. doi: 10.1159/000207015
Gabriel C McMaster WR Girard D Descoteaux A. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. J Immunol. (2010) 185(7):4319–27. doi: 10.4049/jimmunol.1000893
Carlsen ED Hay C Henard CA Popov V Garg NJ Soong L. Leishmania amazonensis amastigotes trigger neutrophil activation but resist neutrophil microbicidal mechanisms. Infect Immun. (2013) 81(11):3966–74. doi: 10.1128/IAI.00770-13
Hurrell BP Schuster S Grün E Coutaz M Williams RA Held W et al. Rapid sequestration of Leishmania mexicana by neutrophils contributes to the development of chronic lesion. PloS Pathog. (2015) 11(5):e1004929. doi: 10.1371/journal.ppat.1004929
Linhares-Lacerda L Temerozo JR Ribeiro-Alves M Azevedo EP Mojoli A Nascimento MTC et al. Neutrophil extracellular trap-enriched supernatants carry microRNAs able to modulate TNF-α production by macrophages. Sci Rep. (2020) 10(1):2715. doi: 10.1038/s41598-020-59486-2
Wigerblad G Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol. (2023) 23:274–88. doi: 10.1038/s41577-022-00787-0
DeSouza-Vieira T. Metamorphosis of neutrophil transcriptional programme during Leishmania infection. Parasite Immunol. (2022) 44(6):e12922. doi: 10.1111/pim.12922
Lee SH Charmoy M Romano A Paun A Chaves MM Cope FO et al. Mannose receptor high, M2 dermal macrophages mediate nonhealing Leishmania major infection in a Th1 immune environment. J Exp Med. (2018) 215:357–75. doi: 10.1084/jem.20171389
Lee SH Chaves MM Kamenyeva O Gazzinelli-Guimaraes PH Kang B Pessenda G et al. M2-like, dermal macrophages are maintained via IL-4/CCL24-mediated cooperative interaction with eosinophils in cutaneous leishmaniasis. Sci Immunol. (2020) 5. doi: 10.1126/sciimmunol.aaz4415
Carneiro MB Lopes ME Hohman LS Romano A David BA Kratofil R et al. Th1-Th2 Cross-regulation controls early Leishmania infection in the skin by modulating the size of the permissive monocytic host cell reservoir. Cell Host Microbe. (2020) 27(5):752–68.e7. doi: 10.1016/j.chom.2020.03.011
Rossi M Fasel N. The criminal association of Leishmania parasites and viruses. Curr Opin Microbiol. (2018) 46:65–72. doi: 10.1016/j.mib.2018.07.005
Zamboni DS Sacks DL. Inflammasomes and Leishmania: in good times or bad, in sickness or in health. Curr Opin Microbiol. (2019) 52:70–6. doi: 10.1016/j.mib.2019.05.005
de Freitas Balanco JM Moreira ME Bonomo A Bozza PT Amarante-Mendes G Pirmez C et al. Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity. Curr Biol. (2001) 11(23):1870–3. doi: 10.1016/s0960-9822(01)00563-2
Mosmann TR Cherwinski H Bond MW Giedlin MA Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. (1986) 136(7):2348–57. doi: 10.4049/jimmunol.136.7.2348
Scott P Natovitz P Coffman RL Pearce E Sher A. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J Exp Med. (1988) 168(5):1675–84. doi: 10.1084/jem.168.5.1675
Silveira FT Lainson R De Castro Gomes CM Laurenti MD Corbett CE. Immunopathogenic competences of Leishmania (V.) braziliensis and L. (L.) amazonensis in American cutaneous leishmaniasis. Parasite Immunol. (2009) 31(8):423–31. doi: 10.1111/j.1365-3024.2009.01116.x
Gonzalez K Calzada JE Corbett CEP Saldaña A Laurenti MD. Involvement of the inflammasome and Th17 cells in skin lesions of human cutaneous Leishmaniasis caused by Leishmania (Viannia) panamensis. Mediators Inflamm. (2020) 2020:9278931. doi: 10.1155/2020/9278931
Stäger S Rafati S. CD8(+) T cells in leishmania infections: friends or foes? Front Immunol. (2012) 3:5. doi: 10.3389/fimmu.2012.00005
Novais FO Carvalho AM Clark ML Carvalho LP Beiting DP Brodsky IE et al. CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1β production. PloS Pathog. (2017) 13(2):e1006196. doi: 10.1371/journal.ppat.1006196
Cardoso TM Lima JB Bonyek-Silva Í Nunes S Feijó D Almeida H et al. Inflammasome activation by CD8+ T cells from patients with cutaneous Leishmaniasis caused by Leishmania braziliensis in the immunopathogenesis of the disease. J Invest Dermatol. (2021) 141(1):209–13.e2. doi: 10.1016/j.jid.2020.05.106
Cardoso TM Machado Á Costa DL Carvalho LP Queiroz A et al. Protective and pathological functions of CD8+ T cells in Leishmania braziliensis infection. Infect Immun. (2015) 83(3):898–06. doi: 10.1128/IAI.02404-14
Titus RG Ribeiro JM. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. (1988) 239:1306–8. doi: 10.1126/science.3344436
Theodos CM Titus RG. Salivary gland material from the sand fly Lutzomyia longipalpis has an inhibitory effect on macrophage function in vitro. Parasite Immunol. (1993) 15:481–7. doi: 10.1111/j.1365-3024.1993.tb00634.x
Belkaid Y Kamhawi S Modi G Valenzuela J Noben-Trauth N Rowton E et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. (1998) 188:1941–53. doi: 10.1084/jem.188.10.1941
Mbow ML Bleyenberg JA Hall LR Titus RG. Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. J Immunol. (1998) 161:5571–7. doi: 10.4049/jimmunol.161.10.5571
Ehrchen JM Roebrock K Foell D Nippe N von Stebut E Weiss JM et al. Keratinocytes determine Th1 immunity during early experimental leishmaniasis. PloS Pathog. (2010) 6(4):e1000871. doi: 10.1371/journal.ppat.1000871
Teixeira CR Santos CDS Prates DB Dos Santos RT Araujo-Santos T De Souza-Neto SM et al. Lutzomyia longipalpis Saliva Drives Interleukin-17-Induced Neutrophil Recruitment Favoring Leishmania infantum Infection. Front Microbiol. (2018) 9:881. doi: 10.3389/fmicb.2018.00881
Teixeira CR Teixeira MJ Gomes RB Santos CS Andrade BB Raffaele-Netto I et al. Saliva from Lutzomyia longipalpis induces CC chemokine ligand 2/monocyte chemoattractant protein-1 expression and macrophage recruitment. J Immunol. (2005) 175:8346–53. doi: 10.4049/jimmunol.175.12.8346
Guimaraes-Costa AB Shannon JP Waclawiak I Oliveira J Meneses C de Castro W et al. A sand fly salivary protein acts as a neutrophil chemoattractant. Nat Commun. (2021) 12:3213. doi: 10.1038/s41467-021-23002-5
Morris RV Shoemaker CB David JR Lanzaro GC Titus RG. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol. (2001) 167:5226–30. doi: 10.4049/jimmunol.167.9.5226
Rogers KA Titus RG. Immunomodulatory effects of Maxadilan and Phlebotomus papatasi sand fly salivary gland lysates on human primary in vitro immune responses. Parasite Immunol. (2003) 25:127–34. doi: 10.1046/j.1365-3024.2003.00623.x
Chagas AC Oliveira F Debrabant A Valenzuela JG Ribeiro JM Calvo E. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma. PloS Pathog. (2014) 10:e1003923. doi: 10.1371/journal.ppat.1003923
Giraud E Svobodova M Muller I Volf P Rogers ME. Promastigote secretory gel from natural and unnatural sand fly vectors exacerbate Leishmania major and Leishmania tropica cutaneous leishmaniasis in mice. Parasitology. (2019) 146:1796–802. doi: 10.1017/S0031182019001069
Rogers ME Ilg T Nikolaev AV Ferguson MA Bates PA. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature. (2004) 430:463–7. doi: 10.1038/nature02675
Rogers ME Corware K Muller I Bates PA. Leishmania infantum proteophosphoglycans regurgitated by the bite of its natural sand fly vector, Lutzomyia longipalpis, promote parasite establishment in mouse skin and skin-distant tissues. Microbes Infect. (2010) 12:875–9. doi: 10.1016/j.micinf.2010.05.014
Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol. (2007) 37(10):1097–106. doi: 10.1016/j.ijpara.2007.04.003
Rogers M Kropf P Choi BS Dillon R Podinovskaia M Bates P et al. Proteophosophoglycans regurgitated by Leishmania-infected sand flies target the L-arginine metabolism of host macrophages to promote parasite survival. PloS Pathog. (2009) 5:e1000555. doi: 10.1371/journal.ppat.1000555
Giraud E Lestinova T Derrick T Martin O Dillon RJ Volf P et al. Leishmania proteophosphoglycans regurgitated from infected sand flies accelerate dermal wound repair and exacerbate leishmaniasis via insulin-like growth factor 1-dependent signalling. PloS Pathog. (2018) 14:e1006794. doi: 10.1371/journal.ppat.1006794
Atayde VD Aslan H Townsend S Hassani K Kamhawi S Olivier M. Exosome secretion by the parasitic Protozoan leishmania within the sand fly midgut. Cell Rep. (2015) 13:957–67. doi: 10.1016/j.celrep.2015.09.058
Barbosa FMC Dupin TV Toledo MDS Reis N Ribeiro K Cronemberger-Andrade A et al. Extracellular vesicles released by Leishmania (Leishmania) amazonensis promote disease progression and induce the production of different cytokines in macrophages and B-1 cells. Front Microbiol. (2018) 9:3056. doi: 10.3389/fmicb.2018.03056
da Silva Lira Filho A Fajardo EF Chang KP Clément P Olivier M. Leishmania exosomes/extracellular vesicles containing GP63 are essential for enhance cutaneous leishmaniasis development upon co-inoculation of Leishmania amazonensis and its exosomes. Front Cell Infect Microbiol. (2022) 11:709258. doi: 10.3389/fcimb.2021.709258
Atayde VD Da Silva Lira Filho A Chaparro V Zimmermann A Martel C Jaramillo M et al. Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat Microbiol. (2019) 4:714–23. doi: 10.1038/s41564-018-0352-y
Kelly PH Bahr SM Serafim TD Ajami NJ Petrosino JF Meneses C et al. The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. mBio. (2017) 8. doi: 10.1128/mBio.01121-16
Louradour I Monteiro CC Inbar E Ghosh K Merkhofer R Lawyer P et al. The midgut microbiota plays an essential role in sand fly vector competence for Leishmania major. Cell Microbiol. (2017) 19. doi: 10.1111/cmi.12755
Omondi ZN Demir S Arserim SK. Entomological survey of the sand fly fauna of Kayseri Province: focus on visceral and cutaneous leishmaniasis in Central Anatolia, Turkey. Turkiye Parazitol Derg. (2020) 44:158–63. doi: 10.4274/tpd
Metzemaekers M Gouwy M Proost P. Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol. (2020) 17:433–50. doi: 10.1038/s41423-020-0412-0
Luz NF Desouza-Vieira T De Castro W Vivarini AC Pereira L Franca RR et al. Lutzomyia longipalpis Saliva Induces Heme Oxygenase-1 Expression at Bite Sites. Front Immunol. (2018) 9:2779. doi: 10.3389/fimmu.2018.02779
Desouza-Vieira T Iniguez E Serafim TD De Castro W Karmakar S Disotuar MM et al. Heme oxygenase-1 induction by blood-feeding arthropods controls skin inflammation and promotes disease tolerance. Cell Rep. (2020) 33:108317. doi: 10.1016/j.celrep.2020.108317
Kamhawi S Belkaid Y Modi G Rowton E Sacks D. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science. (2000) 290:1351–4. doi: 10.1126/science.290.5495.1351
Teixeira C Gomes R Oliveira F Meneses C Gilmore DC Elnaiem DE et al. Characterization of the early inflammatory infiltrate at the feeding site of infected sand flies in mice protected from vector-transmitted Leishmania major by exposure to uninfected bites. PloS Negl Trop Dis. (2014) 8:e2781. doi: 10.1371/journal.pntd.0002781
Gomes R Teixeira C Teixeira MJ Oliveira F Menezes MJ Silva C et al. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci U.S.A. (2008) 105:7845–50. doi: 10.1073/pnas.0712153105
Oliveira F Rowton E Aslan H Gomes R Castrovinci PA Alvarenga PH et al. A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Sci Transl Med. (2015) 7:290ra290. doi: 10.1126/scitranslmed.aaa3043
Gomes R Oliveira F Teixeira C Meneses C Gilmore DC Elnaiem DE et al. Immunity to sand fly salivary protein LJM11 modulates host response to vector-transmitted leishmania conferring ulcer-free protection. J Invest Dermatol. (2012) 132:2735–43. doi: 10.1038/jid.2012.205
Iniguez E Saha S Petrellis G Menenses C Herbert S Gonzalez-Rangel Y et al. A composite recombinant salivary proteins biomarker for Phlebotomus argentipes provides a surveillance tool postelimination of visceral Leishmaniasis in India. J Infect Dis. (2022) 226(10):1842–51. doi: 10.1093/infdis/jiac354
Belkaid Y Valenzuela JG Kamhawi S Rowton E Sacks DL Ribeiro JM. Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: An adaptive response induced by the fly? Proc Natl Acad Sci U.S.A. (2000) 97:6704–9. doi: 10.1073/pnas.97.12.6704
Vinhas V Andrade BB Paes F Bomura A Clarencio J Miranda JC et al. Human anti-saliva immune response following experimental exposure to the visceral leishmaniasis vector, Lutzomyia longipalpis. Eur J Immunol. (2007) 37:3111–21. doi: 10.1002/eji.200737431
Oliveira F Traore B Gomes R Faye O Gilmore DC Keita S et al. Delayed-type hypersensitivity to sand fly saliva in humans from a leishmaniasis-endemic area of Mali is Th1-mediated and persists to midlife. J Invest Dermatol. (2013) 133:452–9. doi: 10.1038/jid.2012.315
Carvalho AM Viana SM Andrade BB Oliveira F Valenzuela JG Carvalho EM et al. Immune response to LinB13, a lutzomyia intermedia salivary protein correlates with disease severity in tegumentary leishmaniasis. Clin Infect Dis. (2022) 75:1754–62. doi: 10.1093/cid/ciac258
Ashwin H Sadlova J Vojtkova B et al. Characterization of a new Leishmania major strain for use in a controlled human infection model. Nat Commun. (2021) 12:215. doi: 10.1038/s41467-020-20569-3
Parkash V Ashwin H Sadlova J Vojtkova B Jones G Martin N et al. A clinical study to optimise a sand fly biting protocol for use in a controlled human infection model of cutaneous leishmaniasis (the FLYBITE study). Wellcome Open Res. (2021) 6:168. doi: 10.12688/wellcomeopenres
Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol. (2013) 4:337. doi: 10.3389/fmicb.2013.00337
Simo L Kazimirova M Richardson J Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol. (2017) 7:281. doi: 10.3389/fcimb.2017.00281
Kemp DH Stone BF Binnington KC. Tick attachment and feeding: role of the mouthparts, feeding apparatus, salivary gland secretions, and the host response. In: Obenchain FD Galun R, editors. Physiology of Ticks. (1982). (Amsterdam, The Netherlands: Elsevier) p. 119–68.
Elsevier Sonenshine DE Roe RM. Biology of Ticks. New York, NY: Oxford University Press (2014).
Bernard Q Grillon A Lenormand C Ehret-Sabatier L Boulanger N. Skin interface, a key player for borrelia multiplication and persistence in lyme borreliosis. Trends Parasitol. (2020) 36:304–14. doi: 10.1016/j.pt.2019.12.017
Zhang X Zhang B Masoudi A Wang X Xue X Li M et al. Comprehensive analysis of protein expression levels and phosphorylation levels in host skin in response to tick (Haemaphysalis longicornis) bite. J Proteomics. (2020) 226:103898. doi: 10.1016/j.jprot.2020.103898
Nuttall PA Labuda M. Saliva-assisted transmission of tick-borne pathogens. In: Bowman AS Nuttall PA, editors. Ticks: Biology, Disease and Control. Cambridge University Press, Cambridge, UK (2008). p. 205–19.
De La Fuente J Estrada-Pena A Venzal JM Kocan KM Sonenshine DE. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. (2008) 13:6938–46. doi: 10.2741/3200
Seinost G Dykhuizen DE Dattwyler RJ Golde WT Dunn JJ Wang IN et al. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect Immun. (1999) 67:3518–24. doi: 10.1128/IAI.67.7.3518-3524.1999
Cabezas-Cruz A Hodžić A Román-Carrasco P Mateos-Hernández L Duscher GG Sinha DK et al. Environmental and molecular drivers of the α-Gal syndrome. Front Immunol. (2019) 10:1210. doi: 10.3389/fimmu.2019.01210
Apostolovic D Mihailovic J Commins SP Wijnveld M Kazimirova M Starkhammar M et al. Allergenomics of the tick Ixodes ricinus reveals important α-Gal-carrying IgE-binding proteins in red meat allergy. Allergy. (2020) 75(1):217–20. doi: 10.1111/all.13978
Hashizume H Fujiyama T Umayahara T Kageyama R Walls AF Satoh T. Repeated Amblyomma testudinarium tick bites are associated with increased galactose-α-1,3- galactose carbohydrate IgE antibody levels: A retrospective cohort study in a single institution. J Am Acad Dermatol. (2018) 78(6):1135–41.e3. doi: 10.1016/j.jaad.2017.12.028
Mitchell CL Lin FC Vaughn M Apperson CS Meshnick SR Commins SP. Association between lone star tick bites and increased alpha-gal sensitization: evidence from a prospective cohort of outdoor workers. Parasit Vectors. (2020) 13(1):470. doi: 10.1186/s13071-020-04343-4
Des Vignes F Piesman J Heffernan R Schulze TL Stafford KC 3rdFish D. Effect of tick removal on transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis nymphs. J Infect Dis. (2001) 183:773–8. doi: 10.1086/318818
Zeidner NS Schneider BS Nuncio MS Gern L Piesman J. Coinoculation of Borrelia spp. with tick salivary gland lysate enhances spirochete load in mice and is tick species-specific. J Parasitol. (2002) 88:1276–8. doi: 10.1645/0022-3395(2002)088[1276:COBSWT]2.0.CO;2
Machackova M Obornik M Kopecky J. Effect of salivary gland extract from Ixodes ricinus ticks on the proliferation of Borrelia burgdorferi sensu stricto in vivo. Folia Parasitol (Praha). (2006) 53:153–8. doi: 10.14411/fp.2006.020
Horka H Cerna-Kyckova K Skallova A Kopecky J. Tick saliva affects both proliferation and distribution of Borrelia burgdorferi spirochetes in mouse organs and increases transmission of spirochetes to ticks. Int J Med Microbiol. (2009) 299:373–80. doi: 10.1016/j.ijmm.2008.10.009
Rudolf I Sikutova S Kopecky J Hubalek Z. Salivary gland extract from engorged Ixodes ricinus (Acari: Ixodidae) stimulates in vitro growth of Borrelia burgdorferi sensu lato. J Basic Microbiol. (2010) 50:294–8. doi: 10.1002/jobm.200900237
Skallova A Iezzi G Ampenberger F Kopf M Kopecky J. Tick saliva inhibits dendritic cell migration, maturation, and function while promoting development of Th2 responses. J Immunol. (2008) 180:6186–92. doi: 10.4049/jimmunol.180.9.6186
Zeidner NS Schneider BS Rutherford JS Dolan MC. Suppression of Th2 cytokines reduces tick-transmitted Borrelia burgdorferi load in mice. J Parasitol. (2008) 94:767–9. doi: 10.1645/GE-1416.1
Vesely DL Fish D Shlomchik MJ Kaplan DH Bockenstedt LK. Langerhans cell deficiency impairs Ixodes scapularis suppression of Th1 responses in mice. Infect Immun. (2009) 77:1881–7. doi: 10.1128/IAI.00030-09
Narasimhan S Sukumaran B Bozdogan U Thomas V Liang X Deponte K et al. A tick antioxidant facilitates the Lyme disease agent’s successful migration from the mammalian host to the arthropod vector. Cell Host Microbe. (2007) 2:7–18. doi: 10.1016/j.chom.2007.06.001
Kern A Schnell G Bernard Q Boeuf A Jaulhac B Collin E et al. Heterogeneity of Borrelia burgdorferi sensu stricto population and its involvement in borrelia pathogenicity: study on murine model with specific emphasis on the skin interface. PloS One. (2015) 10:e0133195. doi: 10.1371/journal.pone.0133195
Sajiki Y Konnai S Ikenaka Y Gulay KCM Kobayashi A Parizi LF et al. Tick saliva-induced programmed death-1 and PD-ligand 1 and its related host immunosuppression. Sci Rep. (2021) 11:1063. doi: 10.1038/s41598-020-80251-y
Jin L Jiang BG Yin Y Guo J Jiang JF Qi X et al. Interference with LTβR signaling by tick saliva facilitates transmission of Lyme disease spirochetes. Proc Natl Acad Sci U S A. (2022) 119:e2208274119. doi: 10.1073/pnas.2208274119
Hayes BM Radkov AD Yarza F Flores S Kim J Zhao Z et al. Ticks resist skin commensals with immune factor of bacterial origin. Cell. (2020) 183:1562–1571 e1512. doi: 10.1016/j.cell.2020.10.042
Oliva Chávez AS Wang X Marnin L Archer NK Hammond HL McClure Carroll EE et al. Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. Nat Commun. (2021) 12:3696. doi: 10.1038/s41467-021-23900-8
Zhou W Tahir F Wang JC Woodson M Sherman MB Karim S et al. Discovery of exosomes from tick saliva and salivary glands reveals therapeutic roles for CXCL12 and IL-8 in wound healing at the tick-human skin interface. Front Cell Dev Biol. (2020) 8:554. doi: 10.3389/fcell.2020.00554
Klyachko O Stein BD Grindle N Clay K Fuqua C. Localization and visualization of a coxiella-type symbiont within the lone star tick, Amblyomma americanum. Appl Environ Microbiol. (2007) 73:6584–94. doi: 10.1128/AEM.00537-07
Cull B Burkhardt NY Wang X-R Thorpe CJ Oliver JD Kurtti TJ et al. The Ixodes scapularis Symbiont Rickettsia buchneri Inhibits Growth of Pathogenic Rickettsiaceae in Tick Cells: Implications for Vector Competence. Front Vet Sci. (2021) 8:748427. doi: 10.3389/fvets.2021.748427
Oliver JD Price LD Burkhardt NY Heu CC Khoo BS Thorpe CJ et al. Growth Dynamics and Antibiotic Elimination of Symbiotic Rickettsia buchneri in the Tick Ixodes scapularis (Acari: Ixodidae). Appl Environ Microbiol. (2021) 87. doi: 10.1128/AEM.01672-20
Angelakis E Mediannikov O Jos S-L Berenger J-M Parola P Raoult D. Candidatus Coxiella massiliensis infection. Emerg Infect Dis. (2016) 22:285–8. doi: 10.3201/eid2202.150106
Sonenshine DE Stewart PE. Microbiomes of blood-feeding arthropods: genes coding for essential nutrients and relation to vector fitness and pathogenic infections. A Rev Microorg. (2021) 9. doi: 10.3390/microorganisms9122433
Wikel SK Allen JR. Acquired resistance to ticks. iii. Cobra venom factor and the resistance response. Immunology. (1977) 32:457–65.
Brossard M Fivaz V. Ixodes ricinus L.: mast cells, basophils and eosinophils in the sequence of cellular events in the skin of infested or re-infested rabbits. Parasitology. (1982) 85:583–92. doi: 10.1017/S0031182000056365
Wada T Ishiwata K Koseki H Ishikura T Ugajin T Ohnuma N et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J Clin Invest. (2010) 120:2867–75. doi: 10.1172/JCI42680
Ohta T Yoshikawa S Tabakawa Y Yamaji K Ishiwata K Shitara H et al. Skin CD4(+) memory T cells play an essential role in acquired anti-tick immunity through interleukin-3-mediated basophil recruitment to tick-feeding sites. Front Immunol. (2017) 8:1348. doi: 10.3389/fimmu.2017.01348
Tabakawa Y Ohta T Yoshikawa S Robinson EJ Yamaji K Ishiwata K et al. Histamine released from skin-infiltrating basophils but not mast cells is crucial for acquired tick resistance in mice. Front Immunol. (2018) 9:1540. doi: 10.3389/fimmu.2018.01540
Karasuyama H Tabakawa Y Ohta T Wada T Yoshikawa S. Crucial role for basophils in acquired protective immunity to tick infestation. Front Physiol. (2018) 9:1769. doi: 10.3389/fphys.2018.01769
Lynn GE Diktas H Deponte K Fikrig E. Naturally Acquired Resistance to Ixodes scapularis Elicits Partial Immunity against Other Tick Vectors in a Laboratory Host. Am J Trop Med Hyg. (2021) 104:175–83. doi: 10.4269/ajtmh.20-0776
Anderson JM Moore IN Nagata BM Ribeiro JMC Valenzuela JG Sonenshine DE. Ticks, Ixodes scapularis, Feed Repeatedly on White-Footed Mice despite Strong Inflammatory Response: An Expanding Paradigm for Understanding Tick-Host Interactions. Front Immunol. (2017) 8:1784. doi: 10.3389/fimmu.2017.01784
Burke G Wikel SK Spielman A Telford SR Mckay K Krause PJ et al. Hypersensitivity to ticks and Lyme disease risk. Emerg Infect Dis. (2005) 11:36–41. doi: 10.3201/eid1101.040303
Glatz M Means T Haas J Steere AC Mullegger RR. Characterization of the early local immune response to Ixodes ricinus tick bites in human skin. Exp Dermatol. (2017) 26:263–9. doi: 10.1111/exd.13207
Strobl J Mündler V Müller S Gindl A Berent S Schötta AM et al. Tick feeding modulates the human skin immune landscape to facilitate tick-borne pathogen transmission. J Clin Invest. (2022) 132:e161188. doi: 10.1172/JCI161188
Mihara M. A histopathologic study of the human skin in the early stage after a tick bite: a special reference to cutaneous tissue reaction to the cement substance of tick saliva. Yonago Acta Med. (2017) 60:186–99. doi: 10.33160/yam.2017.09.009
Apostolovic D Grundström J Kiewiet MBG Perusko M Hamsten C Starkhammar M et al. Th2-skewed T cells correlate with B cell response to α-Gal and tick antigens in α-Gal syndrome. J Clin Invest. (2023) 133(6):e158357. doi: 10.1172/JCI158357
Huang YS Higgs S Vanlandingham DL. Emergence and re-emergence of mosquito-borne arboviruses. Curr Opin Virol. (2019) 34:104–9. doi: 10.1016/j.coviro.2019.01.001
Stanaway JD Shepard DS Undurraga EA Halasa YA Coffeng LE Brady OJ et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. (2016) 16:712–23. doi: 10.1016/S1473-3099(16)00026-8
Kamal M Kenawy MA Rady MH Khaled AS Samy AM. Mapping the global potential distributions of two arboviral vectors Aedes aEgypti and Ae. albopictus under changing climate. PloS One. (2018) 13:e0210122. doi: 10.1371/journal.pone.0210122
Powell JR. Mosquito-borne human viral diseases: why Aedes aEgypti? Am J Trop Med Hyg. (2018) 98:1563–5. doi: 10.4269/ajtmh.17-0866
Ribeiro JM. Role of saliva in blood-feeding by arthropods. Annu Rev Entomol. (1987) 32:463–78. doi: 10.1146/annurev.en.32.010187.002335
Ribeiro JM Francischetti IM. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol. (2003) 48:73–88. doi: 10.1146/annurev.ento.48.060402.102812
Edwards JF Higgs S Beaty BJ. Mosquito feeding-induced enhancement of Cache Valley Virus (Bunyaviridae) infection in mice. J Med Entomol. (1998) 35:261–5. doi: 10.1093/jmedent/35.3.261
Le Coupanec A Babin D Fiette L Jouvion G Ave P Misse D et al. Aedes mosquito saliva modulates Rift Valley fever virus pathogenicity. PloS Negl Trop Dis. (2013) 7:e2237. doi: 10.1371/journal.pntd.0002237
Christofferson RC Mccracken MK Johnson AM Chisenhall DM Mores CN. Development of a transmission model for dengue virus. Virol J. (2013) 10:127. doi: 10.1186/1743-422X-10-127
Mccracken MK Christofferson RC Chisenhall DM Mores CN. Analysis of early dengue virus infection in mice as modulated by Aedes aEgypti probing. J Virol. (2014) 88:1881–9. doi: 10.1128/JVI.01218-13
Pingen M Bryden SR Pondeville E Schnettler E Kohl A Merits A et al. Host inflammatory response to mosquito bites enhances the severity of arbovirus infection. Immunity. (2016) 44:1455–69. doi: 10.1016/j.immuni.2016.06.002
Agarwal A Joshi G Nagar DP Sharma AK Sukumaran D Pant SC et al. Mosquito saliva induced cutaneous events augment Chikungunya virus replication and disease progression. Infect Genet Evol. (2016) 40:126–35. doi: 10.1016/j.meegid.2016.02.033
Turell MJ Tammariello RF Spielman A. Nonvascular delivery of St. Louis encephalitis and Venezuelan equine encephalitis viruses by infected mosquitoes (Diptera: Culicidae) feeding on a vertebrate host. J Med Entomol. (1995) 32:563–8. doi: 10.1093/jmedent/32.4.563
Schmid MA Glasner DR Shah S Michlmayr D Kramer LD Harris E. Mosquito saliva increases endothelial permeability in the skin, immune cell migration, and dengue pathogenesis during antibody-dependent enhancement. PloS Pathog. (2016) 12:e1005676. doi: 10.1371/journal.ppat.1005676
Cox J Mota J Sukupolvi-Petty S Diamond MS Rico-Hesse R. Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J Virol. (2012) 86:7637–49. doi: 10.1128/JVI.00534-12
Dudley DM Newman CM Lalli J Stewart LM Koenig MR Weiler AM et al. Infection via mosquito bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques. Nat Commun. (2017) 8:2096. doi: 10.1038/s41467-017-02222-8
Mccracken MK Gromowski GD Garver LS Goupil BA Walker KD Friberg H et al. Route of inoculation and mosquito vector exposure modulate dengue virus replication kinetics and immune responses in rhesus macaques. PloS Negl Trop Dis. (2020) 14:e0008191. doi: 10.1371/journal.pntd.0008191
Schneider BS Soong L Zeidner NS Higgs S. Aedes aEgypti salivary gland extracts modulate anti-viral and TH1/TH2 cytokine responses to sindbis virus infection. Viral Immunol. (2004) 17:565–73. doi: 10.1089/vim.2004.17.565
Henrique MO Neto LS Assis JB Barros MS Capurro ML Lepique AP et al. Evaluation of inflammatory skin infiltrate following Aedes aEgypti bites in sensitized and non-sensitized mice reveals saliva-dependent and immune-dependent phenotypes. Immunology. (2019) 158:47–59. doi: 10.1111/imm.13096
Conway MJ Watson AM Colpitts TM Dragovic SM Li Z Wang P et al. Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host. J Virol. (2014) 88:164–75. doi: 10.1128/JVI.02235-13
Thangamani S Higgs S Ziegler S Vanlandingham D Tesh R Wikel S. Host immune response to mosquito-transmitted chikungunya virus differs from that elicited by needle inoculated virus. PloS One. (2010) 5:e12137. doi: 10.1371/journal.pone.0012137
Hastings AK Uraki R Gaitsch H Dhaliwal K Stanley S Sproch H et al. Aedes aEgypti NeSt1 protein enhances zika virus pathogenesis by activating neutrophils. J Virol. (2019) 93. doi: 10.1128/JVI.00395-19
Uraki R Hastings AK Marin-Lopez A Sumida T Takahashi T Grover JR et al. Aedes aEgypti AgBR1 antibodies modulate early Zika virus infection of mice. Nat Microbiol. (2019) 4:948–55. doi: 10.1038/s41564-019-0385-x
Marin-Lopez A Wang Y Jiang J Ledizet M Fikrig E. AgBR1 and NeSt1 antisera protect mice from Aedes aEgypti-borne Zika infection. Vaccine. (2021) 39:1675–9. doi: 10.1016/j.vaccine.2021.01.072
Wang Z Nie K Liang Y Niu J Yu X Zhang O et al. A mosquito salivary protein-driven influx of myeloid cells facilitates flavivirus transmission. EMBO J. (2024). doi: 10.1038/s44318-024-00056-x
Jin L Guo X Shen C Hao X Sun P Li P et al. Salivary factor LTRIN from Aedes aEgypti facilitates the transmission of Zika virus by interfering with the lymphotoxin-beta receptor. Nat Immunol. (2018) 19:342–53. doi: 10.1038/s41590-018-0063-9
Sun P Nie K Zhu Y Liu Y Wu P Liu Z et al. A mosquito salivary protein promotes flavivirus transmission by activation of autophagy. Nat Commun. (2020) 11:260. doi: 10.1038/s41467-019-14115-z
Sri-In C Weng SC Chen WY Wu-Hsieh BA Tu WC Shiao SH. A salivary protein of Aedes aEgypti promotes dengue-2 virus replication and transmission. Insect Biochem Mol Biol. (2019) 111:103181. doi: 10.1016/j.ibmb.2019.103181
Martin-Martin I Valenzuela Leon PC Amo L Shrivastava G Iniguez E Aryan A et al. Aedes aegypti sialokinin facilitates mosquito blood feeding and modulates host immunity and vascular biology. Cell Rep. (2022) 39(2):110648. doi: 10.1016/j.celrep.2022.110648
Mellanby K. Man’s reaction to mosquito bites. Nature. (1946) 158:554. doi: 10.1038/158554c0
Heilesen B. Studies on mosquito bites. Acta Allergol. (1949) 2:245–67. doi: 10.1111/j.1398-9995.1949.tb03310.x
Goldman L Rockwell E Richfield DF 3rd. Histopathological studies on cutaneous reactions to the bites of various arthropods. Am J Trop Med Hyg. (1952) 1:514–25. doi: 10.4269/ajtmh.1952.1.514
Rockwell EM Johnson P. The insect bite reaction. II. Evaluation of the allergic reaction. J Invest Dermatol. (1952) 19:137–55. doi: 10.1038/jid.1952.78
Killby VA Silverman PH. Hypersensitive reactions in man to specific mosquito bites. Am J Trop Med Hyg. (1967) 16:374–80. doi: 10.4269/ajtmh.1967.16.374
Guerrero D Vo HTM Lon C Bohl JA Nhik S Chea S et al. Evaluation of cutaneous immune response in a controlled human in vivo model of mosquito bites. Nat Commun. (2022) 13:7036. doi: 10.1038/s41467-022-34534-9
Peng Z Simons FE. Comparison of proteins, IgE, and IgG binding antigens, and skin reactivity in commercial and laboratory-made mosquito extracts. Ann Allergy Asthma Immunol. (1996) 77:371–6. doi: 10.1016/S1081-1206(10)63335-2
Chen YL Simons FE Peng Z. A mouse model of mosquito allergy for study of antigen-specific IgE and IgG subclass responses, lymphocyte proliferation, and IL-4 and IFN-gamma production. Int Arch Allergy Immunol. (1998) 116:269–77. doi: 10.1159/000023955
Peng Z Simons FE. Advances in mosquito allergy. Curr Opin Allergy Clin Immunol. (2007) 7:350–4. doi: 10.1097/ACI.0b013e328259c313
Cantillo JF Fernandez-Caldas E Puerta L. Immunological aspects of the immune response induced by mosquito allergens. Int Arch Allergy Immunol. (2014) 165:271–82. doi: 10.1159/000371349
Vogt MB Lahon A Arya RP Kneubehl AR Spencer Clinton JL Paust S et al. Mosquito saliva alone has profound effects on the human immune system. PloS Negl Trop Dis. (2018) 12:e0006439. doi: 10.1371/journal.pntd.0006439
World Health Organization. World Malaria Report 2023. (2023). Available at: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023.
Vaughan JA Scheller LF Wirtz RA Azad AF. Infectivity of Plasmodium berghei sporozoites delivered by intravenous inoculation versus mosquito bite: implications for sporozoite vaccine trials. Infect Immun. (1999) 67:4285–9. doi: 10.1128/IAI.67.8.4285-4289.1999
Fonseca L Seixas E Butcher G Langhorne J. Cytokine responses of CD4+ T cells during a Plasmodium chabaudi chabaudi (ER) blood-stage infection in mice initiated by the natural route of infection. Malar J. (2007) 6:77. doi: 10.1186/1475-2875-6-77
Kebaier C Voza T Vanderberg J. Neither mosquito saliva nor immunity to saliva has a detectable effect on the infectivity of Plasmodium sporozoites injected into mice. Infect Immun. (2010) 78:545–51. doi: 10.1128/IAI.00807-09
Schneider BS Mathieu C Peronet R Mecheri S. Anopheles stephensi saliva enhances progression of cerebral malaria in a murine model. Vector Borne Zoonotic Dis. (2011) 11:423–32. doi: 10.1089/vbz.2010.0120
Donovan MJ Messmore AS Scrafford DA Sacks DL Kamhawi S Mcdowell MA. Uninfected mosquito bites confer protection against infection with malaria parasites. Infect Immun. (2007) 75:2523–30. doi: 10.1128/IAI.01928-06
Demeure CE Brahimi K Hacini F Marchand F Peronet R Huerre M et al. Anopheles mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia. J Immunol. (2005) 174:3932–40. doi: 10.4049/jimmunol.174.7.3932
Mac-Daniel L Buckwalter MR Berthet M Virk Y Yui K Albert ML et al. Local immune response to injection of Plasmodium sporozoites into the skin. J Immunol. (2014) 193:1246–57. doi: 10.4049/jimmunol.1302669
Owhashi M Harada M Suguri S Ohmae H Ishii A. The role of saliva of Anopheles stephensi in inflammatory response: identification of a high molecular weight neutrophil chemotactic factor. Parasitol Res. (2001) 87:376–82. doi: 10.1007/s004360000355
Waisberg M Molina-Cruz A Mizurini DM Gera N Sousa BC Ma D et al. Plasmodium falciparum infection induces expression of a mosquito salivary protein (Agaphelin) that targets neutrophil function and inhibits thrombosis without impairing hemostasis. PloS Pathog. (2014) 10:e1004338. doi: 10.1371/journal.ppat.1004338
Chuang YM Agunbiade TA Tang XD Freudzon M Almeras L Fikrig E. The effects of A mosquito salivary protein on sporozoite traversal of host cells. J Infect Dis. (2021) 224:544–53. doi: 10.1093/infdis/jiaa759
Dragovic SM Agunbiade TA Freudzon M Yang J Hastings AK Schleicher TR et al. Immunization with AgTRIO, a protein in anopheles saliva, contributes to protection against plasmodium infection in mice. Cell Host Microbe. (2018) 23:523–535 e525. doi: 10.1016/j.chom.2018.03.008
Chuang YM Tang XD Fikrig E. A mosquito AgTRIO monoclonal antibody reduces early plasmodium infection of mice. Infect Immun. (2022) 90:e0035921. doi: 10.1128/IAI.00359-21
Chuang YM Alameh MG Abouneameh S Raduwan H Ledizet M Weissman D et al. A mosquito AgTRIO mRNA vaccine contributes to immunity against malaria. NPJ Vaccines. (2023) 8:88. doi: 10.1038/s41541-023-00679-x
Arora G Sajid A Chuang YM Dong Y Gupta A Gambardella K et al. Immunomodulation by mosquito salivary protein AgSAP contributes to early host infection by plasmodium. mBio. (2021) 12:e0309121. doi: 10.1128/mBio.03091-21
Schleicher TR Yang J Freudzon M Rembisz A Craft S Hamilton M et al. A mosquito salivary gland protein partially inhibits Plasmodium sporozoite cell traversal and transmission. Nat Commun. (2018) 9:2908. doi: 10.1038/s41467-018-05374-3
Shi H Yu X Cheng G. Impact of the microbiome on mosquito-borne diseases. Protein Cell. (2023) 14:743–61. doi: 10.1093/procel/pwad021
Angleró-Rodríguez YI Talyuli OAC Blumberg BJ Kang S Demby C Shields A et al. An Aedes aEgypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity. Elife. (2017) 6. doi: 10.7554/eLife.28844
Kozlova EV Hegde S Roundy CM Golovko G Saldaña MA Hart CE et al. Microbial interactions in the mosquito gut determine Serratia colonization and blood-feeding propensity. ISME J. (2021) 15:93–108. doi: 10.1038/s41396-020-00763-3
Gao H Jiang Y Wang L Wang G Hu W Dong L et al. Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway. Nat Commun. (2023) 14(1):5157. doi: 10.1038/s41467-023-40887-6
Gomes FM Barillas-Mury C. Infection of anopheline mosquitoes with Wolbachia: Implications for malaria control. PloS Pathog. (2018) 14:e1007333. doi: 10.1371/journal.ppat.1007333
Hoffmann AA Ahmad NW Keong WM Ling CY Ahmad NA Golding N et al. Introduction of Aedes aEgypti mosquitoes carrying wAlbB Wolbachia sharply decreases dengue incidence in disease hotspots. iScience. (2024) 27:108942. doi: 10.1016/j.isci.2024.108942
Das De T Sharma P Tevatiya S Chauhan C Kumari S Yadav P et al. Bidirectional microbiome-gut-brain-axis communication influences metabolic switch-associated responses in the mosquito Anopheles culicifacies. Cells. (2022) 11. doi: 10.3390/cells11111798
Lee JH Kim HW Mustafa B Lee H Kwon HW. The relationships between microbiome diversity and epidemiology in domestic species of malaria-mediated mosquitoes of Korea. Sci Rep. (2023) 13. doi: 10.1038/s41598-023-35641-3
Cansado-Utrilla C Zhao SY McCall PJ Coon KL Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. Microbiome. (2021) 9. doi: 10.1186/s40168-021-01073-2
Friedman-Klabanoff DJ Laurens MB Berry AA Travassos MA Adams M Strauss KA et al. The controlled human malaria infection experience at the University of Maryland. Am J Trop Med Hyg. (2019) 100:556–65. doi: 10.4269/ajtmh.18-0476
RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. (2015) 386:31–45. doi: 10.1016/S0140-6736(15)60721-8
Datoo MS Natama HM Somé A Bellamy D Traoré O Rouamba T et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years’ follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial. Lancet Infect Dis. (2022) 22:1728–36. doi: 10.1016/S1473-3099(22)00442-X
Collins KA Snaith R Cottingham MG Gilbert SC Hill AVS. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci Rep. (2017) 7:46621. doi: 10.1038/srep46621
Manning JE Oliveira F Coutinho-Abreu IV Herbert S Meneses C Kamhawi S et al. Safety and immunogenicity of a mosquito saliva peptide-based vaccine: a randomised, placebo-controlled, double-blind, phase 1 trial. Lancet. (2020) 395:1998–2007. doi: 10.1016/S0140-6736(20)31048-5
Friedman-Klabanoff DJ Birkhold M Short MT Wilson TR Meneses CR Lacsina JR et al. Safety and immunogenicity of AGS-v PLUS, a mosquito saliva peptide vaccine against arboviral diseases: A randomized, double-blind, placebo-controlled Phase 1 trial. EBioMedicine. (2022) 86:104375. doi: 10.1016/j.ebiom.2022.104375
Davis MM Brodin P. Rebooting human immunology. Annu Rev Immunol. (2018) 36:843–64. doi: 10.1146/annurev-immunol-042617-053206