[en] Hydrothermal alteration is a common process in volcanic and geothermally active areas. Interactions between host rock and hot, often acidic, fluids induce significant changes in texture, mineralogy, and geochemistry of the protolith, potentially impacting volcanoes stability. Southern Italy's volcanic regions are geothermally active, exhibiting conspicuous hydrothermal activity. Here, we focus on active hydrothermal acid-sulfate alteration in calc-alkaline (Panarea) and alkaline (Ischia - Solfatara) volcanic products in order to (1) spatially identify alteration assemblages using XRD, (2) determine the mobility of major and trace elements during hydrothermal alteration processes using FUS and ICP-MS, (3) estimate and compare the degree of alteration using alteration indices and elemental ratios. Our data reveal sulfur and sulfates sublimate next to the fumarole fields. Nearby fumaroles, alunite and kaolinite are the most abundant mineral phases in the alteration assemblages, often associated with amorphous silica, iron(hydr)oxides, smectites and gypsum. Kaolinite is rarely observed in La Solfatara assemblage. Comparison between the protolith and the alteration products geochemistry indicates that alteration retains the calco-alkaline or alkaline heritage, which confirms the usefulness of some chemical indices (PIA vs AI; (La + Ce)/Y vs (Zr + Hf)/(Ta + Nb) for alteration products. Despite comparable mineralogies, various degrees of alteration are observed in La Solfatara, Panarea and Ischia, constraining the alunite or kaolinite formation and highlighting local vs. global geochemical behaviors. We conclude that the (im)mobility of chemicals elements within the hydrothermal alteration - such as HFSE, REE or alkali - is mainly controlled by the protolith composition, the alteration intensity and mineralogy, pH, ionic strength and possibly crystallinity of alteration minerals.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Bouvart, Théo ; Institute of Life-Earth-Environment (ILEE), University of Namur, Namur, Belgium
Poot, Julien; Institute of Life-Earth-Environment (ILEE), University of Namur, Namur, Belgium
Dekoninck, Augustin; Laboratoire G-Time, Department of Geosciences, Environment and Society (DGES), Université Libre de Bruxelles (ULB), Brussels, Belgium
Schmit, Flore; Institute of Life-Earth-Environment (ILEE), University of Namur, Namur, Belgium
Keutgen De Greef, Maxime; Atmospheric and Oceanic Sciences Program, Princeton University, United States
Vander Auwera, Jacqueline ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique
Bernard, Alain; Laboratoire G-Time, Department of Geosciences, Environment and Society (DGES), Université Libre de Bruxelles (ULB), Brussels, Belgium
Yans, Johan; Institute of Life-Earth-Environment (ILEE), University of Namur, Namur, Belgium
Language :
English
Title :
Alunite and kaolinite as geochemical markers in active acid sulfate alterations of southern Italy (Panarea, La Solfatara and Ischia)
Acocella, V., Funiciello, R., The interaction between regional and local tectonics during resurgent doming: the case of the island of Ischia, Italy. J. Volcanol. Geotherm. Res. 88 (1999), 109–123, 10.1016/S0377-0273(98)00109-7.
Africano, F., Bernard, A., Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan. J. Volcanol. Geotherm. Res., 2000, 475–495.
Baier, J., Audétat, A., Keppler, H., The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth Planet. Sci. Lett. 267 (2008), 290–300, 10.1016/j.epsl.2007.11.032.
Barrett, T.J., Joseph, E.P., Extreme alteration in an acid-sulphate geothermal field: Sulphur Springs, Saint Lucia. Chem. Geol. 500 (2018), 103–135, 10.1016/j.chemgeo.2018.09.028.
Bobos, I., Gomes, C., Mineralogy and geochemistry (HFSE and REE) of the present-day acid-sulfate types alteration from the active hydrothermal system of Furnas volcano, São Miguel Island. The Azores Archipelago. Minerals, 11, 2021, 335, 10.3390/min11040335.
Boyce, A.J., Fulignati, P., Sbrana, A., Fallick, A.E., Fluids in early stage hydrothermal alteration of high-sulfidation epithermal systems: a view from the Vulcano active hydrothermal system (Aeolian Island, Italy). J. Volcanol. Geotherm. Res. 166 (2007), 76–90, 10.1016/j.jvolgeores.2007.07.005.
Brown, R.J., Civetta, L., Arienzo, I., et al. Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy). Contrib. Mineral. Petrol. 168 (2014), 1–23, 10.1007/s00410-014-1035-1.
Calanchi, N., Peccerillo, A., Tranne, C.A., et al. Petrology and geochemistry of volcanic rocks from the island of Panarea: implications for mantle evolution beneath the Aeolian island arc (southern Tyrrhenian Sea). J. Volcanol. Geotherm. Res. 115 (2002), 367–395, 10.1016/S0377-0273(01)00333-X.
Caliro, S., Chiodini, G., Moretti, R., et al. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim. Cosmochim. Acta 71 (2007), 3040–3055, 10.1016/j.gca.2007.04.007.
Capaccioni, B., Tassi, F., Vaselli, O., et al. Submarine gas burst at Panarea Island (southern Italy) on 3 November 2002: a magmatic versus hydrothermal episode. J. Geophys. Res. Solid Earth, 112, 2007, B05201, 10.1029/2006JB004359.
Carlino, S., Somma, R., Troiano, A., et al. The geothermal system of Ischia Island (southern Italy): critical review and sustainability analysis of geothermal resource for electricity generation. Renew. Energy 62 (2014), 177–196, 10.1016/j.renene.2013.06.052.
Casalini, M., Avanzinelli, R., Heumann, A., De Vita, S., Sansivero, F., Conticelli, S., Tommasini, S., Geochemical and radiogenic isotope probes of Ischia volcano, Southern Italy: Constraints on magma chamber dynamics and residence time. American Mineralogist 102:2 (2017), 262–274 https://doi.org/10.2138/am-2017-5724.
Çelik Karakaya, M., Karakaya, N., Temel, A., Yavuz, F., Mineralogical and geochemical properties and genesis of kaolin and alunite deposits SE of Aksaray (Central Turkey). Appl. Geochem., 124, 2021, 104830, 10.1016/j.apgeochem.2020.104830.
Cheynet, B., Dall'Aglio, M., Garavelli, A., et al. Trace elements from fumaroles at Vulcano Island (Italy): rates of transport and a thermochemical model. J. Volcanol. Geotherm. Res. 95 (2000), 273–283, 10.1016/S0377-0273(99)00122-5.
Chiodini, G., Caliro, S., Caramanna, G., et al. Geochemistry of the submarine gaseous emissions of Panarea (Aeolian Islands, southern Italy): magmatic vs. hydrothermal origin and implications for volcanic surveillance. Pure Appl. Geophys. 163 (2006), 759–780, 10.1007/s00024-006-0037-y.
Chiodini, G., Avino, R., Caliro, S., Minopoli, C., Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei). Ann. Geophys. 54 (2011), 151–160.
Chiodini, G., Vandemeulebrouck, J., Caliro, S., et al. Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth Planet. Sci. Lett. 414 (2015), 58–67, 10.1016/j.epsl.2015.01.012.
Chiodini, G., Caliro, S., Avino, R., et al. Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy). J. Volcanol. Geotherm. Res., 414, 2021, 107245, 10.1016/j.jvolgeores.2021.107245.
Chiodini, G., Caliro, S., Avino, R., et al. The hydrothermal system of the Campi Flegrei caldera, Italy. Orsi, G., D'Antonio, M., Civetta, L., (eds.) Springer, 2022, Berlin Heidelberg, Berlin, Heidelberg, 239–255.
Colella, A., Di Benedetto, C., Calcaterra, D., et al. The Neapolitan yellow tuff: an outstanding example of heterogeneity. Constr. Build. Mater. 136 (2017), 361–373, 10.1016/j.conbuildmat.2017.01.053.
Crisci, G.M., De Francesco, A.M., Mazzuoli, R., et al. Geochemistry of recent volcanics of Ischia Island, Italy: evidences for fractional crystallization and magma mixing. Chem. Geol. 78 (1989), 15–33, 10.1016/0009-2541(89)90049-1.
Dekov, V.M., Kamenov, G.D., Abrasheva, M.D., et al. Mineralogical and geochemical investigation of seafloor massive sulfides from Panarea platform (Aeolian arc, Tyrrhenian Sea). Chem. Geol. 335 (2013), 136–148, 10.1016/j.chemgeo.2012.10.048.
Di Giuseppe, M.G., Troiano, A., Fedele, A., et al. Electrical resistivity tomography imaging of the near-surface structure of the Solfatara crater, Campi Flegrei (Naples, Italy). Bull. Volcanol., 77, 2015, 10.1007/s00445-015-0910-6.
Di Napoli, R., Aiuppa, A., Bellomo, S., et al. A model for Ischia hydrothermal system: evidences from the chemistry of thermal groundwaters. J. Volcanol. Geotherm. Res. 186 (2009), 133–159, 10.1016/j.jvolgeores.2009.06.005.
Di Vito, M.A., Isaia, R., Orsi, G., et al. Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91 (1999), 221–246, 10.1016/S0377-0273(99)00037-2.
Doherty, A.L., Cannatelli, C., Raia, F., Belkin, H.E., Albanese, S., Lima, A., De Vivo, B., Geochemistry of selected lavas of the Panarea volcanic group. Aeolian Arc, Italy. Mineralogy and Petrology 109:5 (2015), 597–610 https://doi.org/10.1007/s00710-015-0385-3.
Ece, Ö.I., Ekinci, B., Schroeder, P.A., et al. Origin of the Düvertepe kaolin-alunite deposits in Simav graben, Turkey: timing and styles of hydrothermal mineralization. J. Volcanol. Geotherm. Res. 255 (2013), 57–78, 10.1016/j.jvolgeores.2013.01.012.
Fedo, C.M., Wayne Nesbitt, H., Young, G.M., Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 1995, 921, 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2.
Finlow-Bates, T., Stumpfl, E.F., The behaviour of so-called immobile elements in hydrothermally altered rocks associated with volcanogenic submarine-exhalative ore deposits. Mineral. Deposita 16 (1981), 319–328, 10.1007/BF00202743.
Fulignati, P., Gioncada, A., Sbrana, A., Rare-earth element (REE) behaviour in the alteration facies of the active magmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy). J. Volcanol. Geotherm. Res. 88 (1999), 325–342, 10.1016/S0377-0273(98)00117-6.
Grosche, A., Klemd, R., Denkel, K., Keith, M., Haase, K.M., Voudouris, P.C., Alfieris, D., Wiedenbeck, M., Sources, transport, and deposition of metal(loid)s recorded by sulfide and rock geochemistry: constraints from a vertical profile through the epithermal Profitis Ilias Au prospect, Milos Island, Greece. Mineralium Deposita 58:6 (2023), 1101–1122 https://doi.org/10.1007/s00126-023-01170-2.
Heap, M.J., Baumann, T., Gilg, H.A., et al. Hydrothermal alteration can result in pore pressurization and volcano instability. Geology 49 (2021), 1348–1352, 10.1130/G49063.1.
Inguaggiato, C., Burbano, V., Rouwet, D., Garzón, G., Geochemical processes assessed by rare earth elements fractionation at “Laguna Verde” acidic-sulphate crater lake (Azufral volcano, Colombia). Appl. Geochem. 79 (2017), 65–74, 10.1016/j.apgeochem.2017.02.013.
Inguaggiato, C., Pappaterra, S., Peiffer, L., et al. Mobility of REE from a hyperacid brine to secondary minerals precipitated in a volcanic hydrothermal system: Kawah Ijen crater lake (Java, Indonesia). Sci. Total Environ., 740, 2020, 140133, 10.1016/j.scitotenv.2020.140133.
Ishikawa Y, Sawaguchi T, Iwaya S, Horiuchi M (1976) Deliniation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos (in Japanese with English abs.). Mining Geol. 26:206–117.
Italiano, F., Nuccio, P.M.M., Geochemical investigations of submarine volcanic exhalations to the east of Panarea, Aeolian Islands, Italy. J. Volcanol. Geotherm. Res. 46 (1991), 125–141, 10.1016/0377-0273(91)90079-F.
Kadir, S., Erman, H., Erkoyun, H., Mineralogical and geochemical characteristics and genesis of hydrothermal kaolinite deposits within neogene volcanites, Kütahya (western Anatolia), Turkey. Clay Clay Miner. 59 (2011), 250–276, 10.1346/CCMN.2011.0590304.
Kadir, S., Ateş, H., Erkoyun, H., et al. Genesis of alunite-bearing kaolin deposit in Mudamköy member of the Miocene Göbel formation, Mustafakemalpaşa (Bursa). Turkey. Appl. Clay Sci., 221, 2022, 106407, 10.1016/j.clay.2022.106407.
Karakaya, N., REE and HFS element behaviour in the alteration facies of the Erenler Dağı Volcanics (Konya, Turkey) and kaolinite occurrence. J. Geochem. Explor. 101 (2009), 185–208, 10.1016/j.gexplo.2008.07.001.
Large, R.R., Gemmell, J.B., Paulick, H., Huston, D.L., The alteration box plot: a simple approach toUnderstanding the relationship between alteration mineralogy andLithogeochemistry associated with volcanic-hosted massive sulfide deposits. Econ. Geol. 96 (2001), 957–971, 10.2113/gsecongeo.96.5.957.
Le Bas, Le Maitre, Streckeisen, A., Zanettin, B., Bas, M.J.L., Maitre, R.W.L., Streckeisen, A., Zanettin, B., A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27:3 (1986), 745–750 https://doi.org/10.1093/petrology/27.3.745.
Lucchi, F., Tranne, C.A., Peccerillo, A., et al. Geological history of the panarea volcanic group (eastern aeolian archipelago). Geol. Soc. Mem. 37 (2013), 351–395, 10.1144/M37.12.
MacLean, W.H., Mass change calculations in altered rock series. Mineral. Deposita 25 (1990), 44–49, 10.1007/BF03326382.
Mayer, K., Scheu, B., Montanaro, C., et al. Hydrothermal alteration of surficial rocks at Solfatara (Campi Flegrei): Petrophysical properties and implications for phreatic eruption processes. J. Volcanol. Geotherm. Res. 320 (2016), 128–143, 10.1016/j.jvolgeores.2016.04.020.
Mutlu, H., Sariiz, K., Kadir, S., Geochemistry and origin of the Şaphane alunite deposit, Western Anatolia, Turkey. Ore Geol. Rev. 26 (2005), 39–50, 10.1016/j.oregeorev.2004.12.003.
Nesbitt, H.W., Young, G.M., Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299 (1982), 715–717, 10.1038/299715a0.
Orsi, G., De Vita, S., Di Vito, M., The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 74 (1996), 179–214, 10.1016/S0377-0273(96)00063-7.
Orsi, G., Civetta, L., Del Gaudio, C., et al. Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): an example of active block-resurgence in a densely populated area. J. Volcanol. Geotherm. Res. 91 (1999), 415–451, 10.1016/S0377-0273(99)00050-5.
Orsi, G., D'Antonio, M., Civetta, L., Campi Flegrei: A Restless Caldera in a Densely Populated Area. 2021.
Pandarinath, K., Application potential of chemical weathering indices in the identification of hydrothermally altered surface volcanic rocks from geothermal fields. Geosci. J. 26 (2022), 415–442, 10.1007/s12303-021-0042-2.
Peccerillo, A., Lustrino, M., Compositional variations of Plio-quaternary magmatism in the circum-Tyrrhenian area: deep versus shallow mantle processes. Special Paper of the Geological Society of America 388 (2005), 421–434, 10.1130/0-8137-2388-4.421.
Piochi, M., Kilburn, C.R.J., Di Vito, M.A., et al. The volcanic and geothermally active Campi Flegrei caldera: an integrated multidisciplinary image of its buried structure. Int. J. Earth Sci. 103 (2014), 401–421, 10.1007/s00531-013-0972-7.
Piochi, M., Mormone, A., Balassone, G., et al. Native sulfur, sulfates and sulfides from the active Campi Flegrei volcano (southern Italy): genetic environments and degassing dynamics revealed by mineralogy and isotope geochemistry. J. Volcanol. Geotherm. Res. 304 (2015), 180–193, 10.1016/j.jvolgeores.2015.08.017.
Piochi, M., Mormone, A., Balassone, G., Hydrothermal alteration environments and recent dynamics of the Ischia volcanic island (southern Italy): insights from repeated field, mineralogical and geochemical surveys before and after the 2017 Casamicciola earthquake. J. Volcanol. Geotherm. Res. 376 (2019), 104–124, 10.1016/j.jvolgeores.2019.03.018.
Rye, R.O., A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chem. Geol. 215 (2005), 5–36, 10.1016/j.chemgeo.2004.06.034.
Savelli, C., Marani, M., Gamberi, F., Geochemistry of metalliferous, hydrothermal deposits in the Aeolian arc (Tyrrhenian Sea). J. Volcanol. Geotherm. Res. 88 (1999), 305–323, 10.1016/S0377-0273(99)00007-4.
Sbrana, A., Marianelli, P., Pasquini, G., Volcanology of Ischia (Italy). J. Maps 14 (2018), 494–503, 10.1080/17445647.2018.1498811.
Scarpati, C., Cole, P., Perrotta, A., The Neapolitan yellow tuff - a large volume multiphase eruption from Campi Flegrei, southern Italy. Bull. Volcanol. 55 (1993), 343–356, 10.1007/BF00301145.
Tassi, F., Capaccioni, B., Caramanna, G., et al. Low-pH waters discharging from submarine vents at Panarea Island (Aeolian Islands, southern Italy) after the 2002 gas blast: origin of hydrothermal fluids and implications for volcanic surveillance. Appl. Geochem. 24 (2009), 246–254, 10.1016/j.apgeochem.2008.11.015.
Tomlinson, E.L., Arienzo, I., Civetta, L., et al. Geochemistry of the Phlegraean fields (Italy) proximal sources for major Mediterranean tephras: implications for the dispersal of Plinian and co-ignimbritic components of explosive eruptions. Geochim. Cosmochim. Acta 93 (2012), 102–128, 10.1016/J.GCA.2012.05.043.
Yang, M., Liang, X., Ma, L., et al. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite. Chem. Geol. 525 (2019), 210–217, 10.1016/j.chemgeo.2019.07.024.